LUCIFER: A new technique for Double Beta Decay

F. Ferroni

Università “La Sapienza” and INFN, Sezione di Roma - P.za A. Moro 2, Rome, Italy

(ricevuto il 14 Settembre 2010; pubblicato online il 10 Gennaio 2011)

Summary. — LUCIFER (Low-background Underground Cryogenic Installation For Elusive Rates) is a new project aiming to study the neutrinoless Double Beta Decay. It will be based on the technology of the scintillating bolometers. These devices shall have a great power in distinguishing signals from α’s and β/γ’s promising a background-free experiment, provided that the Q value of the candidate isotope is higher than the 208Tl line. The baseline candidate for LUCIFER is 82Se. Here the LUCIFER concept will be introduced and the prospects related to this project will be discussed.

PACS 14.60.Pq – Neutrino mass and mixing.
PACS 23.40.-s – β decay; double β decay; electron and muon capture.

1. – Introduction

In the field of fundamental particle physics the neutrino has become more and more important in the last few years, since the discovery of its mass. In particular, the ultimate nature of the neutrino (if it is a Dirac or a Majorana particle) plays a crucial role not only in neutrino physics, but in the overall framework of fundamental particle interactions and in cosmology. The only way to disentangle its ultimate nature is to search for the so-called Neutrinoless Double Beta Decay (0ν2β) [1]. One of the best technologies for studying this extremely challenging problem is the bolometric one. Bolometers [2] are low-temperature-operated particle detectors which provide better energy resolution, lower energy thresholds and broader material choice than conventional devices. They can be thought of as perfect calorimeters, able to thermalize fully the energy released by a particle. The best features of bolometric detectors are:

– They can contain the candidate nuclei with a favorable mass ratio and be massive.

– They exhibit good energy resolution. This parameter is crucial since the signal is a peak in the energy spectrum of the detector positioned exactly at the Q-value of
the reaction. This peak must be discriminated over the background and therefore has to be narrow.

- They can be built in a way to be characterized by low intrinsic background.

Up to now, the choice for bolometers as \(0\nu2\beta\) detectors has fallen on natural TeO\(_2\) that has very good mechanical and thermal properties together with a very large (27\% in mass) content of the candidate \(^{130}\text{Te}\). The success of CUORICINO [3] and the excellent prospects for CUORE [4] are based on this approach. Bolometer-based \(0\nu2\beta\) searches require however extremely low levels of background. Even if you reduce drastically that arising from radioactive contaminants in the bolometers themselves, you still have the problem of the surrounding materials. Surface contamination is of particular concern. In fact, alpha-particles arising from radioactive contaminations located on the surfaces of the detector or of passive elements facing them can lose part of their energy in a few microns and deposit in the detector an energy close to that of the signal, thus mimicking a signal event. A realistic possibility to improve substantially the background rejection capability is to join the bolometric technique proposed for the CUORE experiment with the bolometric light detection technique used in cryogenic dark matter experiments. The bolometric technique allows an extremely good energy resolution while its combination with the scintillation detection offers an ultimate tool for background rejection. Preliminary tests on several double-beta-decay detectors have clearly demonstrated the excellent background rejection capabilities that arise from the simultaneous, independent, double readout (heat + scintillation). Indeed a demonstrator for this technique (LUCIFER) will be constructed in the next couple of here with ERC funding.

2. – The physics case

The oscillation experiments have proven that neutrinos are massive and do mix. They have measured with precision the mass difference squared between the neutrino species and two out of the three parameters of the P-MNS mixing matrix. These values allow to express the composition of the three flavour neutrino states \((\nu_e, \nu_\mu, \nu_\tau)\) in terms of their mass eigenstates \((\nu_1, \nu_2, \nu_3)\). One shall notice that the ambiguity inherent to the measurement of squared mass differences in the oscillation process leaves two possibilities for the hierarchical mass arrangements of neutrinos. There could also be a common baseline. The measured values of the neutrino mass differences are indeed tiny. Many orders of magnitude smaller than the mass of the lightest of charged leptons, the electron. Long ago E. Majorana formulated an elegant and minimal description of the neutrino field. The question is whether Nature makes use of this simplicity. Seventy years after, Majorana neutrinos are still an exciting possibility, indeed the best description we can find for the physical neutrinos. Majorana neutrino may explain the dominance of matter over antimatter in our Universe, on which asymmetry our very same existence depends. Until the discovery of the massive nature of neutrinos no much attention was paid to the issue of Majorana neutrino: if neutrinos are massless, as everybody believed, it did not matter. The Standard Theory changed the situation and it came (slowly) to be realized that the chiral symmetry is broken, so that there is no reason \textit{a priori} to expect massless neutrinos and that a Dirac neutrino mass requires a right-handed (sterile, \textit{i.e.} not interacting) neutrino, but then why neutrinos are so much lighter than the charged leptons or quarks? Majorana mass and weak isospin selection rules make it possible to find a natural explanation to the smallness of neutrino mass. The pattern of neutrino masses and mixing admit an elegant solution, the so-called see-saw mechanism. Although
the possibility for this process was pointed out far in the past, the experimental search
looked just impossible. The key element for the process to occur is in fact in the helicity
flip needed. As long as the neutrino was thought to be massless this could just not
happen. Nowadays we know that this is indeed possible. The DBD are extremely rare
processes. In the two neutrino decay mode their half-lives range from \(T_{1/2} \approx 10^{18} \) y to
\(10^{25} \) y. The rate for this process will go as

\[
1/\tau = G(Q, Z)|M_{\text{nuc}t}|^2 m_{\beta\beta}^2.
\]

The first factor (phase space) that goes like \(Q^5 \) is easily calculated. The second (nuclear
matrix element) is hard to compute. Several calculations made under different approaches
exist and the agreement is getting better and better with time.

The experimental investigation of these phenomena requires a large amount of DBD
emitter, in low-background detectors with the capability for selecting reliably the signal
from the background. The sensitivity of an experiment will go as

\[
S^{0\nu} \propto a \left(\frac{MT}{b\Delta E} \right)^{1/2} \epsilon.
\]

Isotopic abundance \((a) \) and efficiency \((\epsilon) \) will end up in a linear gain, while mass \((M) \)
and time \((T) \) only as the square root. Also background level \((b) \) and energy resolution
\((\Delta E) \) behaves as a square root. In the case of the neutrinoless decay searches, the
detectors should have a sharp energy resolution, or good tracking of particles, or other
discriminating mechanisms. The choice of the emitters should be made also according to
its two-neutrino half-life (which could limit the ultimate sensitivity of the neutrinoless
decay), according also to its nuclear factor-of-merit and according to the experimental
sensitivity that the detector can achieve.

3. – The experimental challenge

There are three regions of neutrino mass that well separate the possible experiment
on \(0\nu2\beta \). The degenerate already attained by experiments like HdM [5] and Cuoricino
characterized by a need for sensitivity to masses in excess of 100 meV, the inverted
hyerarchy confined between 20 and 100 meV and the direct one with masses in the meV range and below. The sensitivity to neutrino mass requested for probing the entire region of the inverted hyerarchy requires a factor 10 with respect to what achieved so far. As the sensitivity goes with the square root of neutrino mass, this unpleasant feature calls for a factor 100 difference in any (or o combination of) parameter regulating the game: mass, live-time, energy resolution and background rate. Todate performance of the most advanced bolometric project, CUORE, already foresees a mass of 1 ton, a running time of 5 years and an energy resolution of 5 keV. As easily seen there is not much to gain from any of these parameters. Conversely the background index so far achieved with this technique is the 10^{-3} counts/keV/kg/y from Cuoricino (see fig. 1).

CUORE aims to 10^{-4} and so far has demonstrated a plausible 10^{-5}. The following figure shows the request to experiment performance in terms of background called by the inverted hyerarchy region search.

It is clear that a breakthrough is achieved only by going below 10^{-3} counts/keV/kg/y. The experience of Cuoricino shows clearly that energy-degraded α’s, emitted by surface radioactive contamination, populate the spectral region between 2.5 and 4 MeV with a dangerous continuum at the level of 0.1 counts/keV/kg/y. Therefore, the ability to tag α-particles would be a formidable asset. This improvement would be particularly effective if the investigated isotope presented an energy transition higher than the end point of the bulk of the natural radioactivity, i.e. the 208Tl 2615 keV line. In this case, the simultaneous suppression of the γ background (thanks to the location of the transition energy) and of the α background (thanks to the identification of these particles), would provide a virtual zero background experiment.

4. – Scintillating bolometers

Bolometers represent the generalization of the Ge diode technique to the majority of the interesting candidates. Bolometers consist of two main parts.

- Energy absorber: It is the main detector part. The energy deposited by a single quantum into this element determines an increase of its temperature. This temperature variation corresponds to the ratio between the energy released by the particle and the heat capacity of the absorber. Therefore, the main requirement is to operate the device at low temperatures (usually less than 0.1 K and sometimes even less than 0.015 K) in order to make its heat capacity low enough. Another requirement is that the absorber material is dielectric and diamagnetic, assuring a very low specific heat at low temperatures.

- Thermometer: It is thermally coupled to the energy absorber and measures its temperature. The thermometer is usually a resistive element with a strong dependence of the resistance on the temperature. For large mass bolometers a reliable and simple thermistor technology consists of the use of neutron transmutation doped (NTD) Ge thermistors.

Scintillating bolometers to the search for 0ν2β bring in an enormous added value, by allowing the use of high Q-value candidates first, and second by providing a substantial α/β discrimination power. When the energy absorber in a bolometer is an efficient scintillator at low temperatures, a small but significant fraction of the deposited energy (up to a few %) is converted into scintillation photons, while the remaining dominant part is detected as usual in the form of heat. The simultaneous detection of the scintillation
light is a very powerful tool to identify the nature of the interacting particle. In particular, alpha-particles can be discriminated (see fig. 2) with respect to beta and gamma interaction because of the different quenching factor (QF).

A scintillating bolometer for $0\nu\beta\beta$ is no new concept in the field and was proposed more than one decade ago for 48Ca with CaF$_2$ crystals [6]. Nature has kindly provided
us with a few isotope candidates presenting a transition energy higher than 2615 keV and forming chemical compounds suitable for the growth of large scintillating crystals, which proved to work as highly performing bolometers as well. The most suited are based on Cd, Mo and Se with the drawback of a need for an isotopic enrichment that brings their natural abundances (less than 10%) to a much higher value. This means in practice that although results [7] obtained by using CdWO₄ have basically proven (see fig. 3) the power of this approach the final choice for a practical experiment cannot make use of this crystal. Cd is difficult to enrich, the process is extremely costly and the residual, unavoidable presence of 109Cd and 113Cd too much of a nuisance. Mo does not offer at this point any convincing crystalline compound and it is an element heavily contaminated by the presence of U, Th. When applying different materials to this scheme and considering all the relevant elements (scientific, technical, economical), the final balance is in favour of 82Se (ZnSe crystals).

5. – LUCIFER demonstrator

One of the most striking features of ZnSe is the abnormal QF, higher than 1 unlike all the other studied compounds. Although not really welcome, this unexpected property does not degrade substantially the discrimination power of this material compared to the others and makes it compatible with the requirement of a high-sensitivity experiment. An additional very useful feature is the possibility to perform α/β discrimination on the basis of the temporal structure of the signals, both in the heat and light channel (see fig. 4).

The detector configuration proposed for LUCIFER resembles closely the one selected and extensively tested for CUORE, with an additional light detector, designed according to the recipes developed during the scintillating-bolometer R&D and consisting of an auxiliary bolometer, opaque to the light emitted by the ZnSe crystals (see fig. 5). A preliminary version of the LUCIFER structure consists of an array of 48 crystals, divided in 12 elementary modules with 4 crystals each arranged in a tower, which would fit exactly the experimental volume of the Cuoricino cryostat. This structure assumes that a single light detector, quite large in order to monitor four scintillating crystals simultaneously, is sensitive enough to perform efficiently the α/β discrimination. The total detector mass would be 25 kg, with about 14 kg of enriched material assuming an enrichment level of 97%. A preliminary evaluation of the LUCIFER sensitivity can be made on the basis of the structure discussed above and on the background expectations.
after α/β rejection. Assuming 5 year live time, an energy window of 20 keV and a specific background coefficient of 10^{-3} counts/keV/kg/y, less than a few background counts are expected in the region of interest (the transition energy for ^{82}Se is 2995 keV). This corresponds to a sensitivity to the Majorana neutrino mass of the order of 100 meV. The most important goal for LUCIFER is to be a demonstrator of the scintillating bolometer technology, with a significant mass and a full test of all the critical elements of this approach:

- large-scale enrichment,
- efficient chemical purification meeting radioactive requirements,
- large-size crystals grown with high efficiency in using the precious (100$/g$) material,
- background rejection invesigated in many modules simultaneously operated.

It has the ambition to indicate the way to the experiment for the search of $0\nu2\beta$ able to span over the whole inverted hierarchy region.

* * *

The project LUCIFER has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n. 247115.

REFERENCES