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Abstract

Questa tesi valuta l’esito del trattamento con Terapia di Cattura Neutronica del Boro
(BNCT) utilizzando algoritmi di Intelligenza Artificiale (AI) per delineare i volumi tu-
morali. Fornire una accurata e precisa segmentazione del tumore è cruciale per un tratta-
mento mirato ed efficace. Tuttavia, questa procedura può presentare problemi e difficoltà
che possono influenzare la buona riuscita del trattamento. L’utilizzo di algoritmi avan-
zati di AI, come le reti neurali convoluzionali U-Net (CNNs), potrebbe compensare tali
ostacoli, consentendo il riconoscimento automatico delle regioni tumorali dalle immagini
di risonanza magnetica (MRI) e tomografia computerizzata (CT). Questo approccio non
solo ridurrebbe il carico di lavoro dei radiologi, ma potrebbe anche facilitare il proces-
so di segmentazione, consentendo una valutazione più rapida delle regioni di interesse e
un’ottimizzazione del piano di trattamento. Inoltre, l’applicazione dell’AI potrebbe essere
particolarmente utile anche per la ricerca, fornendo un elevato numero di immagini medi-
che segmentate in breve tempo. Questo sarebbe particolarmente prezioso nello studio di
nuove terapie, compresa la BNCT, fornendo ai ricercatori un elevato numero di immagini
mediche segmentate in relativamente breve tempo.

Per questo lavoro di tesi ho ottenuto la segmentazione del tumore attraverso l’algorit-
mo di intelligenza artificiale addestrato nel progetto AI_MIGHT. La tesi è incentrata
sull’ applicazione di questi algoritmi su immagini mediche di pazienti affetti da Gliobla-
stoma Multiforme (GBM), un tumore cerebrale caratterizzato da elevata aggressività e
tendenza alla recidiva. A causa della resistenza alla radioterapia convenzionale, la BNCT
è considerata una terapia promettente per il trattamento del GBM. Le immagini mediche
dei pazienti sono state ottenute da un database pubblico, al quale sono stati aggiunti
due ulteriori casi provenienti da pazienti che effettivamente sono stati sottoposti a un
trattamento di BNCT.

Lo scopo del lavoro è la valutazione dell’efficacia di questi algoritmi di segmentazione
automatica attraverso un’analisi dosimetrica, mettendo a confronto i valori di dose as-
sorbita nei pazienti, calcolata nel caso in cui il tumore fosse segmentato manualmente o
tramite l’ausilio di rete neurale. Per simulare il trattamento ho impiegato IT_STARTS,
un software innovativo per i piani di trattamento BNCT sviluppato a Pavia. Nel corso
della tesi, sono mostrati i risultati di tale confronto, i quali hanno evidenziato una correla-
zione tra il rapporto delle dosi assorbite nelle due diverse segmentazioni e il coefficiente di
Dice, che verrà approfondito nel Capitolo 4. Vengono, inoltre, tratte conclusioni riguardo
l’applicabilità di questo approccio nei diversi casi analizzati. Infine, si delinea il lavoro
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futuro necessario per approfondire questa analisi ed estendere il metodo descritto al trat-
tamento BNCT di altri tipi di tumore. Questo lavoro fa parte del progetto AI_MIGHT
dedicato all’implementazione di software per la segmentazione automatica di immagini
mediche per l’ottimizzazione del trattamento BNCT.
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Abstract

This thesis evaluates the outcome of Boron Neutron Capture Therapy (BNCT) treatment
using Artificial Intelligence (AI) algorithms to contour tumor volumes. Providing accurate
and precise tumor segmentation is crucial for targeted and effective treatment. However,
this procedure can pose challenges that may affect the success of the treatment. The use
of advanced AI algorithms, such as U-Net Convolutional Neural Networks (CNNs), could
address these obstacles by enabling automatic recognition of tumor regions from Mag-
netic Resonance Imaging (MRI) and Computed Tomography (CT) images. This approach
would not only reduce the workload of radiologists but also facilitate the segmentation
process, allowing for a quicker assessment of regions of interest and optimization of the
treatment plan. Additionally, the application of AI could be particularly beneficial for
research, providing a large number of segmented medical images in a short period, which
would be valuable in studying new therapies, including BNCT.

For this work I obtained the tumor segmentation through the AI algorithm trained in the
AI_MIGHT project. The dissertation focused on medical images of patients suffering from
Glioblastoma Multiforme (GBM), a brain tumor characterized by high aggressiveness
and recurrence propensity. Due to its resistance to conventional radiotherapy, BNCT is
considered a promising therapy for GBM treatment. Medical images of patients were
obtained from a public database, and images of two additional clinical cases who had
undergone BNCT were also analyzed.

The purpose of the work was to assess the effectiveness of these automatic segmenta-
tion algorithms through a dosimetric analysis, comparing the dose absorbed in patients
where the tumor was segmented manually versus using neural network assistance. For
this purpose, I used IT_STARTS, an innovative Treatment Planning System for BNCT
developed in Pavia. Throughout the thesis, the results of this comparison are presented,
which highlighted a correlation between the ratio of absorbed doses in the two different
segmentations and the Dice coefficient, to be further explored in Chapter 4. Furthermore,
conclusions on the applicability of this approach in various analyzed cases are drawn.
Moreover, future work to deepen the analysis and to enlarge the methods to other tumors
in BNCT treatment is outlined. This work is part of the AI_MIGHT project dedicated
to implementing software for medical image segmentation to optimize BNCT treatment
planning.
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Introduction

Glioblastoma Multiforme (GBM) is the most frequent and aggressive primary central ner-
vous system tumor, categorized within the group of diffuse astrocytic and oligodendroglial
tumors by the 2016 WHO classification of CNS tumors [1]. Research indicates that GBM
affects individuals at an estimated incidence rate of around 3-4 cases per 100.000 pop-
ulation per year worldwide. The average onset age of glioblastoma is approximately 65
years, with an incidence at this age of about 10-12 cases per 100.000 population annually.
Median survival is around 12 months, with a survival rate of less than 5% at 5 years
post-diagnosis. Standard therapy for the treatment of this pathology typically involves
surgical resection followed by radiotherapy and chemotherapy. Due to its infiltrating na-
ture and resistance to conventional therapies, the prognosis are often extremely poor, and
patients may be enrolled in clinical trials exploring novel treatments.

Boron Neutron Capture Therapy (BNCT) is emerging as a promising approach for the
treatment of various cancers, including GBM. Its effectiveness lays on selectively target-
ing tumor cells while minimizing damage to healthy tissue as a result of a nuclear reaction
within the cancer cells. Recent clinical studies investigating BNCT for GBM treatment
have shown encouraging outcomes [2]. These studies have indeed demonstrated not only
tumor regression but also higher survival rates in patients. However, there are still chal-
lenges in optimizing BNCT protocols, enhancing boron delivery to tumor sites, and im-
proving treatment planning and delivery techniques. Furthermore, also the availability of
suitable neutron sources and facilities for the treatment remains limited, constraining its
widespread clinical implementation.

Albeit less crucial than in photon and hadron therapy, accurate delineation of target
volumes is essential for the BNCT success, and it directly impacts on the treatment
effectiveness. This process is known as tumor contouring. In addition to ensuring opti-
mal targeting of the tumor while minimizing radiation exposure to surrounding healthy
tissues and critical structures, tumor contouring facilitates the correlation between the
volumetric distribution of the dose in critical targets and the clinical effects observed in
patients. Clinicians can thus evaluate the treatment effectiveness, understand the pos-
sible unwanted side effects and implement more effective dose limitations. Traditional
methods of manual segmentation by physicians have long been considered as the golden
standard for tumor contouring. However, the emergence of Artificial Intelligence (AI)
offers a promising strategy to improve the state of the art. The current development of
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Introduction

Artificial Neural Network (ANN) has provided new methods of automatic tumor contour-
ing, potentially capable to enhance and speed up the processing of an adequate treatment
plan.

This thesis is framed in a project (AI_MIGHT) dedicated to the implementation of AI
contouring for the treatment planning in BNCT. In particular, the aim of this work was
to simulate treatment planning of BNCT in several clinical cases of GBM, comparing
the dosimetry obtained when the target regions were contoured manually with the one
obtained automatically. The suitability of such strategy is discussed in light of different
figures of merit describing the dose distribution and the clinical outcome. The dissertation
is structured as follows.

The opening chapter provides a comprehensive overview of BNCT. The first section fo-
cuses on the fundamental physical principles underlying BNCT, including the essential
characteristics of boron carriers and neutron beams for optimizing therapy. The following
section deals with the dosimetry of BNCT, describing the models currently in use to
translate BNCT dose into photon-equivalent units.

In the second chapter the focus shifts to Treatment Planning Systems (TPS) employed in
BNCT and their operational mechanisms. After analyzing the differences with the TPS
adopetd in conventional radiotherapy in the first section, the second section describes the
main characteristics of TPS used in BNCT, providing few examples. Lastly, IT_STARTS,
an innovative treatment plan developed in Pavia and adopted for the calculations of this
work, is introduced.

The third chapter introduces the application of AI in medicine, with a particular emphasis
on cancer imaging and contouring. In order to better understand the functioning of the
algorithms used, notions of DL and ANN will be provided in the second section. At
the conclusion of this chapter, the concept of U-Net and its architecture are described,
explaining how it is applied to medical image contouring. Additionally, the application of
U-Net in the AI_MIGHT project is showed.

The fourth chapter reports the clinical cases, the simulations, the results and the analysis
conducted. The use of ANN for patient segmentation is evaluated through the result of
the in-patient dosimetry. Simulations were performed considered manual and automatic
contouring and the differences were critically analyzed. Correlation was studied between
dose values and parameters describing the performance of the ANN. Finally, a radiobio-
logical figure of merit based on the tumor control probability of a given dose distribution
was introduced to better describe the impact of the contouring on the clinical outcome
of the treatment.
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Chapter 1

BNCT: Boron Neutron Capture
Therapy

1.1 Fundamentals of BNCT

Boron Neutron Capture Therapy, also known as BNCT, is a multidisciplinary and in-
novative technique for malignant tumor treatment. It is a binary approach as both a
10B-labeled compound and a low-energy neutron beam are needed to deliver therapeutic
doses to the target tumor. A BNCT treatment involves basically two steps. First of all,
it is necessary to deliver efficiently and selectively a suitable amount of 10B atoms inside
the target, which consists of the tumor tissue. Then the tumor must be irradiated with a
neutron beam having proper characteristics in terms of spectrum and intensity in order
to trigger the wanted nuclear reaction and deliver sufficient dose. The products of the
neutron capture reaction on 10B have a high Linear Energy Transfer (LET) and deposit
all their energy in the cancer cells. While, due to their short range in tissue, surrounding
healthy cells are preserved [3].

BNCT acts completely differently from conventional radiotherapy and hadrontherapy,
where an extremely focused beam of photons (or hadrons) is needed to hit and destroy
tumor cells. In particle therapy, the beam energy is set in such a way that the maximum
dose is absorbed within the tumor, located at a specific depth, by adjusting the position of
the Bragg peak. On the other hand, BNCT relies on the localized accumulation of boron
in the different tissues, which is the factor that ensures the selectivity of the treatment.

The idea to use neutrons to treat cancers dates back about almost a century ago, after
the neutron discovery from James Chadwick in 1932. Several difficulties have prevented a
regular and broad clinical use in the past [4]. However, BNCT is recently experiencing a
new era of expansion thanks to technological advances and the latest clinical results are
particularly promising [2, 5, 6].
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BNCT: Boron Neutron Capture Therapy

1.1.1 Nuclear reaction

The physical principles of BNCT were studied in 1936 by Gordon Locher [7], and it was
applied since the early 1950s using nuclear reactors as neutron source.

BNCT is based on the following nuclear reactions:
10B + n −→ 11B −→ 7Li∗ + 4He + 2.31 MeV

7Li∗ −→ 7Li + γ + 0.478 MeV [BR = 93.9%]
(1.1)

10B + n −→ 11B −→ 7Li + 4He + 2.79 MeV [BR = 6.1%] (1.2)

which occur with a cross section of σ = 3837 barns for thermal neutrons having energy
of En = 0.025 eV.

The selectivity of BNCT is thus based on the preferential uptake of 10-boron in the tumor.
Neutrons, however, interact also with other elements in the biological tissues, producing
a mixed radiation field that deposits dose in a non-selective way. This inevitable dose
component can be limited not to exceed the tolerance of normal tissues, while the tumor
absorbs a higher dose when the boron concentration is sufficiently high.

Figure 1.1: Nuclear reaction between 10B and thermal neutrons.
Illustration from [8].

As shown in Figure 1.1, the 10B nucleus captures the neutron, and the unstable 11B breaks
into a recoil atom of 7Li and an alpha particle. With a probability of 93.9%, the lithium
nucleus is produced at an excited state, and so it immediately decays, emitting a 478 keV
photon. The lithium ion and the alpha particle, emitted back-to-back, have a range in
biological tissues of approximately 5.2 and 7.5 µm respectively. The summed range of
those two particles is comparable to the average size of a mammalian cell (∼10 µm).

13



BNCT: Boron Neutron Capture Therapy

This means that, if the neutron capture reactions take place in a cell, most of the energy
deposition occurs inside that specific cell. The damage is thus limited to cells containing
10B, as shown in Figure 1.2.

Figure 1.2: BNCT principle of selectivity whereby the 10B(n,α)7Li nuclear reaction only
takes place inside tumor cells. Illustration from [9].

The high LET of the alpha and 7Li ions ensures an effective cell killing. As a matter of
fact, experiments have shown that 2 to 6 alpha particles are sufficient to induce a lethal
lesion in a cell, depending on the different cell lines [10]. This is due to the high energy
transfer in a short path, with a dense dose deposition pattern, which irreversibly damages
the DNA and leads to cell death.

Summarizing, BNCT effectiveness is based on the possibility to obtain a sufficient tumor-
to-normal tissue boron concentration ratio and on the interaction of thermal neutrons
inside the tumor cells.

1.1.2 Boron carriers

As both 7Li and 4He produced in neutron boron capture are characterized by very high
biological effectiveness and a short range, the micro-distribution of boron inside the tissues
is fundamental to provide an effective and selective therapy. It is necessary for boron
atoms to accumulate preferentially in the target, and for this reason, injecting any boron
formulation is not enough [11].

Two 10B delivery agents, the amino acid p-boronophenylalanine, known as BPA, and the
sulfhydryl borane Na2B12H11SH, BSH, have been used for the BNCT clinical treatments.
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BNCT: Boron Neutron Capture Therapy

These boron compounds, shown in Figure 1.3, were selected because they are character-
ized by negligible toxicity, a certain degree of tumor specificity, and a suitable accumu-
lation of boron inside the target (the tumor concentrations of 10B should be ∼ 20 ppm),
long retention inside the tumor and, on the contrary, a fast and complete clearance from
healthy tissue [12]. These properties allow for enhancement of the tumor-to-normal tis-
sue concentration ratio and for a higher therapeutic ratio, which is the ratio between the
minimum dose in the tumor and the maximum dose in the healthy tissues.

Figure 1.3: Chemical structure of BPA and BSH. Illustration from [13].

BPA is the drug currently used in clinical trials. It was used for the first time by Mishima
et al. in 1987 as a boron delivery agent for the treatment of cutaneous melanomas [14], as it
is a precursor of melanin. It can be taken up by cancer cells as a result of enhanced cellular
amino acid transport and remains in melanoma cells more than in other cells as it interacts
with the melanin polymerization process of melanoma cells [15]. The effectiveness of BPA
for the treatment of brain tumors is based on its capability to be actively transported
across the blood-brain barrier (BBB) into the normal brain, so it can reach even the most
infiltrating gliomas. Preclinical studies in the 9L rat gliosarcoma brain tumor model at
BNL showed for the first time that the F-BPA, a more soluble BPA fructose complex,
produced a tumor-to-normal brain boron concentration ratio of 5:1 [16, 17].

On the other hand, BSH works in a totally different way to reach the target volume.
Unlike BPA, it is not able to actively cross the BBB, but it reaches the tumor cells by
a passive diffusion process through the tumor vasculature, which is not tight enough to
stop it. Also in this case, reports have shown a tumor:blood boron concentration ratio
higher than 1, showing a certain selectivity. Studies have proved the effectiveness of BSH
for the treatment of intracranial tumors and its extremely low toxicity [18, 12], while for
highly infiltrated tumors, such as glioblastomas, the capability for the boron to cross the
BBB is essential, therefore BPA is more suitable.

Both BSH and BPA are approved for clinical use in protocols worldwide, and currently
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BNCT: Boron Neutron Capture Therapy

researchers are studying new promising delivery agents exploiting different strategies to
improve the accumulation of boron in the tumor, such as the labeling of the borated
formulation with tumor-specific antibodies [12]. Efforts are being devoted all over the
world to develop new borated formulations able to increase the BNCT effectiveness.

1.1.3 Neutron beam

In addition to boron delivery agents, an adequate neutron field has to be created in the
boron-loaded tumor cells. Unlike radiotherapy and hadrontherapy, BNCT neutron beams
do not need to be precisely conformed to the tumor volume, but they should be wide
enough to cover and irradiate the whole tumor and possible invisible spreads. In general,
circular apertures of 12 to 14 cm in diameter are used for clinical treatments, although
they vary depending on the organ to irradiate. However, for brain tumors, neutron beams
having a diameter of up to 17 cm have been proposed [19].

Neutron energy has a fundamental role in the treatment. First of all, as said before,
the 10B(n,α)7Li reactions (1.1) and (1.2) occur with a higher cross section, as shown in
Figure 1.4 , when thermal neutrons interact with boron nuclei, so the neutron beam must
have low energy. However, the beam energy also depends on the depth of the tumor. As
a matter of fact, thermal beams cannot reach deep-seated tumors due to the attenuation
in the tissues. In this case, an epithermal neutron beam is required.

As shown in Figure 1.5, the neutron flux radically changes with the depth inside a certain
material. For thermal beams, the maximum thermal neutron flux is at the beginning
and then it exponentially decreases. The epithermal beam, instead, thermalises while
interacting. This generates a thermal neutron flux whose maximum is at a depth of
2-3 cm. This peak can be shifted further by increasing the energy of the beam. This
means that for deep-seated target volumes, epithermal beams will generally be the best,
while for shallow targets, such as melanomas, thermal or mixed thermal and epithermal
(hyperthermal) beams will be used [19].

The main features that characterize thermal and epithermal beams are intensity and
quality. Considering the eventual presence of fast neutrons and photons inside the ep-
ithermal neutron beam, the recommended values of the beam quality have been published
by IAEA in the TecDoc in 2023 [21]:

(i) maximum contamination of thermal neutrons inside an epithermal beam
ϕth

ϕepi
≤ 0.05

(ii) minimum degree of collimation as neutron current over epithermal neutron flux
J

ϕepi
≥ 0.7

(iii) maximum ratio between gamma dose rate and epithermal neutron flux
γ

ϕepi
≤ 7 · 10−13 cm2 Gy
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BNCT: Boron Neutron Capture Therapy

Figure 1.4: Neutron cross sections with boron reactions. For low energies the main reaction
that takes place is the neutron capture. Illustration made using data from ENDF/B-
VIII [20].

(iv) maximum ratio between fast neutron dose rate and epithermal neutron flux

ϕfast

ϕepi
≤ 2 · 10−13 cm2 Gy

(v) minimum epithermal neutron flux to trigger enough nuclear reactions with boron
in a reasonable treatment time

ϕepi ≥ 5 · 108cm−2 s−1 .

To produce such neutron flux, the beam can be generated from nuclear reactors [22] or
particle accelerators. The latter are becoming more and more common worldwide [23, 24,
25] as they present many more advantages compared to reactors: they are smaller and can
be installed inside hospitals, requiring simpler licensing, operation and maintenance [26].
They can be certified as clinical devices paving the road towards clinical trials. Reactors
are normally installations used for other purposes and not employed for clinical research
alone.
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BNCT: Boron Neutron Capture Therapy

Figure 1.5: Comparison of flux-depth distributions for thermal and epithermal neutrons
in a tissue equivalent phantom. Illustration from [19].

Accelerator-based BNCT, known as AB-BNCT, is based on the production of neutrons
through nuclear reactions between accelerated charged particles and a specific target. The
most common accelerators rely on 7Li(p,n)7Be, 9Be(p,n)9B, and 9Be(d,n)10B endothermic
and exothermic reactions. In these cases, protons or deuterons are accelerated and directed
against a lithium or beryllium target. The produced neutron beam is not suitable for
patient treatment as-is because the energy is too high (typically around 200 keV for Li
and 1.5 MeV for Be), and the collimation is not adequate. It is thus necessary to optimize
the spectrum by “slowing down” the average energy and by removing the unwanted
component of the beam with a structure called Beam Shaping Assembly (BSA). Neutrons
are passively moderated with proper materials and geometries, to tailor the beam for
patient irradiation [27].

There are currently about 30 projects related to the installation, commissioning and use of
accelerators for clinical BNCT in the world (https://isnct.net). The most advanced
projects are those based on Sumitomo Heavy industries 30 MeV cyclotron coupled to
a Be target in Japan, where the clinical application is already covered by the Health
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National System for the treatment of Head & Neck tumors [28]. In China a clinical trial
is currently ongoing using a linear accelerator manufactured by TLS and run by Neuboron
Medtech. Other accelerators are being commissioned for clinical use in Finland, South
Korea, Japan. In Italy, two projects of clinical facilities are being developed: one in CNAO
(Pavia) based on a commercial solution by TLS and one at the University of Campania L.
Vanvitelli based on the Radiofrequency Quadrupole accelerator and Be target designed
and built at the National Laboratory of Legnaro of INFN [29, 30, 31]. The work described
in this thesis is framed in this project and it has been carried out using the designed
neutron beam described in [27].

1.2 BNCT dosimetry

The radiobiology and the dosimetry of BNCT are more complex than those of other
radiation therapy modalities. As said in Section 1.1.1, BNCT is based on the nuclear
capture reaction between thermal neutrons and 10B atoms, and the resulting ions are
responsible for dose deposition. However, 10B(n,α)7Li interaction is not the only one
involved during the treatment. Neutrons can also interact with other elements in human
tissues producing particles characterized by different physical properties and biological
effectiveness [19]. These particles deliver an unavoidable and non-negligible background
dose to both tumor and normal tissues. Essentially, BNCT is characterized by a mixed
radiation field. Dose contributions of different particles have to be summed by taking into
account their biological effectiveness.

1.2.1 BNCT dose components

According to ICRU Report 44 [32], soft tissue is mainly composed of four atoms in the
following concentrations: oxygen 10O (76.2%), carbon 12C (11.1%), hydrogen 1H (10.1%)
and nitrogen 14N (2.6%). For dose estimation in BNCT, the hydrogen dose and nitrogen
dose, namely the doses due to the interactions of neutrons with hydrogen and nitrogen
atoms, have a key role because of their higher cross sections and KERMA factors, while
the dose delivered by the nuclear reactions involving oxygen and carbon is negligible [33],
as shown in Figure 1.6. Elastic scattering between neutrons and hydrogen nucleus has a
lower cross section than capture. However, the dose contribution is high because there
are many hydrogen atoms and because the recoil protons, especially above 10 keV,
release a non-negligible dose.

While penetrating the tissues, epithermal and fast neutrons are thermalized through
elastic scattering with hydrogen atoms. In this 1H(n,n’)p reaction, the incoming neu-
tron loses on average half of its energy and a high-LET recoil proton is set off. On the
contrary, thermal neutrons are mainly involved in capture processes, such as 1H(n,γ)2H
and 14N(n,p)14C. In the first case, a low-LET photon is produced at an energy of
Eγ = 2.2 MeV, while the nitrogen capture process releases an intermediate-LET pro-
ton having Ep = 590 keV [21].
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Figure 1.6: Neutron cross-section of main tissue elements from ENDF/B-VIII.0 [34].
Boron, hydrogen and nitrogen are more likely to react with thermal energy neutrons com-
pared to carbon and oxygen, whose reactions can be negligible in terms of dose calculation.
The dotted lines separate the various thermal, epithermal and high energy regimes.

The BNCT dose components can be summarized in four groups whose depth-dose profiles,
for an epithermal neutron beam, are shown in Figure 1.7:

(i) DB boron dose component, which is the dose delivered due to the high-LET light
ions produced in 10B(n,α)7Li reaction. This is the major contribute to the total
dose [33].

(ii) Dth thermal neutron dose component, which is the dose delivered by thermal neu-
trons (Eth < 0.5 eV) while interacting with tissue. As shown in Figure 1.7, the
main process depositing dose due to thermal neutrons other than boron capture is
14N(n,p)14C.

(iii) Df fast neutron dose component, which is the dose contribute due to the thermal-
ization of fast neutrons (Ef > 10 keV) in which protons are emitted with an energy
that is half that of incoming neutrons on average. As shown in Figure 1.7, it is the
highest component in the skin and decreases exponentially with depth as neutrons
are slowed down.
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(iv) Dγ gamma dose component, which is the dose delivered by photons produced in
the 1H(n,γ)2H reaction, in the10B(n,α)7Li reaction and by photons present in the
incident neutron beam.

Figure 1.7: Depth dose profiles representative of an epithermal neutron beam at the MITR-
II FCB Research Reactor in United States [35]. Illustration from [3].

Given this mixed-radiation field, the issue is to identify a radiobiological model able to
describe how the dose components interact and cause a certain effect in biological tissues.
As a matter of fact, the establishment of a suitable model has a key role in the development
of a correct treatment planning, ensuring the capacity to prescribe the therapeutic dose
to the tumor and, at the same time, a safe dose value to the surrounding healthy tissues.

As mentioned in Section 1.2.1, different nuclear reactions are involved during a BNCT
treatment, which delivers a specific dose. For this reason, the total absorbed dose delivered
by BNCT is given by the arithmetical sum of these dose components:

D = DB + Dth + Df + Dγ (1.3)

However, BNCT clinical protocols make use of photon-equivalent doses to make predic-
tions of the therapy outcome based on the knowledge gained in photon therapy [36].
For this reason, it is required to convert BNCT dose value in photon-equivalent units.
Traditionally, the BNCT dose translated into photon units has been indicated as photon-
equivalent dose or biologically-weighted dose Dw. A large variety of units to indicate the
administered dose in photon equivalent units have been established by the BNCT com-
munity, such as Gy-Eq, or the more specifical Gy(RBE) and Gy(IsoE), depending on the
adopted model [21].
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For the conversion, it is necessary to consider that the BNCT mixed radiation field
comprises radiations with different Linear Energy Transfer (LET) and Relative Biological
Effectiveness (RBE). This parameter, which is LET dependent, is defined as the ratio of
the absorbed dose of a reference radiation (often taken to be 60Co gamma rays), DR, to
the absorbed dose of the particular radiation being examined, DX , that is required to
obtain the same level of biological effectiveness [37]:

RBEX = DR

DX
(1.4)

Essentially, it indicates the biologically effectiveness of a radiation under study compared
to photons.

1.2.2 The RBE-weighted Dose model

The absorbed BNCT dose D can be converted into weighted dose Dw, by multiplying
each dose component by the respective (dose and dose rate independent) RBE factors.
This radiobiological model is known as RBE-weighted dose model [38]. Regarding the
boron dose component DB, it is, however, fundamental to take into account also the boron
micro-distribution inside the tumor cells. As mentioned in Section 1.1.2, the selectivity
and the effectiveness of BNCT depend on the way boron atoms are accumulated inside
the target volume. For this reason, the boron dose contribution requires to be weighted by
another parameter, called Compound Biological Effectiveness (CBE), whose value varies
with the boron compounds, the target tissue or cell, and the endpoint of the assessment.

RBE and CBE factors are typically obtained through in-vitro measurements, using tumor
cell lines irradiated with photons and neutrons in presence of boron. The cell survival as
a function of dose is assessed and a fixed endpoint is chosen to calculate the RBE and
CBE [17]. RBE and CBE factors have been established for different cell lines, including
rat skin and HeLa cells, using both BPA and BSH carriers at different neutron facilities,
including the thermal neutron field at the TRIGA Mark II reactor in Pavia [39, 40, 41,
42].

The BNCT weighted dose is calculated as follows:
Dw = CBE · DB + RBEth · Dth + RBEf · Df + RBEγ · Dγ . (1.5)

The RBE-weighted dose model has been used in BNCT clinical applications so far.

However, some recent studies conducted at the Comisión Nacional de Energía Atómica
(CNEA) in Argentina show that this model is affected by formal inconsistencies which
gives dose values that are not equivalent to photon dose [43]. As a matter of fact, the
RBE dose model is proven to overestimate photon-equivalent dose values, and it is thus
non suitable to understand the observed clinical outcomes in terms of the BNCT dose
values translated using fixed-RBE factors.

1.2.3 The Photon Isoeffective Dose model

The RBE-weighted dose model leads to unrealistic tumor photon-equivalent doses, and
this prevents its use to predict the effectiveness of a treatment or to limit the side effects.
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One of the most important objections to the conventional RBE-weighted dose model is
that weighting factors are considered as dose and dose rate independent values. As a
result, a new formalism called photon-isoeffective dose model has been proposed by
González and Santa Cruz [43], which exploits the entire survival curve, instead of relying
only in one endpoint.

The photon-isoeffective dose model relies on two main assumptions: the first order repair
of sublethal lesions and the synergistic interaction between different radiations. As said
in Section 1.2.1, during a BNCT treatment several reactions take place and the products
of these interactions are responsible of DNA lesions. This effect is described by the theory
of dual radiation action (TDRA) [44] whose primary tenet is that lethal lesions can arise
either from the direct action of single events or by the incoherent action of independent
events combining together. This expression is formally equivalent to the linear quadratic
(LQ) formalism described by

S(D) = e−(αD+βD2) (1.6)
according to which the yield of lethal damage due to a single event is proportional to
the dose, while the one due to the combination of events is proportional to the square
of the dose deposited. In the previous Equation (1.6), S(D) corresponds to the survival
fraction of irradiated cells, while the parameters α and β are the constant terms linking
cell lethality respectively to damage per single hit (linear term) or per sum of two separate
damages (quadratic term).

Cellular damages that, instead, do not imply lethal lesions are known as sublethal lesions,
or sublesions, and they can either combine together leading to lethal damages or be fixed
by cellular repair mechanisms. First-order lesion repair was originally taken into account
in the pioneering works of Lea and Catcheside in the 1940s [45] resulting in the generalized
Lea-Catcheside time dependent factor G(θ). This term refers to the reduced probability
of sublesions interactions during the irradiation time θ considering the presence of DNA
repair mechanisms.

Mathematically, it can be expressed as the linear combination of two contributes, taking
into account the double kinetics of slow (t0s) and fast (t0f ) repair as follows [43]:

Gi(θ, t0f , t0s) = pif
G(θ, t0f ) + pisG(θ, t0s) , (1.7)

where pif
and pis are the proportions of sublesions repaired by the fast and slow kinetics

for the i − th radiation (with pif
+ pis = 1), and

G(θ, t0) = 2t0
θ

1 − t0
θ

1 − e
−

t0
θ


 , (1.8)

where t0 is the fast or the slow characteristic repair times.

Lea-Catcheside factor affects and modifies the quadratic term, taking values from zero to
one, with G = 1 when all damages have combined and 0 < G < 1 when repair has taken
place reducing cell killing [46]. As a result, the former equation becomes

S(D) = e−(αD+G(θ)βD2). (1.9)
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G(θ) factor is directly dependent on irradiation time without regard to the spatial distri-
bution of the initial lesions.

The other effect taken into consideration by the photon-isoeffective dose model is the
radiation synergism [47]. It is indeed possible for coexisting sublesions produced by dif-
ferent radiations to interact with each others and produce a lethal damage to the target.
Several experiments have demonstrated this phenomenon [48, 49, 50]. In particular, it has
been shown that there is a synergistic behavior of high and low LET radiation and how
this leads to an increased effect. In terms of linear quadratic formalism, the expression
of the survival fraction S(D) is modified to include mixed terms each one modulated by
the respective G(θ) factor.

The formalism of photon-isoeffective dose model is, thus, based on the following assump-
tions [43]:

(i) the survival dose-response relationship is described by linear quadratic model that
accounts for dose-rate dependent sublesion repair (MLQ);

(ii) if synergism is taken into account, the survival dose-response is adequately described
including the additional mixed terms from TDRA, modulated by Lea-Catcheside
factors G experimentally derived by Suzuki [51] for simultaneous mixed irradiation.

The photon-isoeffective dose formalism applied to BNCT translates the BNCT dose into
the photon-equivalent dose. For simplicity, let D1, D2, D3 and D4 be respectively the
boron, thermal neutron, fast neutron and γ absorbed dose components of the BNCT
mixed field and let us consider the reference radiation R. It is possible to calculate the ref-
erence radiation dose DR as a function of the four dose components, DR = DR(D1, ..., D4)
using two different approaches [43].

Independent Action
Let us consider the survival probability S(Di) given from Equation (1.6) for each i-th
dose component i = 1, ...,4. It is, however, possible to allow the quadratic term only
for the gamma dose component and neglect it for the other contributions. High LET
radiations are far more likely to induce single hit lethal lesions than low LET ones and
so the survival probability becomes

Si(Di) =
{

e−αiDi i = 1,2,3
e−(αiDi+Gi(θ)βiD

2
i ) i = 4 (1.10)

where αi and βi are the coefficients of the single-fraction linear-quadratic survival model
for the corresponding radiations and Gi=4(θ) is the generalized Lea-Catcheside time factor
for the gamma dose component. Let SR(DR) be the survival fraction for the reference
radiation R and be written as a function of the BNCT dose, i.e.

SR(DR) = S(D1, ..., D4). (1.11)

If no synergistic effects are taken into account and each dose component acts indepen-
dently, the survival probability for the combination of the four contributions is just given
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by the product of the single components Si(Di) from Equation (1.10):

S(D1, ..., D4) =
4∏

i=1
Si(Di). (1.12)

Considering Equations (1.10) and (1.11), the latter Equation (1.12) becomes

−ln(SR(DR)) =
4∑

i=1
αiDi + G4(θ)β4D2

4. (1.13)

It is moreover possible to rewrite DR as the sum of the four dose contributes weighted by
RBE factors ri(DR) which, unlike the fixed ones used in the RBE-weighted dose model,
are reference-dose dependent. One can, thus, obtain

DR(D1, ...D4) =
4∑

i=1
ri(DR)Di. (1.14)

Combining Equations (1.14) with (1.13), it is possible to get RBE values ri(DR) as

ri(DR) =


αi

DR

−ln(SR(DR)) i = 1,2,3

(αi + Gi(θ)βiD
2
i ) DR

−ln(SR(DR)) i = 4
(1.15)

Now, let us suppose that the survival probability of the reference radiation SR(DR) is
given by the following single-fraction linear quadratic dose

−ln(SR(DR)) = αRDR + GR(θ′)βRD2
R , (1.16)

where αR and βR are the LQ model parameters and GR(θ′) the generalized Lea-Catcheside
time factor for the reference radiation R.

Considering the Equations 1.16, 1.15 and 1.14, the appropriate expression achieved to
evaluate the photon-isoeffective dose for the BNCT mixed radiation field in absence of
synergistic actions is

DR(D1, ..., D4) =
4∑

i=1
ri(DR)Di

=
3∑

i=1

[
αi

DR

−ln(SR(DR))

]
Di +

[
(αi + Gi(θ)βiD

2
i ) DR

−ln(SR(DR))

]
D4

=
3∑

i=1

(
αi

αR + GR(θ′)βRDR

)
Di +

(
α4 + G4(θ)β4D4

αR + GR(θ′)βRDR

)
D4 .

(1.17)
This equation, though, cannot be analytically solved and does not allow the calculation
of DR, as an explicit expression of DR cannot be simply obtained. Nevertheless, when
cell survival experiments are carried out with a constant irradiation time (i.e. changing
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the dose rate for each point) or if the irradiation time is shorter than the characteristic
repair time, then GR(θ′) = GR is constant. Therefore, for these cases, Equation 1.17 can
be solved for DR, obtaining

DR(D1, ..., D4) = 1
2

(
α

β

)
R

GR
×


√√√√√√1 + 4GR

αR

(
α

β

)
R

( 4∑
i=1

αiDi + G4(θ)β4D2
4

)
− 1

 . (1.18)

Synergistic Action
In this case, different radiations are able to actively interact with each other, producing an
additional effect that enhances cellular death. Sublesions produced by the i-th radiation
can combine with the ones produced by any other different j-th radiation and form lethal
damage.

Let assume the survival probability from LQ formalism

Si(Di) = e−(αiDi+Gi(θ)βiD
2
i ) (1.19)

for every i-th radiation component alone. Synergism between component i and j is ex-
pressed through the following relationship

−ln(Sij(Di, Dj)) = Gij(θ)
√

βiβjDiDj , i /= j = 1, ...,4 (1.20)

where Gij(θ) is the Lea-Catcheside time factor accounting for first-order repair of suble-
sions produced by radiation i interacting with sublesions produced by radiation j during
the irradiation time θ. The whole survival probability for the combination of all dose
components is, thus

−ln(S(D1, ..., D4)) =
4∑

i=1
αiDi +

4∑
i=1

4∑
j=1

Gij(θ)
√

βiβjDiDj . (1.21)

It should be noted that for i = j, Equation 1.21 turns to the Equation 1.9. As seen before,
it is possible to introduce a reference radiation R whose dose DR(D1, ..., D4) produces
the same survival level as the combination of all components. Neglecting any variation
of GR(θ′) for the reference data, we can finally obtain the general expression for the
photon-isoeffective dose as

DR(D1, ..., D4) = 1
2

(
α

β

)
R

GR
×


√√√√√√1 + 4GR

αR

(
α

β

)
R

 4∑
i=1

αiDi +
4∑

i=1

4∑
j=1

Gij(θ)
√

βiβjDiDj

− 1

 .

(1.22)
Both reference and BNCT radiation parameters must be experimentally evaluated for
different experimental conditions and different cell lines.

To study the reliability of these models, few experimental trials have been led and the final
dose outcomes have been put in comparison with the number of cancer cells controlled
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after the treatment. The photon isoeffective dose values obtained for brain tumors using
the radiobiological experiments performed for the rat gliosarcoma by Coderre et al. [52]
are lower than the dose obtained by the fixed-RBE dose model. This is shown in Figure 1.8,
where it can be seen that an absorbed dose in tumor of 15 Gy, corresponds to photon
isoeffective doses of about 28 Gy (IsoE) and 30 Gy (IsoE) without and with synergism
respectively, and to 51 Gy (RBE) using the fixed RBE-weighted dose model.

Figure 1.8: RBE-weighted dose and photon-isoeffective dose as a function of the total
absorbed dose computed with the fixed RBE model (dashed line), and the isoeffective dose
model considering independent action (solid gray line) and synergistic action (solid black
line). Parameters are taken from [52] and [43]. Illustration from [43].

Figure 1.9, instead, shows the clinical outcomes of the cutaneous melanoma BNCT
trial [53], comparing when the dosimetry is calculated with the RBE-weighted dose model
and with the photon isoeffective dose model. The benchmark is the expected Tumor Con-
trol Probability.

This comparison shows that photon isoeffective dose values are lower than the fixed RBE-
weighted dose ones. Moreover, it evidences how the traditional model is not adequate
to compute photon-equivalent doses. In the region on the right of 95% tumor control
probability curve almost all lesions should present a complete response, while it does not
happen for the fixed RBE approach, where the large amount of open circles indicate the
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Figure 1.9: Scatter plots showing the distribution of tumor diameters and minimum doses
of the lesions with their response for fixed RBE-weighted (left) and photon isoeffective
dose (right) models. Filled circles indicate complete response, and open circles indicate
any other clinical outcome. Continuous lines represent the iso-tumor control probability
curves computed with TCPMLQ for 50%, 80% and 95% of tumor control. Illustration
from [43].

presence of other clinical outcomes. This therefore shows how fixed RBE-weighted doses
are inconsistent with the standard radiotherapy clinical results. On the contrary, the
photon isoeffective dose model gives a distribution that is consistent with the expected
control of the lesions.
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Chapter 2

Treatment Planning System

After the introduction to BNCT and photon-equivalent dose model in the previous chap-
ter, it is now time to use those notions for clinical dose assessment. To do this it is
necessary to analyse the functionality of a BNCT Treatment Planning System (TPS).
This chapter will, therefore, outline the concept of TPS in all its components.

Treatment Planning Systems are indispensable tools used for radiation treatment plan-
ning as they are the means to calculate and optimize the dose distribution inside the
patient in radiation therapy. It is through the use of these systems that specific treat-
ment procedures are developed for individual patients. This includes the specification of
beam energy, direction, field size and fluence to maximize the dose delivered to the target
and to minimize the probability of normal tissue complications [54]. In clinics, the entire
treatment planning process is overseen by a medical physicist, who is responsible for the
overall process of the treatment planning to accurately and reliably produce dose distri-
butions and associated calculations. The plan must be finally approved by a radiation
oncologist who checks its accuracy and suitability before being actually implemented in
patient treatments [55].

Treatment planning involves the following steps [56]:

(i) Identifying the shape and the location of the tumor (i.e. the target) and of the
neighbouring organs at risk through the use of modern medical imaging (CT, MRI,
SPECT, ...);

(ii) Choosing an appropriate patient positioning and immobilisation methods so that
treatments will be reproducible;

(iii) Optimising and selecting a suitable beam arrangement;

(iv) Evaluating the resulting dose distribution in the selected volumes;

(v) Calculating the machine settings to deliver the required amount of absolute dose.
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TPS are currently widely adopted in clinics worldwide and the technological improve-
ments have been leading to the development of new computerized TPS relying on hard-
ware and software able to generate accurate dose distributions.

2.1 Target Definition

The standard terminology adopted to describe volumes of the target organs and the other
surrounding tissues is given by the ICRU Report 50 [57] of 1993, whose recommendations
were integrated by the forthcoming ICRU Report 62 [58]. A common language in the
definition of the volumes throughout the treatment planning process provides the basis for
consistency within different centres worldwide. The main volumes taken into consideration
during a treatment planning are shown in Figure 2.1 and are described as follows.

Figure 2.1: Graphical representation of the volumes-of-interest, as defined by the ICRU
50 and 62 reports. Illustration from [55].

Gross Tumor Volume

The gross tumor volume (GTV) is defined as the gross palpable, visible and demonstrated
extent and location of the malignant growth. It can be identified and spatially localized
inside the patient using modern and high resolution 2D and 3D imaging techniques, such
as CTs and MRIs. However, GTV may be very ill-defined in case of very infiltrating tumors
and high grade gliomas and its delineation may be subjected to large uncertainties [56].
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Clinical Target Volume

The clinical target volume (CTV) is a tissue volume encompassing the whole GTV but
with an additional margin. As a matter of fact, CTV takes into account possible micro-
scopic extensions of the main gross volume which are not visible by imaging techniques
due to their limited resolution. CTV thus has to be treated adequately to achieve the
aim of therapy, cure or palliation.

Internal Target Volume

The internal target volume (ITV) was introduced by the ICRU Report 62 [58], and it
consists of the CTV plus an internal margin that is designed to take into account the
variations in the size and position of the CTV relative to the patient’s reference frame.
Any alteration due to organ motions such as breathing, bladder or rectal content are
taken into account.

Planning Target Volume

The planning target volume (PTV) is a geometrical concept, and it is defined to select
appropriate beam arrangements, taking into consideration the net effect of all possible
geometrical variations, in order to ensure that the prescribed dose is actually absorbed
in the whole CTV. In contrast with the GTV and the CTV, which are purely oncological
concepts, the PTV does not necessarily correspond to the anatomy of the tumor tar-
get. It actually includes the internal target volume and an additional margin for set-up
uncertainties, machine tolerances and intra-treatment variations.

Organ at Risk

Organs at risk (OAR) are non-target volumes adjacent to the PTV as they do not contain
malignant cells. These organs have a key role in the treatment planning. As a matter of
fact, it is fundamental to minimize the dose delivery to these organs as they are usually
sensitive to the effects of ionising radiations and, if dose absorbed is higher than their
tolerance, they can suffer from serious side effects and cause life-threatening injuries
to the patient. Many OARs have a defined tolerance dose at which a given level of
cell morbidity can be expected [59]. Specific attention should be paid to organs that,
although not immediately adjacent to the CTV, have low tolerance dose (e.g. eye lens
during nasopharyngeal or brain tumor treatments). In case the tolerance dose of a specific
OAR is exceeded, it is necessary to modify some treatment features, such as the beam
direction or the irradiation time. A complete review of the tolerance dose values in organs
for photon therapy is provided in [60].

Radiation therapies are localized treatments as their anti-cancer effect is only achieved in
the irradiated organs and tissues. The definition of target volumes, adjacent organs at risk
and the other anatomical structures is therefore essential in regard to the development
of an accurate treatment planning and to provide a basis for comparison of treatment
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outcomes [55]. Future improvements in medical imaging techniques and their incorpora-
tion into the planning processes will significantly improve the correct delineation of both
GTV and CTV, while an improved capacity to follow the internal organ movements with
the beams will contribute to a better coverage of the ITV and thus also of the PTV.

2.2 Treatment Planning System for BNCT
Treatment planning for BNCT involves a computational analysis of the radiation dose
distribution inside a patient. This evaluation is crucial for accurately identifying the most
suitable neutron beam orientation, and determining the irradiation time (i.e. consequently
the fluence), enabling the delivery of an optimized dose distribution limited by dose
restrictions for normal tissues and OARs. Thus complying with dose prescriptions and
optimized to maximise the dose to the target volume. The workflow of the treatment
planning process is similar to other types of radiotherapy, such as external beams of
photons, electrons, or protons. There are, however, some relevant differences between
these approaches due to the different radiations involved and their physical properties,
making BNCT treatment planning more complex [61].

As explained above, dose targeting is obtained through the biochemical tumor selectivity
of the boron drug rather than through geometric targeting of highly conformal radiation
beams. BNCT treatment planning system, therefore, must take into account the boron
distribution at least at the tissue level, the injection route (for example if it is continuous
or if the irradiation takes place after a while) and its retention inside the target. The shape
of the beam becomes less relevant as the neutron beams are usually not highly collimated
and their directionality is rapidly lost with depth in tissue due to the scattering.

The most important challenge is represented by the complex mixture of high- and low-
LET dose components each with specific biological effectiveness, in contrast with the
single low-LET dose component characteristic of conventional photon radiotherapy. As a
consequence, the dose delivered by a photon beam can be easily calculated by both sim-
ple empirical algorithms and complex model-based algorithms, while BNCT treatment
planning systems exclusively rely on Monte Carlo transport codes because of the vari-
able, scatter-dominated nature of the radiation transport processes [62, 63, 64]. For this
reason, the time required for planning may be longer than for conventional radiotherapy,
depending on the available computational resources for dose calculations. Moreover, as
a consequence of the complex mixed radiation field and the numerous dose components,
dose prescriptions in BNCT treatment planning are defined by a limit on normal tissue
dose rather than by delivery of a desired tumor dose. This is because the dose-effect re-
lation in tumor for the mixed field of BNCT is not known yet in clinical application with
the same precision as in photon-therapy.

2.2.1 Modeling patient geometry

The first step of the treatment planning is the computational construction of realistic in-
dividualized patient models for radiation transport calculations. Generally, the 3D models
are constructed from the acquisition of the CT (Computed Tomography) of a patient.
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Recently, the integration of these images with 18F-BPA PET image data has been recom-
mended, as it is useful for providing information on the boron accumulation inside both
tumor and normal tissues and thus for enabling high-precision treatment planning [65].
The patient modeling relies on several different types of geometric 3D representations
involving different approaches and software.

Voxel Models

One of the most widely and commonly used approaches is the voxel model [66], which
consists of a 3D array of contiguous rectangular prisms called voxels. The construction of
the patient’s geometry consists of the adequate superimposition of a 3D rectilinear voxel-
based grid on the 3D medical images. Each voxel, which is typically larger than the pixel of
the reference computed tomography, is then assumed to be uniformly filled with materials
corresponding to the image data related to Hounsfield units, as shown in Figure 2.2, where
the CT image allows the corresponding 3D voxel-model to be reconstructed.

The NTCPlan is an example of voxel-based treatment planning system whose reconstruc-
tion technique relies on thin-slice CT image data to automatically create a heterogeneous
multimaterial mathematical model of the relevant body part [67]. Other newly developed
treatment planning systems for boron neutron capture therapy based on this patient
modelling principle are the TsukubaPlan [68] developed by the University of Tsukuba
and NeuMANTA [69]. For computational reasons, however, it is necessary to limit the
number of materials and increase the voxel dimensions. As a matter of fact, if by shrink-
ing the voxels the accuracy of calculated doses improves, on the other hand, in the case
of excessively small voxels, the transport code has difficulty in computing the reactions
occurring at each surface. The number of surfaces involved thus increases and it takes
longer to calculate the trajectory of the particle. An alternative is to adopt a slightly
different approach, called multicell model, where the voxel size varies as a function of the
voxel location inside the body of the patient. It can be indeed advantageous to have finer
resolution, corresponding to smaller voxels along the edges between materials, and lower
resolution with larger voxels where the material is more homogeneous. This multi-voxel
approach is currently employed in Argentina [70].

Univel Models

Univel models are based on a pixel by pixel uniform-volume element reconstruction of
the patient geometry. From a geometric point of view, they are similar to voxel models as
both use a uniform rectangular mesh to reproduce the patient geometry, but they differ in
the univel size, which is smaller when compared to voxels. Each univel indeed represents a
specific pixel from the corresponding medical image. Univel models have a high geometric
accuracy, as they offer very high geometric fidelity, with the same spatial resolution as
the medical images. However, the composition of each univel must be correctly identified
and so each pixel must be computationally painted with a color that corresponds to a
particular material composition, as shown in Figure 2.3.

This process may be tedious and very time-consuming and so it may therefore limit the
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Figure 2.2: Construction of a voxel model from CT image data in the MiMMC treatment
planning system. (a) Sagittal CT image slice with contoured target volumes shown in blue.
(b) Image intensity histogram showing the range of Hounsfield numbers for the selected
tissues, i.e. air, soft tissue, and bone and (c) the resulting thresholded sagittal image. (d)
The corresponding slice through a 4-mm voxel model. Illustration from [61].

effort of the treatment planning. The SERA treatment planning system developed at
Idaho National Laboratory (INL) and Montana State University (MSU) implements the
univel model [71].
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Figure 2.3: 2D slice Univel model where air, skin, skull, brain, brain stem, eyes, optic
chiasm, and sinuses are defined. Each univel corresponds to a pixel in the MR images
used to derive the model, which have a pixel size of 1 × 1 × 2 mm3 (left). Right: the
corresponding 3D representation. Illustration from [61].

NURBS Models

NURBS models are very flexible and powerful 3D modeling techniques already used in
computer graphics. They work in a completely different way from the previous ones, as
NURBS models define free-form curves and surfaces. Anatomical structures are indeed
modelled and contoured by defining specific control points in the medical image that allow
the reconstruction of a given curve or surface, as illustrated in Figure 2.4. Each surface
area or curve refers to a specific volume which must be implemented in the treatment
planning system.

These points are conventionally placed, either manually or using edge-detection algo-
rithms, allowing an efficient and high geometric fidelity reconstruction of the patient. On
the other hand, this technique may be tediously labor intensive and time consuming. One
of the main disadvantages of NURBS models is given by the difficulty of selecting control
points correctly, which can lead to possible overlapping of adjacent surfaces causing par-
ticles entering the region of overlap to be lost. Moreover, although the external contour of
the patient is represented with high fidelity, some internal structures, such as sinuses and
skull, may lack definition and accuracy because they are difficult to delineate [72]. The
NURBS modeling technique was adopted in the BNCT_Rtpe planning system developed
at INL [73].
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Figure 2.4: Left: control points indicated by plus signs guide the placement of the spline
in the NURBS model, which is overlaid on an MR image. Right: wire-frame rendering of
the NURBS model shows the outer boundaries of skin (cyan), skull (white), brain (green),
CTV (yellow), edema (blue), and GTV (red). Illustration from [61].

2.2.2 Tissue Compositions and Boron Concentrations

The definition of the correct tissue composition in the patient is essential to design a
proper treatment plan. As opposed to radiotherapy, where the beam photons and electrons
only interact electromagnetically with the electrons of the target tissues and the dose
calculation strictly depends on the electron density derived from the CT image data, in
BNCT reactions take place with the different nuclei (see Section 1.2.1).

Modeling different tissue types is necessary because elemental composition and neutron
cross sections vary significantly between different nuclides. As stated in ICRU Report
46 [74], uncertainties in the absorbed dose estimations in tissues arise from uncertainties
both in the composition of the tissues and from radiation interaction coefficients. The
former are usually larger. Treatment planning involving different nuclides composition
of the same tissue can lead to completely different dose evaluations. Changes in dose of
up to 9% when skull1 is replaced by skin in the simulation of cranial irradiation were
evaluated by Wojnecki et. al [75]. For some earlier clinical trials of BNCT Brooks brain
composition [76] was adopted as the reference one. Anyhow, it was soon abandoned as it
showed some experimental inconsistencies across trials. Currently, ICRU Report 44 [32]
integrated with ICRU Report 46 [74] provides the adequate reference composition data

1which has a lower hydrogen density and a higher nitrogen concentration than soft tissues.
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and densities for a wide range of tissues. The major difference between the Brooks brain
and ICRU brain compositions is a 20% difference in nitrogen concentration, which leads to
a similar discrepancy in thermal neutron dose [77]. From the graph in Figure 1.6 indeed,
it can be appreciated how significant the dose component of nitrogen is, and how a large
variation of this factor leads to a large variation of thermal neutron dose.

Because of the high thermal neutron cross section, also the 10B concentration has to be
correctly set in both tumors and healthy tissues using reasonable assumptions based on
pharmacokinetic studies and with the support of PET images to have an adequate dose
estimation [21].

2.2.3 Neutron Beam Source Definition

Once an adequate computational model of the patient has been generated, a proper neu-
tron beam model has to be constructed to simulate a realistic clinical treatment. This is
one of the most critical aspects involved in the treatment planning procedure, as it re-
quires producing an accurate representation of the 5-dimensional probability distribution:
3 dimensions are related to spatial distribution, one for the energy spectrum, and another
accounts for the angular characteristics of the beam [78]. Several methods for defining
the radiation source have been used in BNCT treatment planning. In this chapter I will
take into account the main techniques implied in accelerator-based BNCT, as the use of
particle accelerators for this therapy is increasingly being employed on a large scale. The
neutron beam source definition for the AB-BNCT relies indeed on the configuration of
the accelerator components. In the course of this thesis work, I utilized a source contain-
ing both the BSA, the collimator, and the beryllium target to achieve enhanced source
resolution.

This technique relies on the implementation of Monte Carlo simulations, whose mecha-
nism is based on algorithms that sample a certain amount of random values that follow
a specific probability distribution. The main Monte Carlo algorithms currently applied
in BNCT treatment planning systems are MCNP [79], which will be discussed in more
detail later (as used in NCTplan, Multicell, THORplan, JCDS), PHITS [80] (as used in
TsukubaPlan, and in JCDS), and Geant4 [81] (as used in the dose engine implemented
by Neutron Therapeutics). Typically, the TPS for the BNCT uses external Monte Carlo
codes such as MCNP6, which is currently considered as the gold standard for particle
transport, although some use specially developed Monte Carlo instead (Sera [71] and
NEUMANTA [69]). What follows in this paragraph is specific to MCNP.

Surface Source Files

In the surface source file method of source definition, a detailed Monte Carlo simulation of
the neutron beam is performed and the characteristics of all particles crossing a specific
plane are recorded in a binary phase space file. This binary file contains all the track
features, such as position, direction, energy, and the statistical weight of all particles
located at a given position in the treatment geometry. The particle tracks from the phase
space file are then sampled in subsequent simulations of particle transport through the
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patient geometry.

The primary advantage of this method is that it does not introduce any approximation
on the characteristic of the source. Moreover, as the transport does not take place from
the actual radiation source, but from a surface closer to the geometry of interest, the
speed of the dosimetry calculation is increased. On the other hand, the surface file method
presents also few disadvantages. One being the size of the surface source file, that depends
on the number of source points. Furthermore, the finite number of source points limits
the statistics that can be achieved. This is partially overcome by using the same source
point with a different random seed (i.e., changing the history of a single track).

Probability Density Function

To define a source in a volume or emerging from a surface, it is necessary to sample
neutrons from the spatial coordinates, with appropriate energy and flight directions.
Probability density functions - PDF are defined for the source particle energy, position and
direction, and are then sampled in the simulation of each neutron generated in the source.
As in surface source files, also the PDFs are usually constructed from previous Monte
Carlo simulations or discrete ordinates transport calculations of the neutron beam [82],
or they are known from experimental measurements.

Source PDFs may be defined in two ways in the patient transport simulation. Particles
can be sampled in a plane located at the beam-port or located upstream, inside the
collimator. In the latter method, a portion of the collimator must be explicitly modeled,
to account for the interaction of neutron in the last part of the beam infrastructure.
Defining the source at the beam exit is more efficient, but a greater amount of details
may be required in the source distributions to achieve the desired level of accuracy in
calculated doses. Finally, the PDF can be defined at the target, and in this case, the
entire structure of the moderator, collimator and reflector must be modelled [27].

Benefits of source PDFs include a more compact representation and the ability to sample
an unlimited number of particle histories, lowering the statistic uncertainty in calculated
doses [78].

2.2.4 Dose Calculation

As a suitable neutron source has been defined and the patient geometry has been ade-
quately modelled, it is possible to calculate the dose distribution inside the target volumes
by Monte Carlo methods. The simulation calculates the absorbed dose in each voxel by
considering all the possible neutron interactions inside the patient. To speed up the sim-
ulations, calculations are always performed to obtain the KERMA value, rather than
the absorbed dose. As a matter of fact, equilibrium of charged particles CPE conditions
ensure the equivalence between absorbed dose and KERMA, which is easier to calculate
by using superimposed meshes for scoring neutron/photon fluence and coupling them to
fluence-to-KERMA conversion tables [83]. For BNCT, CPE is surely satisfied in most of
the patient volume due to the short track length of secondary charged particles. Thus
the Monte Carlo run delivers as the output the KERMA value K, and consequently the
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absorbed dose Dabs is given by the following Equation

Dabs = K = φn(Fn)E,A , (2.1)

where φn is the neutron fluence and (Fn)E,A are the tabulated KERMA factors, as a
function of the neutron energy and the atomic weight of the target element.

However, this approach has some limitations as CPE conditions may not be verified in
some volumes, such as skin, where secondary charged particles may escape the tissue and
deposit their energy elsewhere. Skin is an important organ in BNCT, both for superficial
and deep-seated tumors, and in some cases it is the OAR limiting the irradiation time [84,
85]. For this reason, a possible solution to correctly evaluate the absorbed dose is to
dedicate part of the dose calculation to a detailed dose deposition simulation in those
regions of the patient geometry where equilibrium cannot be assumed [86]. However,
as the limiting organ defines the maximum fluence that is allowed, overestimating the
absorbed dose through KERMA calculation provides a conservative approach.

In my thesis work I used MCNP [79] as the Monte Carlo engine. MCNP is a general-
purpose, well validated, relatively easy to use Monte Carlo radiation-transport code de-
signed to track many particle types over a broad range of energies. MCNP code provides
seven instruments to calculate the quantities of interested, called tallies, which are de-
scribed in the following Table 2.1.

Tally Description
F1:N or F1:P or F1:E Surface current
F2:N or F2:P or F2:E Surface flux
F4:N or F4:P or F4:E Track length estimate of cell flux
F5a:N or F5a:P Flux at a point or ring detector
F6:N or F6:P or F6:N,P Track length estimate of E deposition
F7:N Track lentgh estimate of fission E deposition
F8:N or F8:P or F8:E or F8:P,E Pulse height tally

Table 2.1: Summary table of all standard tallies available in MCNP.

In addition to the standard tallies, MCNP has one special tally type, the superimposed
mesh tally, which can be invoked into the simulation by using the FMESH card. It allows
the user to tally particles on a mesh, which can also be independent from the problem
geometry. Currently, only track-length F4 mesh tallies have been implemented. MCNP
provides various ways to calculate KERMA and consequently the absorbed dose in the
desired target cells. In this thesis I chose to calculate KERMA by coupling the FMESH
card with the dose energy DEn and dose function DFn cards, which specifies a list of
KERMA factors as a function of energy displacement.

2.2.5 Plan Evaluation and Dose Prescription

The analysis of the treatment planning relies on standard quantities and ways to visualize
the in-patient dose distribution. The isodose contour lines identify the regions within the
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patient that absorb the same amount of dose. They are typically superimposed over the
anatomical features displayed to locally indicate the effect of the neutron therapy on
the different tissues of the patient. In general, the total weighted doses for tumor target
and normal tissues are calculated separately, each one using different boron concentrations
and weighting factors assumed for each tissue. Isodose are typically expressed by a simple
percentage value related to the peak absorbed dose on the beam axis.

Dose-volume histograms (DVHs) are one of the most useful and commonly adopted tools
relating radiation dose to tissue volume in radiation therapy planning for comparing
alternative treatment plans for a patient. DVHs are plots of cumulative dose-volume
frequency distribution, thus showing dose uniformity, minimum dose and maximum dose.
They show the uniformity of the dose distribution, the minimum and the maximum value
and they can thus give indication on the effectiveness of the plan. In general, they provide
information on whether a sufficient volume of target tissue has absorbed sufficient dose to
properly control the tumor. In BNCT this evaluation is more complex than in conventional
photon treatment because a dose-effect relation in clinical treatment is not available yet.
In fact, dose is never prescribed to the tumor but rather to the most radiosensitive healthy
tissue involved to maximise the treatment effect.

These tools shown in Figure 2.5 are both useful with regard to further optimize the
treatment plan. Optimizing a treatment plan involves choosing the orientation, the size,
and the spectrum for a beam or set of beams to deliver radiation dose able to produce
the highest dose in target volumes while complying with the dose prescription and re-
specting dose limits on normal tissues and organs at risk [61]. In the case of single-field
treatment plans, optimization of the plan is usually relatively straightforward, as it only
involves choosing a certain beam pattern among several candidates, comparing the deliv-
ered dose value. On the other hand, for multi-field treatment plans, the optimization is
more complicated because it is necessary to choose few (usually non-overlapping) inde-
pendent fields from a pool of candidates and to determine how they must be weighted to
obtain an advantageous dose distribution. To solve this time-consuming process, a sim-
plex search algorithm to optimize the boron dose to a large number of target volumes,
subject to constraints on the organs at risk, has been implemented in software external
to the treatment planning system [64, 88].

The estimation of dose in tumor suffers from some uncertainties, especially due to the
knowledge of boron concentration and distribution in the volume. The typical choice is to
assign to the whole volume a uniform boron concentration obtained by multiplying the
boron concentration measured in blood by a fixed factor [89]. It is known, however, that
this is only a rough estimation, as the tumor is an heterogeneous structure and boron is
not uniform during irradiation. Finally, the lack of a robust method to calculate photon-
equivalent dose in clinical application has prevented the use of the photon dose to predict
the outcome of BNCT irradiation (see above). For this reason, several different methods
of dose prescription mostly based on experience, have been used in BNCT clinical trials,
most of which make use of the total weighted dose expressed in RBE-weighted dose units.
Early methods were used to prescribe only the maximum weighted dose in the patient or
particular organs, such as the brain for the treatment of intracranial tumors [90]. Other
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Figure 2.5: Three-field treatment plan for a brain tumor (GBM) patient calculated us-
ing the MiMMC planning system. The prescription is a mean brain dose of 7.7 Gy-Eq.
Isodose contours calculated for tumor and normal brain are shown on axial and sagittal
sections through the target volumes. The integral dose-volume histograms (DVHs) sum-
marize dosimetry for structures of interest including target volumes and organs at risk.
Illustration from [87].

extremely sensitive organs, for example, skin, oral mucosa, and spinal cord were also
frequently applied as organs at risk, setting their tolerance dose as the prescribed one.

41



Treatment Planning System

More recent protocols, instead, commonly employ limits on the mean weighted dose of
the organs at risk [91].

2.2.6 Treatment Delivery

There are further aspects that are accounted in the TPS concerning the treatment dose de-
livery to the patient. In particular, in modern external radiation therapies, the setup pre-
cision, inter-treatment position reproducibility, and keeping of patient’s intra-treatment
position are important factors influencing the correct implementation of a treatment
and influencing the treatment outcome [33]. Most BNCT facilities have a simulator that
replicates the geometry of the treatment room for positioning and marking the patient
in a convenient environment outside the treatment room [61]. Simulators have a dummy
beam port mounted on the walls and the patient is positioned in relation to the dummy
beam port by using a set of lasers and supporting devices like cushions, head cups, or,
in some cases, a stereotactic frame. Reference ink marks are also applied to the patient.
Furthermore, the patient must maintain the same body posture during the whole beam
irradiation. This aspect may be particularly issuing, as a BNCT clinical treatment can
take more than half an hour. Positioning patients for BNCT treatment is more difficult
than for other external beam radiation modalities, because neutron beam ports at both
nuclear reactors and accelerators are currently stationary and cannot be rotated around
the patient. Moreover, an additional difficulty with patient positioning relates to the fact
that it is not possible to observe the patient from the beams-eye view because of the
need to place the patient as close as possible to the beam-port [92] to avoid out-of-beam
organs exposure, since neutrons diverge out of the collimator.

Positioning must also consider the patient’s posture and comfort. Several different pa-
tient setting systems are currently adopted at each BNCT facility to ensure the effective
delivery of the established treatment plan [93, 94].

The knowledge of boron concentration in both tumor and normal tissues during irradia-
tion is a crucial factor for the BNCT treatment planning implementation as it determines
the boron dose component. In clinical BNCT dosimetry, estimations of 10B dose in nor-
mal healthy tissues are generally based on the 10B concentration in blood as a surrogate
for normal tissue [89]. In glioblastoma treatment trials using the BPA-F complex as the
boron delivery agent, a constant tumor-to-blood concentration ratio of 3.5–4 to 1 is typ-
ically assumed. This value, however, does not consider the dynamic 10B loading and
washout behavior expected in tissues nor the heterogeneity of its distribution in the tu-
mor volume [95]. Pharmacokinetic modeling of the concentration of 10B in blood following
administration of the boron delivery agent is one of the first steps toward modeling the
dynamic behavior of 10B and providing more accurate dosimetry. A deeper understanding
of the mechanisms and timing of boron retention in the blood and in tissues allows the
selection of optimum infusion schedules and irradiation times.

Figure 2.6 shows how the blood boron concentration profile varies for an infusion of BPA-
F as a function of the time, underlining a rapid rise in blood boron concentration during
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Figure 2.6: Measured blood 10B concentration profile and fitted pharmacokinetic model
for a patient who received a 1.5 h infusion of 350 mg BPA/kg. Using only blood 10B
measurements available before the start of each irradiation (indicated by the three shaded
areas), the pharmacokinetic model must accurately predict the mean 10B concentration
during each field so that the correct number of beam monitor units can be delivered. Mean
10B concentrations are shown above each field. Illustration from [61], adapted from data
in Ref. [95].

BPA-F infusion followed by biphasic exponential decay [95]. Various schemes are avail-
able for blood boron concentration prediction. One of the simplest approaches involves
measuring a blood sample drawn immediately before irradiation and another drawn at
the (estimated) midpoint and extrapolating linearly to predict the mean concentration
during irradiation. More sophisticated approaches for boron concentration prediction us-
ing multi-compartment pharmacokinetic models and exponential washout models are also
available [96, 97].

In 1991, Ishiwata [98] developed the 4-10B-borono-2-18F-fluoro-L-phenylalanine (18FBPA)
as a positron emission tomography probe for imaging and evaluating the pharmacokinetics
of BPA in vivo. This technique is still in use today, especially in Japan, and it represents
one of the main methods to estimate the way boron accumulates inside both tumors and
OARs. An example of application of this technique is shown in Figure 2.7, where the high

43



Treatment Planning System

and selective boron accumulation inside the target is highlighted. The result is a three-
dimensional boron distribution map carrying information about how BPA concentration
varies over time. This has a key role in defining the right time to start the BNCT treatment
after the drug injection [99].

Figure 2.7: Contrast-enhanced T1-weighted MRI of representative Glioblastoma patient
and 18F-labeled BPA-PET image after initial debulking surgery. Illustration from [99].

2.3 IT_STARTS
The Innovative Toolkit to Simulate neuTron cApture theRapy irradiaTion and doSime-
try, IT_STARTS, is a project funded by INFN in cooperation with the Argentinean
Treatment Planning and Computational Dosimetry group at the Comisión Nacional de
Energía Atómica, CNEA. This Argentinean group is the same who developed the Photon
Isoeffective Dose formalism.

IT_STARTS is written in Python, which is an open source language, and the TPS code
itself, after a validation process, will be made public through appropriate software shar-
ing methods to extend its availability to different users of BNCT. It is based on the
implementation of two successive modules for the creation of patient geometry and dosi-
metric evaluation, interposed by the application of a Monte Carlo transport code for the
radiation transport.

The first module of IT_STARTS enables to transform the medical images of a patient into

44



Treatment Planning System

a voxelised computational model. IT_STARTS works by executing several steps. Firstly,
the code reads CT medical images uploaded in NIFTI format and the corresponding
RTSTRUCT included, which are sets of anatomical structures identified on radiological
images for the planning and delivery of radiotherapy. It is thus able to identify and define
a mask relating to the GTV and all the other organs of interest within the RTSTRUCT.
At this stage, IT_STARTS constructs a voxelised geometry of the patient, written in
the syntax of the most common Monte Carlo transport codes, such as MCNP6 [79],
PHITS [80] and GEANT4 [81]. Concerning the patient modelling, a voxel approach is
adopted, different from the MultiCell model employed in Argentina [70].

This voxelised geometry is then provided to an external Monte Carlo transport code,
such as MCNP6, in which also the source of the neutron beam is properly reproduced.
In this configuration, the source is assumed to be fixed, so the correct positioning is
achieved by orientating the patient’s geometry in such a way as to optimise the treatment.
A typical strategy applied is to place the patient in a position which minimises the
distance between the beam-port and the centre of mass of the GTV. At the moment,
IT_STARTS is not provided by a method able to automatically carry out this operation,
therefore it is the user’s task to find the right rotational and translational coordinates
for a suitable positioning. This challenging and time-consuming procedure, however, can
be supported with the use of external image visualisation programs, including Mango
(https://mangoviewer.com) and 3D Slicer (http://www.slicer.org), both free and
open source software for visualization, processing, segmentation, registration, and analysis
of medical images. These tools provide a three-dimensional visualisation of the patient.

The input file is then run to calculate the absorbed dose distribution. As explained in
Section 2.2.4, it is useful to superimpose a mesh on the patient’s geometry, to have a
precise voxel-by-voxel dose evaluation. The irradiation process can thus be simulated,
providing the absorbed dose rate values resulting from each of the four dose components
in each frame of the mesh as the output. The healthy organs and tumor segmentation is
fundamental for IT_STARTS because it can calculate the spatial dose distributions only
when the segmentation is supplied in input. Otherwise, there is no method for the toolkit
to discern the respective volumes.

Finally, the output files containing dose rates in NIFTI format are uploaded into an Excel
file, together with the dose prescription information. The second module of IT_STARTS
thus reads this file and calculates photon equivalent dose in the segmented GTV and
OARs. Starting with the dose prescription, it calculates the dose rate in the OAR and
then establishes the treatment time by dividing the prescription value by the dose rate.
There are generally two prescription options. One concerns the setting of an average dose
on the volume of the OAR, Dmean, while the other a maximum dose, Dmax.

In this work, which is focused on patients affected by Glioblastoma Multiforme, I have
assumed an average dose limit of Dmean = 2.5 Gy(RBE) and a maximum dose of Dmax =
13 Gy(RBE) in the brain [100] .

The most innovative characteristic of this TPS compared to the ones used in clinics, is
the embedding of different models for the calculation of the photon equivalent dose, the
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so-called dose engine. IT_STARTS indeed allows the user to load the radiobiological
data, to fit survival curves for different cell lines and thus to obtain the RBE and the
parameters for the isoeffective dose calculation.

As an output of the TP process, IT_STARTS displays the isodose curves superposed to
the anatomy of the patient and builds dose volume histograms, DVHs, for the GTV and
the OARs.

Another important characteristics is the inclusion of radiobiological figures of merits to
evaluate the result of the treatment planning in terms of its therapeutic potential and
safety. The Tumor Control Probability, TCP, the Normal Tissue Complications Proba-
bility, NTCP, and the Uncomplicated Tumor Control Probability, UTCP [101] are imple-
mented in IT_STARTS for some types of tumors and healthy tissues. TCP, in partic-
ular, represents the probability that a tumor will be totally or partially controlled by
a specific treatment. It is mathematically calculated by suitable models, including the
linear-quadratic model, the Poisson model, and more complex ones incorporating factors
such as tumor repopulation and repair. The possibility of implementing this probability
function enables an assessment of the feasibility and applicability of the treatment plan
for that specific clinical case, thus playing a key role in terms of plan evaluation.
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Chapter 3

Artificial Intelligence in Cancer
Treatment

Artificial Intelligence is a strongly developing and thriving field that studies how to build
computer systems capable of simulating human thought. It is defined as a system’s ability
to correctly interpret external data, to learn from such data, and to use those learnings
to achieve specific goals and tasks through flexible adaptation [102]. Artificial Intelligence
(AI) is one of the most flourishing disciplines with many practical applications and active
research topics, solving problems that are intellectually difficult for humans but relatively
straightforward for computers. It is currently applied for many aspects of industry, sci-
ence, and technology, as in many different areas in daily-life applications, such as speech
and face recognition, and natural language processing, but also in vehicle driving and
industrial activities.

Beyond these applications, another field where AI is introducing innovations is healthcare
and medicine. It is more and more used for the interpretation of medical images, such as
CTs and MRIs, in disease detection, and in the selection of morphological characteristics.
The AI can also handle more challenging tasks like the accurate contour of tumors.
These deep learning methods applied to clinical cases are still in the preclinical stage at
the moment [103, 104]. However, through the relentless improvement of such automatic
methods, there may be a systematic synergy in the future between clinicians and AI
to find a new approach to handling cancer without overriding the physician assessment
always needed in a clinical setup.

3.1 Applications in Cancer Imaging

AI excels at recognizing complex patterns in images and can quantify information from
images that are not detectable by humans. Within the field of cancer imaging, the main
contribution of AI focuses on the detection, characterization, and temporal monitoring
of tumors [105].
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Detection is defined as the capability to correctly localize and target the required objects
of interest in radiographs or tomographies, and it is generally known as Computer-Aided
Detection (CAD), which refers to the pattern recognition software that identifies suspi-
cious features on the image and brings them to the attention of the radiologist [106].
AI-based detection tools can be used to reduce observational oversights and serve as
a useful screen against misidentification errors by highlighting regions with suspicious
characteristics.

Tumor characterization involves segmentation, staging evaluation1 and its monitoring
over time. Segmentation, in particular, helps in visualizing the extent of a specific ab-
normality. This is based on the contouring and isolation of the area to be treated. Such
information can be implemented in diagnostic tasks as well as in therapy (i.e. dose cal-
culations and prescription in treatment planning).

In current clinical practice, GTVs and OARs are typically manually defined by experi-
enced radiologists, involving clinicians drawing contours by hand to delineate anatomical
regions of interest (ROIs). While this practice is considered to provide good accuracy, on
the other hand, it is operator-dependent and may be affected by the following types of
uncertainties [107, 108, 109]:

(i) intra-observer variability, which is quantified by the differences among contours
delineated by a single observer on the same target volume at several different tries;

(ii) inter-observer variability, which is quantified by the differences among contours
delineated by multiple observers on the same target volume.

Figure 3.1: Illustration of the effect of soft-tissue contrast on segmentation reliability.
The brainstem was delineated with different colours by the same three clinicians on a
magnetic-resonance scan (left) and a CT scan (right). The decreased soft-tissue contrast
of the CT scan leads to larger inter-observer variability. (Based on data for a patient
treated at Addenbrooke’s Hospital, Cambridge, UK). Illustration from [110].

1Staging the development of neoplastic tissue consists of categorizing tumors into predefined groups
via genomics analyses,
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The overall variability may be further intensified by the poor quality of the clinical im-
ages, as shown in Figure 3.1. As low-dose CT images allow for good distinction between
materials with significantly differing densities, such as bone and air, on the other hand,
they show limited contrast between soft tissues, causing a lower segmentation reliability.
In addition, manual tumor contouring is a particularly tedious and time-consuming tech-
nique. This procedure may take several hours for the most complex cancer sites [111].
The long time spent by clinicians on contouring, and on associated review, may delay the
start of the patient’s treatment, and, consequently, it may lead to poorer tumor control
and decreased survival probability [112].

AI has the potential to enhance the efficiency, reproducibility, and quality of tumor mea-
surements by using automated segmentation techniques [105]. Artificial Intelligence has
shown impressive accuracy and sensitivity in the identification of imaging abnormali-
ties and tumors, trying to solve problems related to the wide variability associated with
manual segmentation, as shown in Figure 3.2, where the multiple manual segmentations
affected by unavoidable inter-observer variability are replaced by a single automatic con-
tour. The development of Deep Neural Networks (DNN) has actively contributed to the
implementation of algorithms able to adequately segment medical images to correctly
identify and locate the regions of interest.

Figure 3.2: Rectum contoured by multiple clinicians (left) and contours combined us-
ing the STAPLE algorithm (right). The images shown are from a megavoltage CT scan
recorded to guide patient position, and have lower contrast than typical CT scan. Illustra-
tion from [110].

3.2 Deep Learning and Artificial Neural Networks

3.2.1 The Perceptron

The idea of reproducing the human neural system has led to the modelization of the
Perceptron [113], the first and the simplest example of an Artificial Neural Network.
The Perceptron was designed to resemble the functional structure of a biological neuron,
as shown in Figure 3.3. A biological neuron receives electrical signals as an input from
its dendrites. These signals are then transmitted across the central body, where they
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Figure 3.3: Artificial neurons and biological ones share an analogous structure. The den-
drites are emulated by the input connections, which collect input features instead of elec-
trical signals. The function of the biological neuron central body is represented by the
activation function and the activation state in the artificial neuron. Lastly the synapses
is reproduced by the output connection. Illustration from [114].

are modulated, and then the neuron fires an output signal through its synapses feeding
another neutron, and so forth. This, however, happens only when the total amount of
the input signals exceeds a certain threshold. The artificial Perceptron follows the same
pattern.

The input signals are not electrical but are represented by the specific features xi, which
are computationally defined as individual measurable properties or characteristics of an
observed phenomenon. Each feature comes to the neuron with a different importance,
or weight wi. The neuron thus modulates all these features obtaining an overall input z
given by the weighted sum of each feature:

z =
∑
i=1

wixi + b , (3.1)

where b is a general added bias term, which can be set and then modified during the
learning process of the ANN.

In both artificial and biological neural networks, a neuron does not just output the bare
input received. Instead, z is subjected to an additional step, called an Activation Function.
This process corresponds to the decision-making unit of the brain, as the neuron emits
the output signal only if the weighted sum is higher than a certain threshold provided by
the activation function. There are many different activation functions currently adopted
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in ANN systems based on the tasks required by the network, including

a(z) = z Linear transfer Function

a(z) = 1
1 + e−z

Sigmoid Function

a(z) = ez − e−z

ez + e−z
Hyperbolic Tangent Function

a(z) = max(0, z) Rectified Linear Unit (ReLU)
a(z) = max(0.01 · z, z) Leaky ReLU

The simplest one used by the Perceptron algorithm is the step function which results in
the following formula producing a binary output

Activation Output =
{

0 if z ≤ τ
1 if z > τ

. (3.2)

If the total input signal passes a certain threshold τ , then the neuron is in an activated
state and it is able to transmit the corresponding output, otherwise, the state remains 0
and the neuron is not fired.

3.2.2 Multilayer Perceptrons

ANNs made by single Perceptrons perform sufficiently well with simple datasets. However,
for more complicated tasks, a more complex network is required. This means arranging
Perceptrons in subsequent an interconnected layers [115, 113]. These artificial structures
are so called Multilayer Perceptrons (MLP). A very common neural network architecture
is to stack the neurons in layers on top of each others called layers, that are linked to
each others by weight connections, as shown in Figure 3.4.

These additional layers are so-called “hidden” as it is impossible to see or control the
input going into them and their output. Moreover, they are the only neurons with both
incoming and outgoing connections, as their inputs are the activation states of the neurons
from the previous layer, and their output is transmitted to the following layer of neurons.
MLP is defined as a fully-connected or dense ANN, which corresponds to the fact that all
the neurons inside a layer are connected to all the neurons in the previous one. Layers are
structured in order to obtain increasingly complex features and thus each hidden layer
builds new more complex features that will be analyzed by the next hidden layer. The
first hidden layer finds patterns in the input data, the second one finds more complex
patterns in the first discovered patterns, and so on. The number of hidden layers (i.e.
depth of the ANN) is subject to variation depending on the complexity of the required
network and the number of connections between each unit is related to the size of the
ANN. Hypothetically, the deeper the ANN is, the more information about the data it is
able to extract.

As stated before, each Perceptron is associated with a specific activation function. In
general, the activation function usually adopted in the input and hidden neurons is the
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Figure 3.4: Scheme of an artificial neural network with a single hidden layer. Input values
are propagated through the network, with calculations performed at each Perceptron, to
yield an output value. Illustration from [115].

Sigmoid Function, while the Leaky ReLu is particularly suggested for images. For the
output neutrons and for classification tasks, the most recommended one is the Softmax
function, which is a generalization of the Sigmoid Function [116]. The process in which the
information flows from the input layer through the hidden layers, all the way to the output
layer is called feedforward. This process happens through the subsequent implementation
of the weighted sum and the activation function between layers and can be schematized as
in Figure 3.5. Starting the feedforward calculations from the input features, it is possible
to calculate the first layer nodes as

a
(1)
1 = σ(w(1)

11 x1 + w
(1)
12 x2 + w

(1)
13 x3)

a
(1)
2 = σ(w(1)

21 x1 + w
(1)
22 x2 + w

(1)
23 x3)

a
(1)
3 = σ(w(1)

31 x1 + w
(1)
32 x2 + w

(1)
33 x3)

where σ corresponds to the applied activation function. Applying the same method for
subsequent layers all the other nodes aj

i can be evaluated until the output ŷ is achieved
as

ŷ = a
(3)
1 = σ(w(3)

11 a
(2)
1 + w

(3)
12 a

(2)
2 + w

(3)
13 a

(2)
3 + w

(3)
14 a

(2)
4 ) .
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Figure 3.5: Example of a simple three-layer neural network. The input features xi are
modulated and weighted by the respective values of wi, obtaining the new node values aj

i .
Illustration from [114].

Depending on the output prediction, the weights of the network can be tuned until the
performance is satisfying. This iterative process is what network learning is based on.

Learning Process

There are various methods to train neural networks, and the one I will be addressing
is Supervised Learning [117, 118]. One of the fundamental cores of ANN learning is the
Loss Function, called also Cost Function or Error Function. It quantifies the discrepancy
between the neural network prediction and the truth value. The Neural Network learning
approach thus consists of adjusting the weight values in an iterative process based on
the implementation of an Optimization Algorithm to decrease the difference between
the predicted output and the real one. The smaller the Loss Function value, the better
the ANN does its task. Optimizing the Cost Function in neural networks updates the
connection biases and weights until a satisfactory loss value is achieved.

There are many types of Cost Functions that may be adopted for ANN. In general,
the Cost Function is a weight-depending function having local and global minima, and
few plateau regions, as shown in Figure 3.6 and Figure 3.7. As a result, an adequate
optimization method is needed to obtain the global minima in the fastest and most
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precise way. The first learning gradient-based algorithm introduced is called Gradient
Descent [119, 120].

Gradient descent is one of the most popular algorithms to perform optimization and
by far the most common way to optimize neural networks. It is an iterative method
to minimize a differentiable function f(x) by updating the parameter x, until reaching
the local minimum. By taking the gradient of the chosen Loss Function concerning the
connection weights, it is thus possible to update the connection weights making the ANN
learn and improve its performance.

Figure 3.6: The Cost Function with re-
spect to its weight for a single Perceptron
represented with a 2D curve. Illustration
from [114].

Figure 3.7: 3D graph showing the trend of the
Cost Function in the presence of two weight
factors. Illustration from [114].

Although Gradient Descent is a very powerful method to get to the minimum error, it has
some limitations, and not all Cost Functions fit this algorithm properly. Firstly, functions
must be differentiable and the derivative must be calculable at every point. Moreover, as
shown in Figure 3.6, the Gradient Descendent method allows to randomly start descending
the curve and reach a minimum value. However, this local minima could not be the
lowest possible error value for this Error Function, as it may not correspond to the global
one. Certain Cost Functions may even present holes, ridges, and all sorts of irregular
terrain that make reaching the minimum error very difficult and time-consuming. To
overcome these drawbacks, other algorithms may be implemented, such as the Stochastic
Gradient Descent, which provides many different weight-starting points, calculates their
local minima, and finally, chooses the minimum one as the global minimum, and the
Mini-Batch Gradient Descent, where the training sample is divided into mini-batches
from which to compute the gradient [121].

An important requirement in the use of Deep Learning methods is the availability of a
large number of data. These are needed for the Training Process in which the ANN learns
how to do a task through the gradient-based algorithms just explained. However, not all
the available data are involved in the training procedure. A part of them is applied to the
ANN performance evaluation. These data must be different from the ones adopted in the
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training and they should be completely independent from the model, not to bias the test
evaluation. In addition, during the training process, which is a trial and error process,
it is necessary to evaluate the model accuracy after each epoch to understand how it is
performing and to tune its parameters. As the test data is only used to evaluate the final
performance of the model after training is complete, it is also required to introduce a
further additional dataset to evaluate the model during training.

The workflow for optimizing and evaluating the performance of a Supervised-Learning
algorithm consists of training, validation, and testing steps, as shown in the scheme in
Figure 3.8, and thus the data needs to be randomly split into three distinct sets:

(a) training dataset, the sample of data used to tune weighting factors to train the
model. These data must be representative in the best way possible of the real and
complete phenomenon described.

(b) validation dataset, the sample of data used to provide an unbiased evaluation of
a model fit on the training dataset while tuning model hyperparameters. These are
distinguished from parameters as they deal with the architecture design of the ANN.
Moreover, unlike weights and biases, hyperparameters are tuned manually before
the model training phase and comprise the number of hidden layers, the chosen
activation and loss functions, the optimization algorithm, as well as the learning
rate, and the number of epochs [114].

(c) test dataset, the sample of data used to provide an unbiased evaluation of a final
model fit on the training dataset.

Figure 3.8: Scheme of the workflow for optimising and evaluating the performance of a
supervised-learning algorithm. Illustration from [110].

Although Multilayer Perceptrons are powerful Deep Learning methods, they are not the
best options when working with images. This is mainly due to the MLP architecture and
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its connection network [114, 116].

As said before, the input layer neurons are fed by a 1D vector of features (x1, x2, ..., xn).
However, images are at least composed of a 2D matrix, so they need to be flattened in
a 1D vector to be analyzed by the MLP, losing all the spatial information in the pixel
pattern of the image. Secondly, the MLP is a fully connected NN, hence the number
of connection weights are closely related to the dimensions of the input features. In
the case of large images composed of thousands of pixels, an extremely high number
of neurons will be needed for each layer, and the number of connection weights would
exponentially increase with the increasing number of hidden layers. All of this leads to a
high inefficiency and computationally expensive process. The loss of information caused
by flattening the 2D image matrix to a 1D vector and the computational complexity
of fully connected layers implied the modeling of a new paradigm called Convolutional
Neural Network (CNN) [122, 123].

3.2.3 Convolutional Neural Network

Convolutional Neural Network is a widely applicable model in supervised learning tasks
involving image data processing [110, 124]. CNNs were inspired by studies of the visual
cortex. CNNs employ filters to extract input image features in multiple ways, elaborating
information at different resolutions and modifying images with different pixel values. The
filters used, also referred to as kernels, are typically 3×3 matrices. This kernel “slides”
over the original image pixel-by-pixel. At each point, a portion of the same size of the
kernel is selected centered on the selected pixel. The dot product between this product
and the kernel is calculated. It results being the values of the new “convolved” image at
the next layer, as shown in Figure 3.9.

By applying different filters, it is possible to select different features and thus obtain
different output images, depending on what is required to display. In Figure 3.10 it is
shown how a CT image is modified after the application of different 3×3 filters. If edge
information is required from that image, it is more suitable to apply a certain kernel (in
this case the kernel (f)), while, on the contrary, if a sharper image or an image with a
certain type of blurring is needed, further filters are available.

CNNs work the same way as Multilayer Perceptrons, as they are made of successive
layers that learn increasingly complex features. The difference is that convolutional layers
are employed instead of fully connected layers for the feature extraction task. In these
layers, one or more filters are applied to the input. The numbers in the filter grids and
the dimension of the filter that best suits the task are treated as weights that need
to be adjusted during the training process. The CNN architecture is thus made of an
input layer, followed by a succession of convolutional layers for feature extraction, fully
connected MLP for image classification and, finally, an output prediction.

However, a large amount of convolutional layers may increase the number of weights of
the network that need to be optimized through training. Furthermore, the size of the
input image plays a role on the dimension of the CNN. For the same network structure, a
larger image will have a larger number of weight. This will increase the computational size

56



Artificial Intelligence in Cancer Treatment

Figure 3.9: Schematic representation of the convolutional process. Illustration from [114].

of the problem, which if not taken into account may exceed the available computational
memory.

To overcome this drawback, CNN layers are alternated by pooling layers [114, 116], or
subsampling. As convolutional ones, also pooling layers are made of kernel “sliding” over
the input images and applying some mathematical operations. However, these kernels
are not made of weights. What pooling kernels effectively do is examine the feature map
created by the previous convolutional layer and implement a specific function to pick only
certain pixel values to be transmitted to the next layer, ignoring the remaining values. In
this way, input values for a set of pixels give rise to a single output value, for example,
their maximum or mean, depending on the applied kernel. The goal is thus to reduce
the number of parameters of the network and so to lighten the computational weight,
getting smaller feature maps and a shrunken image, but preserving the network depth.
The diagram in Figure 3.11 represents a classification CNN. Convolutional layers are
followed by pooling layers which decrease the dimension of the hidden layers. The last
pooling layer is the flattened and fed into a MLP to produce the final image classification.
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Figure 3.10: Examples of 3×3 filters and the results of their convolutions with a CT image:
(a) identity, which reproduces the original image; (b) Gaussian blur; (c) sharpening; (d)
right-to-left gradient; (e) left-to-right gradient; (f) edge finding. Illustration from [110].

Figure 3.11: Example of convolutional neural network (CNN). Illustration from [110].
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3.3 The U-Net

Image segmentation is achieved by replacing CNN’s fully connected layers with convo-
lutional ones, creating a Fully Convolutional Neural Network (FCNN) [125, 126]. This
can be modeled by modifying and extending the architectural structure of Convolutional
Networks to supplement a usual contracting network by successive layers, where pooling
operators are replaced by upsampling operators.

The U-Net is one of the most popular Fully Convolutional Neural Networks. It was pro-
posed by Ronneberg et al. in 2015 [127] and has now become the backbone and standard
in medical image segmentation thanks to its very good performance. The U-Net architec-
ture is shown in Figure 3.12. It is composed of two main parts having opposite roles, the
Contracting Path, or encoder, and the following Expansive Path, or decoder. Every path
is the repetition of the same architecture module repeated with different characteristics.

Figure 3.12: U-Net architecture (example for 32×32 pixels in the lowest resolution). Each
blue box corresponds to a multi-channel image. The number of channels is denoted on top
of the box, while the x-y-size is provided at the lower left edge of the box. White boxes
represent copied feature maps, that are concatenated to the feature maps represented by
the blue box. The arrows denote the different operations. Illustration from [127].

The contracting path in U-Net is responsible for identifying the relevant features in the
input image and it follows the typical architecture of a convolutional network. It consists
of the repeated application of two 3×3 convolution layers, each followed by a ReLU
activation function, leading to a deeper network able to extract more and more complex
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features from the input image. Subsequently, a 2×2 max pooling operation is applied. It
consists of selecting the maximum pixel value to pass along to the next layer, ignoring
the remaining pixels. This sequence leads to an optimal feature extraction although the
downsampling effect due to the application of pooling layers which lower the spatial
resolution. The contracting path in U-Net is therefore responsible for identifying the
relevant features in the input image.

On the other hand, the expansion path works on decoding the encoded data. It spatially
locates the features and generates an output map with the same dimensions as the input
image. Max pooling layers are substituted by unpooling [128] layers able to gradually
restore the spatial dimensions of the feature maps while reducing the number of channels
or features. The expansive module is thus repeated until the desired image size is reached.
The segmentation is finally obtained through a 1×1 convolution layer associated with
a Softmax activation function, that gives the probability of each pixel to belong to a
class. Other ANNs are born from the adaptation of the U-Net to 3D image segmentation
problems, such as 3D U-Net [129] and V-Net [130].

3.3.1 The nnU-Net

As U-Net is an extremely efficient tool, it has quickly evolved to a commonly used bench-
mark in medical image segmentation. However, for the network to function properly, it
must be set up correctly according to what has to be analysed and processed. As said
in Section 3.2.2, there are several benchmarks that are taken into account when building
a network, including hyperparameters such as the learning rate or the batch size, which
must be adequately tuned to improve the performance of the model. The model designing
thus requires competence and experience, since its performance could be heavily compro-
mised even by a small error, leading the network to underperform. This is the case of
biomedical imaging. Moreover, the specificity of the ANN design is so deep that the same
model could perform very well on a dataset but worse on another one. By contrast, the
ideal would be the implementation of a model that would fit a greater variety of data.
The critical decisions to be made during the shaping and the training of the DL method
are in every phase, including the model architecture, how to do the training, and the
methods for data pre- and post- processing. To overcome these issues, new models have
been tested by adopting different values for each of the parameters involved and verifying
the improvement of the performance.

This procedure led to the creation of a specific neural network model, the nnU-Net [131],
an innovative segmentation method capable of performing automated configuration for
new arbitrary datasets, without the occurrence of any manual setting. It is able to config-
ure itself, including preprocessing, network architecture, training and post-processing for
any new task in the biomedical domain in a very fast and data efficient way. As its name
“no new U-Net” highlights, the nnU-Net does not introduce any new architecture of the
NN, but applies the same architectural design as the standard U-Net and its adaptation
3D U-Net. The strength of this new network, indeed, relies on automatically setting net-
work parameters according to the type of dataset fed and depending on its features in
order to optimise the segmentation task.
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The automatic configuration of nnU-Net is based on classifying domain knowledge into
three parameter groups [132]:

(i) Fixed parameters, which are parameters and design decisions that do not require
adaptation between datasets. The values corresponding to these benchmarks are
set and kept constant independently of the datasets employed. All those inherent to
the architecture model and the training schedule are included in the fixed parame-
ters. The architecture template adopted closely follows the original U-Net [127], its
3D counterpart [129] and the 3D U-Net Cascade [133] and the best suited one is
automatically implemented. The only variations with respect to the original archi-
tecture are a smaller batch size of the networks and the replacement of the ReLU
activation function with the Leaky ReLU [134]. Training instead is configured to
end after 1000 epochs, each one defined as 250 iterations on the training set. The
learning algorithm designed is the batch stochastic gradient descent and the loss
function is the sum of the Dice loss function and Cross entropy loss function [135].

(ii) Rule-based parameters, which have a dependency on specific dataset properties.
It is therefore possible to establish heuristic rules that connect these design choices
with the characteristics of the dataset and thus whenever the network is presented
to an input having those qualities, it knows exactly how to autoset. The nnU-Net
thus crops the implemented training data and is able to create a dataset fingerprint
including parameters related to the image size, the number of voxels, the voxel
size (imaging spacing), the number of modalities (CT, MRI or PET) along with the
number of classes to segment and the total size of the training set [131]. According to
the values of these parameters, the network generates the pipeline fingerprint, which
is defined as the entirety of choices being made during method design. The nnU-
Net reduces the design choices to the very essential ones and automatically infers
these choices using a set of heuristic rules that operate on the above-described data
fingerprint and project-specific hardware constraints [132].

(iii) Empirical parameters, which need to be chosen empirically after the evaluation
of the validation results after the training phase. Belonging to the latter category
are the remaining design choices, that is, model selection and post-processing. This
latter has a key role in organ image segmentation, as it often helps to remove some
spurious false positives that may have been formed during network processing [132].

Once the fixed parameters have been set and the heuristic rules have been correctly
established, a new dataset can be administered to the network.

The nnU-Net selects the image features and, exploiting the rules, sets the most adequate
design choices. At the end of the process, the nnU-Net generates three different U-Net
configurations: a two-dimensional (2D) U-Net, a 3D U-Net and a 3D U-Net Cascade. nnU-
Net thus empirically selects the best performing configuration and through the application
of post-processing techniques improves the final output.

This method has been performed on 11 international biomedical image segmentation
challenges comprising 23 different datasets and 53 segmentation tasks, testing a variety
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Figure 3.13: A set of medical images segmented by the nnU-Net. Target structures for each
dataset are shown in 2D projection (left) and in 3D (right). (a) Heart (green), aorta (red),
trachea (blue) and esophagus (yellow) in CT images (dataset D18); (b) A549 lung cancer
cells (purple) in FM (D22); (c) Lung nodules (yellow) in CT images (D6); (d) Liver
(yellow), spleen (orange), left and right kidneys (blue and green, respectively) in T1 in-
phase MRI (D16); (e) Synaptic clefts (green) in EM scans (D19); (f) Edema (yellow),
enhancing tumor (purple), necrosis (green) in MRI (T1, T1 with contrast agent, T2,
FLAIR) (D1); (g) Kidneys (yellow) and kidney tumors (green) in CT images (D17); (h)
Thirteen abdominal organs in CT images (D11); (i) Hepatic vessels (yellow) and liver
tumors (green) in CT (D8); (j) Left ventricle (yellow) in MRI (D2); (k) Right ventricle
(yellow), left ventricular cavity (blue) and myocardium of left ventricle (green) in cine
MRI (D13); (l) HL60 cell nuclei in FM (D21). Illustration from [132].

of organs, tumors and cellular structures in 2D as well as 3D images acquired by different
medical imaging techniques. Some results are shown in Figure 3.13.

These trials have evidenced the capability of the nnU-Net to adequately identify and
segment a large variety of datasets relating to different organs and injuries, turning out
to be an efficient and excellent tool. Therefore this DL algorithm has been employed for
the development of a tool for medical imaging of patients undergoing BNCT treatment.
This research work is framed in a more comprehensive project named AI_MIGHT,
funded by the National Institute of Nuclear Physics (INFN) in the scheme of the Young
Researchers Grants in 2021.
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3.4 AI_MIGHT Project

The Artificial Intelligence methods applied to Medical ImaGes to enHance and person-
alize BNCT Treatment planning, AI_MIGHT project concerns the implementation of a
Deep Learning software capable of obtaining segmented images of tumors from CTs and
MRIs. This tool could provide an optimal support for researchers in the realisation and
improvement of BNCT Treatment Planning Systems as it is able to quickly segment a
wide dataset of images.

The prime aim of AI_MIGHT is to speed up the preliminary clinical evaluation of med-
ical images performed by medical physicist, thus enabling them to start to work on the
treatment planning of new patients without awaiting all the clinicians completed segmen-
tation. As stated in Section 3.1, manual segmentation is a rather time-consuming process
and possible delays in the TPS implementation may have consequences on the success of
the therapy. On the contrary, in this way the analysis of patient positioning, the irradia-
tion time and the beam configuration can be set-up in advance. Then, the clinicians can
approve or re-countour the images and the dose distribution can be re-calculated in the
final ROIs. Since the time-consuming procedures in the TPS are the patient positioning
and the Monte Carlo calculations, the preliminary contouring done by AI_MIGHT could
allow a faster Treatment Planning task.

Moreover, AI_MIGHT would be particularly useful for BNCT researchers looking to im-
prove their Treatment Planning Systems. In order to do it, an extremely large amount of
segmented data is required to test their computational instruments and enhance their per-
formances. Therefore, the efficient and rapid segmentation of the tumors by AI_MIGHT
would allow for a wide dataset of segmented data useful for research purposes without
having to add a cumbersome task to the physicians and medical physicists. Moreover, the
AI_MIGHT project could be coupled with the IT_STARTS TPS, discussed in Section 2.3
to study the efficacy of the automatic segmentation process and to provide a complete
TPS tool. As the starting point, AI_MIGHT has created a standardized dataset of pub-
lic Head & Neck and Brain tumors CTs and MRIs. To train the nnU-Net, open access
databases have been used for both tumors and both images modalities. Focusing on CT
images with corresponding RTSTRUCT files the database contains overall about 1934
H&N cases and 230 brain tumor cases. The RTSTRUCT files are manually contoured by
physicians and are required for the training step since they create the ground truth of
the segmentation.

In a precedent work the medical images have been cropped to optimise the NN perfor-
mance by removing non useful information and, thus, considerably reducing the training
time. Then, the dataset has been automatically separated by the nnU-Net into a set for
training (and validation) and a set for testing. Finally the performance of the segmenta-
tion network was evaluated using a series of indexes commonly used in field.

In this thesis work I considered the CT images of 18 Glioblastoma Multiforme cases. For
each case the BNCT dosimetry was obtained using IT_STARTS. The dosimetric study
was conducted by using at first the ground truth segmentation present in the RTSTRUCT
file and subsequentlly the automatic segmentation mask obtained by AI_MIGHT. The

63



Artificial Intelligence in Cancer Treatment

dosimetry obtained in each ground truth case was compared to the relative one obtained
by automatic segmentation to evaluate the performances of the algorithm and to test the
possible coupling of AI_MIGHT with the IT_STARTS TPS.
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Chapter 4

Treatment planning and
dosimetrical analysis

This Chapter delves into the objective of this thesis, i.e., the evaluation of the application
of nnU-Net in the automatic segmentation of medical images for BNCT applications.
In particular, the accuracy of the segmentation achieved by nnU-Net and its ability
to provide reliable dosimetric information for treatment planning of GBM have been
examined. The potential benefits and challenges associated with the use of nnU-Net in
dosimetry were also explored.

Specifically, I focused on the application of the nnU-Net trained in AI_MIGHT for the
segmentation of GBM tumors. As explained in the previous Chapter, the use of nnU-
Net for GBM segmentation involves training the network on a dataset of medical images
provided with the corresponding manual definition of the tumors. The trained network is
then used to automatically segment GBM tumors in the medical images of the selected
set. The BNCT treatment planning was performed on the manually segmented volumes.
The dosimetry was then analyzed in the manual and in the AI segmented volumes, using
the same irradiation configuration. Therefore, using the same beam setup, I subsequently
assessed the treatment by solely altering the irradiation time. This approach allows to
study how the treatment might differ if the target volume is not in the expected location.
The aim is thus to compare the doses when simulating treatment with the GTV contoured
by a clinician to the results obtained when the GTV is contoured by an ANN, and how
the possible differences affects the tumor control.

4.1 Dataset Creation

The creation of an accurate and representative dataset is crucial for the effec-
tive training of a GBM segmentation model using nnU-Net. The images used
were downloaded from a free public archive, The Cancer Imaging Archive (TCIA)
(https://www.cancerimagingarchive.net/), which offers medical images of different
tumors. All imaging modalities are available such as CT, PET and MRI, and some
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of them come with a corresponding manual segmentation image. These images are in
DICOM format, that is the standard format for medical imaging. DICOM files are made
by two parts, the image itself and the header, which stores all the information about the
patient and the image.

Here is the full list of the datasets including brain tumors chosen in the TCIA and the
corresponding number of patients available:

• ACRIN-DSC (123 patients);

• ACRIN-FMIS (45 patients);

• IvyGAP (39 patients);

• GLIS-RT (230 patients);

• TCGA (262 patients);

• CPTAC (66 patients).

These datasets should ideally cover a wide range of patients, imaging protocols, and
disease stages. For this thesis, the CT images from the GLIS-RT dataset have been chosen,
as it is the only one provided with the RTSTRUCT files, which are sets of anatomical
structures identified on radiological images for the planning and delivery of radiotherapy.
This collection consists of 230 cases of GBM and low-grade Glioma patients treated with
surgery and adjuvant radiotherapy at Massachusetts General Hospital. All images are
provided with the radiotherapy targets, the gross tumor volume (GTV) and the clinical
target volume (CTV) manually delineated by the radiation oncologist. Of the 230 cases
displayed, 198 are GBM patients. These 198 cases have been automatically sorted by
the network, allocating 152 (76.7%) for the training and validation processes and the
remaining 46 (23.3%) for the testing phase.

The training of nnU-Net for GBM segmentation operates as described in the previous
Chapter. However, as the nnU-Net needs the images in the NIFTI format file, a specific
tool is used to convert all the CTs and DICOM segmentations in NIFTI format. The GTV
segmentation file obtained is hence a mask, a tensor whose voxels are 1 when the tumor
is present and 0 everywhere else. The network architecture is thus configured to suit the
characteristics of CT imaging, while the training and the validation stages are closely
monitored adjusting weights and hyperparameters as necessary. The model evaluation
relies on the application of the network on the test set. Thanks to a scientific collaboration
with the Taipei Veterans General Hospital (Taiwan) and the Xiamen Humanity Hospital
(China) the testing dataset was enriched with two more GBM patients who actually
underwent BNCT.

4.1.1 Evaluation Coefficients

The evaluation process involves quantitative metrics and indexes to assess the segmenta-
tion accuracy and to compare the given ground-truth volume (G) and the NN predicted
volume (S). The metrics used in this thesis are shown in Figure 4.1 and are defined as:
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(i) Dice Coefficient (DC), also known as the Dice similarity coefficient (DSC) [136],
which measures the similarity between two volumes. It ranges between 0 and 1,
where 0 is obtained when there is no similarity, and 1 means perfect superposition.
Dice score indicates the overlap volume of two structures relative to their average
volume, and it is defined as

DC = 2 · (G ∩ S)
G + S

(ii) Geometrical Miss Index (GMI) [137], which corresponds to the fraction of the
ground-truth volume G that is not predicted. Also GMI ranges between 0 and 1,
where a higher GMI indicates a greater geometric discrepancy between the real and
the predicted volumes. A GMI ≃ 0 indicates instead a good geometric accuracy of
the NN segmentation process. Geometrical Miss Index is defined as

GMI = G − (G ∩ S)
G

(iii) Discordance Index (DI) [138], which is the fraction of the predicted volume S
that does not belong to ground-truth volume G. It measures the over-contouring
of the NN respect to the manual segmented image. Also DI ranges between 0 and
1, where a higher Discordance Index value indicates a larger disagreement of the
images. It is defined as

DI = S − (G ∩ S)
S

Dice Coefficient is thus an evaluation of the overlapping between the two masks, while
the Geometrical Miss Index and the Discordance Index measure the dissimilarity between
volumes.

After the training session, all the cases from the testing set have been evaluated: the
coefficients distribution is shown in the box-violin diagram shown in Figure 4.2. The
distribution of the Dice Coefficient has an average value of approximately 0.7, while the
one related to the Geometrical Miss Index and the Discordance Index ranges between
0.2 and 0.3. “Violins” also denote a high concentration of data having high DC values
and medium-low GMI and DI levels. This indicates a good level of overall overlapping
between the two segments and that the network is performing well on the tested cases.

To obtain an analysis regarding the dosimetry due to BNCT, the medical images and the
ROIs obtained by RTSTRUCT and by automatic segmentations were provided to the
IT_STARTS TPS, for the simulations of the neutron irradiation.
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Figure 4.1: Schematic illustration of the Dice Coefficient, the Geometrical Miss Index and
the Discordance Index, respectively. The blue circle represents the ground-truth volume
G, the red one is the simulated S, and the black part is the intersection between the two
volumes G ∩ S.

Figure 4.2: The box-violin plot of the Dice Coefficient (DC), the Geometrical Miss Index
(GMI), and the Discordance Index (DI) values regarding the whole testing dataset. The
mean value is the green triangle and the median is graphically represented by the orange
line. The box represents the interquartile range (IQR), in which the middle 50% of the
data lies. The whiskers (or extension lines) extend from the box to the minimum and
maximum values of the data within a certain range, typically corresponding to 1.5×IQR;
empty dots represent the outliers. The violins depict the distribution of the data. The
wider the violin, the higher the density of data in that region.
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4.2 Image Segmentation

To import a CT image and the corresponding ROIs from the RTSTRUCT into
IT_STARTS as an overlaid mask over the CT a specific procedure is needed. The
objective is to obtain a voxel-based geometry of the patient in which the different areas
of interest can be distinguished. However, not all the required ROIs are included in the
RTSTRUCT. Nevertheless, these can be derived, as discussed below. The same method
is repeated for both the manually segmented GBM image and those obtained from the
network.

In total, within my thesis work, I analyzed 18 patients from the test dataset, applying
identical procedures until obtaining all necessary information regarding patient dosimetry.
The volumetric characteristics of each patient’s GTV are documented in the Table 4.1,
alongside the DC, GMI, and DI values resulting from comparison with GTVs obtained
from the neural network. A representative example (i.e. Patient_0022) of the application

DC GMI DI Volume true (cm3) Volume NN (cm3)
GBM_Taiwan 0.118 0 0.937 17.994 287.187

GBM_0006 0.271 0.700 0.699 53.434 323.650
GBM_0071 0.296 0.002 0.774 33.681 32.832
GBM_0057 0.369 0.038 0.734 29.267 128.957
GBM_0137 0.417 0.044 0.725 31.274 113.013
GBM_0202 0.427 0.105 0.574 11.446 39.766
GBM_0096 0.577 0.391 0.078 124.71 261.85
GBM_0217 0.688 0.097 0.333 253.558 152.465
GBM_0001 0.767 0.078 0.306 75.297 101.889
GBM_0020 0.777 0.039 0.348 30.747 42.127
GBM_0157 0.777 0.176 0.237 107.539 158.435
GBM_0192 0.793 0.231 0.150 34.354 37.096
GBM_0225 0.807 0.199 0.152 202.057 182.820
GBM_0022 0.824 0.137 0.177 61.243 57.871
GBM_0129 0.843 0.073 0.214 134.324 140.839
GBM_0144 0.851 0.093 0.173 89.635 105.703
GBM_0060 0.853 0.076 0.100 104.607 114.451
GBM_0128 0.912 0.042 0.842 207.673 213.312

Table 4.1: Volumetric dimensions and values of DC, GMI, and DI for each analyzed
patient. Volumes are referenced for both manually segmented GTVs and those artificially
generated by the the neural network.

of IT_STARTS on a patient belonging to the test set is described step by step in the
following section.
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Patient_0022

The first step of IT_STARTS treatment planning simulation is the loading of the CT
image and the corresponding GTV mask provided by the RTSTRUCT in NIFTI format.
IT_STARTS allows the display of the CT images in the three different planes: sagittal
(YZ), longitudinal (XZ), and transversal (XY), as shown in Figure 4.3. The same can be
applied to the mask of the GVT.

(a) CT image.

(b) Manually segmented GTV.

(c) GTV mask (purple) overlaid to the CT.

Figure 4.3: From left to right: plot of the YZ, XZ, and XY slices.
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To obtain a meaningful dosimetric analysis, it is necessary to “build” masks corresponding
to the other ROIs, including the brain, the bones and the soft tissue. This step is possible
even if these anatomical regions are not present in the RTSTRUCT file, and therefore need
to be created from scratch. IT_STARTS has the capability of exclusively selecting specific
pixels within the CT image and map them to a particular anatomical structure, based
on their HU numbers. The procedure employed to simplify this step involves defining as
soft-tissue the voxels having HU in range of [-450 ; 150], as bones the voxels with HU
greater than 150 and the rest as air. Regarding the creation of the brain mask, the process
has been more complex, as its HU are in the range of [-10 ; 180], comprised in the range
of values relative to soft tissue. In this case, I have applied to the soft-tissue mask the
following additional filter:

Kernel =




0 0 0

0 1 0
0 0 0

 ,

0 1 0
1 1 1
0 1 0

 ,

0 0 0
0 1 0
0 0 0


 , 6




The specified filter is a kernel for the erosion operation in a binary image processing
context. Erosion is a morphological operation that is used to reduce the size of objects
in the image while maintaining their general shapes. The kernel is a three-dimensional
matrix that describes the shape of the structure to be used for erosion. In this case, the
kernel contains two elements:

• A three-dimensional NUMPY [139] matrix representing the kernel itself. This matrix
defines the shape of the structure used for erosion, has a 3×3×3 shape and contains
values 0 and 1.

• The number of iterations to be performed during erosion, which is six in this case.

The kernel is applied to each pixel in the image and the six iterations indicate that erosion
will be repeatedly applied to the image six times.

The OAR for the GBM treatment is the brain, excluding the GTV region. Therefore,
it is necessary to create an additional mask representing the OAR, starting from the
brain mask and excluding the GTV, i.e., setting the value to 0 for all its voxels (see
Figure 4.4d). From this procedure I obtained the masks shown in Figure 4.4. The masks
created are then assembled in such a way as to recreate the geometry of the entire patient
and reproduce it as a set of individual templates, each depicting a different anatomical
site (see Figure 4.4e).

A further step consists of the voxelisation of the total geometry, for which IT_STARTS
requires to set a specific value for the size of the individual voxel; then it automatically
converts the three-dimensional medical image into a set of voxels as shown in Figure 4.5.
In this work, I set a voxel size of 4 mm for each dimension, to achieve good accuracy and
at the same time avoid excessive computational time.

As the result of these procedures, IT_STARTS provides a voxel-based geometry of the
patient, written in the syntax of the Monte Carlo transport codes, in this case, MCNP6.
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(a) Soft tissue mask.

(b) Bone mask.

(c) Brain mask.

72



Treatment planning and dosimetrical analysis

(d) OAR mask.

(e) Assembly of all the masks created. The anatomical structures reproduced correspond
to the soft tissue (pink), the bones (yellow), the organ at risk (green), the GTV (red),
while the rest is the air (light blue).

Figure 4.4: From left to right: plot of the YZ, XZ, and XY slices.
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Figure 4.5: Top: voxelised geometry of the patient, where the side of each voxel has been
set to a size of 4 mm. The image has been also previously cut to remove the superfluous
sites, including the CT scanner table and the headrest. Down:histograms relative to the
occurrence of voxels having specific values of HU for each plane.
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4.3 Treatment Simulation

For the simulation of a BNCT treatment, it is necessary to position the voxelised patient
inside the irradiation room, in the most advantageous orientation with respect to the
beam port, where the neutron source is defined as described in Chapter 2.2.3.

The accelerator generating the beam employed in the simulation refers to the Radiofre-
quency Quadrupole accelerator [140] designed and built in Italy by INFN, delivering
5 MeV protons at 30 mA of continuous current. The protons impinge on a target of
beryllium producing neutrons through the 9Be(p,n)9B reaction, which produces a neutron
intensity on the target of approximately 1014 s−1, with a maximum energy of 3.2 MeV.
The beam is then moderated in the Beam Shaping Assembly (BSA), resulting in an ep-
ithermal spectrum (peak energy between 1 and 10 keV), suitable for deep-seated tumors.
In Chiara Magni’s doctoral thesis [141, 142], the treatment room was simulated taking
into account radiation protection aspects with regard to air activation, materials in the
BSA and walls, and dosimetry to the patient’s organs and the environment, as shown in
Figures 4.6a and 4.6b.

4.3.1 Patient Positioning

Positioning a patient for Boron Neutron Capture Therapy requires careful consideration
to ensure effective treatment delivery while minimizing radiation exposure to healthy tis-
sues. In order to achieve an optimal dose distribution, several strategies can be applied,
and medical considerations must be taken into account regarding the protection of sensi-
tive structures. In this work, where I needed to standardize a criterion to inter-compare
different cases on common bases, I minimised the distance of the centre of mass of the
GTV from the beam-port. This corresponds to maximise the irradiation of the GTV,
regardless possible limitations of surrounding structures. This choice is justified because
the goal of this study is not the evaluation of BNCT effectiveness in specific cases, but
rather to evaluate the relative differences once fixed the irradiation position. I used the
3D Slicer software to accomplish this criterion. Once uploaded the patient’s CT and the
masks in NIFTI format, the program enables to locate the centre of mass of the GTV and
to generate a 3D geometry of the patient. This three-dimensional image can be turned
and moved, making it easier to establish the rotation angles. Patient_0022 has under-
gone a rotation of 170° around the x-axis and 33° around the y-axis, and a translation of
3 cm along x, 1 cm along y and 66.5 cm along z. This results in a patient position in the
treatment room as shown in Figure 4.7.

The next step is the simulation of the patient irradiation with the neutron beam. To
assess the dose absorbed in each voxel, it is necessary to set the tallies as outlined in
Chapter 2.2.4. In this work, I implemented the F4 tally in conjunction with the FMESH
card. Meshes are three-dimensional grids superimposed on the patient; in this case, the
grid elements were aligned with the voxels. KERMA factors corresponding to the neutron
energy values reported in [83] are then coupled with the fluence tally for the four radi-
ation components of BNCT. As in the inner volumes the charged particles equilibrium
is ensured, KERMA can be used to calculate dose, and this method yields a single file
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(a) Horizontal (left) and vertical (right) sections of the MCNP6 model of the treatment
room. The simulated treatment room has dimensions of 3.30 × 4× 6 m3 with walls of
50 cm in borated concrete.

(b) Representation of the simulated BSA. Neutrons are produced via
nuclear reaction of protons in the beryllium target and are moderated
along the lithiated aluminum fluoride structure (grey).

Figure 4.6: Treatment room for the simulation of patient irradiation. The neutron beam
is directed along the z axis. Both illustrations are from [141].
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Figure 4.7: Patient positioning in the treatment room along the YZ and XZ planes.

recording the calculated dose rates for each of the four components involved in BNCT
treatment. The irradiation simulation consisted in launching 108 source particles, result-
ing in a relative uncertainty of dose rate in the GTV voxels lower than 2%.

To reduce the statistical variance and speed up the Monte Carlo simulations, weight
windows were employed in the particle transport [79]. Weight windows are defined by
assigning and redistributing weights to particles throughout the simulation. Weight is
a characteristic of particles that transforms analog Monte Carlo into non-analog Monte
Carlo, where each particle can represent more than one, or a fraction of one, analog
particle. Weights can change in the simulation as particles cross more important parts
of the geometry, as labelled by the user. This produces the sampling of a higher number
of particles with lower weights in these volumes, improving the statistics. However, an
over-population may result in large computational time, thus weight windows are set
to control and make the weights uniform along the particle transport. With windows,
particles with higher weights are sampled more frequently (while their weight is lowered
accordingly), and those with lower weights are compacted into fewer particles with higher
weights. This concentrates the majority of Monte Carlo samplings in regions of greatest
interest, such as those corresponding to the GTV, without losing efficiency.

4.4 Photon-Equivalent Dose calculation

At this stage, the dose rates extracted from the output file generated by the particle run
are fed into a spreadsheet. Subsequently, this file is read by IT_STARTS to compute
the total absorbed dose and provide essential details for clinical treatment. In addition
to dose rates, the spreadsheet also contains the CT scan location in the file system, the
boron concentration in the GTV, the ROIs, and OAR, as well as the prescribed dose
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limit values for the patient’s treatment to calculate the irradiation time. As stated in
Chapter 2.3, the treatment time is determined using the dose limiting values, that can
be the maximum dose value, Dmax, or the mean dose calculated within 50% of the OAR,
Dmean, depending on the tissue. In this work, albeit the limitation in brain is set on the
mean value, we adopted the conservative approach to calculate both dose rates and to
select the most restrictive one (i.e. the one that leads to the lower irradiation time).

For photon-equivalent dose calculation, IT_STARTS allows the input of radiobiological
data for the RBE-weighted dose model and the photon isoeffective dose model. The
absorbed dose in the OAR is calculated applying the RBE-weighted dose model described
in Chapter 1.2.2 and assuming the RBE and CBE parameters given by Coderre [143], as
it is the model applied in clinics, i.e. CBE = 1.35, RBEth = RBEf = 3.2, RBEγ = 1.
Even if the GTV dosimetry is obtained using the photon isoeffective dose model, for the
healthy brain the model is not yet available. However, there are some reasons why the
calculation of fixed-RBE weighted dose in healthy tissues is justified. First, the limiting
criteria are available from the clinical BNCT experience using RBE/CBE. Moreover,
literature demonstrated that at low dose, typical of healthy tissues, the RBE-weighted
dose and the photon isoeffective dose do not differ significantly.

For this patient, the dose limit values of Dmean = 2.5 Gy-Eq and Dmax = 13 Gy-Eq in
the brain, generate the irradiation time of 39.08 minutes and 37.30 minutes, respectively.
As said above, to protect as much as possible the normal brain the software selects the
lower time: 37.30 minutes.

For the GTV, the photon isoeffective dose model is adopted. However, as an example
of dose calculation with the traditional model, I report also RBE-weighted dose for one
patient. To this end, it was possible to use original data, coming form radiobiological
experiments conducted in Pavia on the human immortalised GBM cell line U87. The
radiobiological parameters were derived from experimental measurements conducted at
the TRIGA Mark II reactor of the University of Pavia. Flasks containing BPA-treated
U87 cells were subjected to a thermal neutron beam characterized by low gamma and fast
neutron contamination in the thermal column of the reactor. Other flasks were irradiated
without boron treatment (beam-only experiments). Moreover, reference irradiation was
carried out with a 60Co photon source available at the reactor. All irradiation experiments
were performed with dose escalation, in order to obtain dose-survival curves following the
same procedure as described in [42]. The survival curves, are illustrated in Figure 4.8

The curves represent the in vitro GBM survival-dose relation in BNCT, allowing the
translation of BNCT dose in photon-equivalent units using proper radiobiological param-
eters. In fact, the typical parameters used in clinics rely on the Coderre’s experiments
conducted with a Gliosarcoma experimental model. It was thus interesting to derive the
parameters for the RBE-weighted dose model, defined in the first Chapter, using these
curves. The CBE value is derived by comparing the dose associated with photons (de-
picted by the blue curve) to that of the boron capture reaction products, namely alpha
and lithium (represented by the black dotted curve), for the same endpoint. A similar
process is employed to determine RBEth and RBEf . Since protons are elicited in both

78



Treatment planning and dosimetrical analysis

Figure 4.8: Survival curves of U87 cells as a function of the absorbed dose. The blue dots
and the corresponding blue line represent respectively the data from the reference radiation,
60Co, and the fit. The red curve and the red stars are the fit and the experimental data
for the beam-only irradiation. The red dashed curve is the contribution of protons. The
black curve is the fit of the BNCT experimental points (black triangles). The dotted black
line is the model considering only the boron component. Courtesy of Barbara Marcaccio,
PhD Thesis, paper in preparation.

reactions, their biological effectiveness is presumed to be identical, thus only one RBEn

value is considered, this time with reference to the dotted line representing survival just
considering protons and 14C ions. Applying Equation 1.4 and setting the endpoint as the
1% survival fraction of irradiated cell, the value of CBE was calculated to be 6.03±0.03,
and RBEn was determined to be 4.49 ± 0.08. By definition, the RBEγ for is 1.

Regarding the photon isoeffective dose model, the characteristic repair time values for the
U87 cell line and the relative percentage of cells repaired by both fast and slow kinetics
for photons and high-LET radiations, which were used in the fits are:

• t0f = 91.42 min, characteristic repair time considering the fast kinetics;

• t0s = 1238 min, characteristic repair time considering the slow kinetics;

• pγf = 0.77, proportion of sublesions repaired by the fast kinetics for low-LET
radiation;

• pγs = 0.23, proportion of sublesions repaired by the slow kinetics for low-LET
radiation;

• pBNCT f
= 0.2, proportion of sublesions repaired by the fast kinetics for high-LET

radiation;

• pBNCT s = 0.8, proportion of sublesions repaired by the slow kinetics for high-LET
radiation.

79



Treatment planning and dosimetrical analysis

These parameters allow the calculation of the Lea-Catcheside time dependent factor G(θ)
by applying the Equations 1.7 and 1.8.

It is also possible to derive the values of alpha and beta used in the calculation of the
isoeffective dose for each dose contribute (see Equation 1.22). Some assumptions were
made for the assessment of these parameters:

(i) For photons, α4 = αR and β4 = βR, due to the similarities in the energy spectra of
the reference photons ( 60Co, about 1 MeV) and the ones from the neutron beam
(typically around 2 MeV).

(ii) For neutrons, α2 = α3 = αn and β2 = β3 = βn, where α2 and β2 related to the dose
contribution of thermal neutrons, and α3 and β3 to the one of fast neutrons. This
is possible as the recoil hydrogen nucleus released during the scattering interaction
of fast neutrons has an energy comparable to that of the proton generated by
the reaction of thermal neutrons with nitrogen. As a consequence their biological
effectiveness is the same, and so this assumption can be applied.

The number of parameters to be identified for the photon isoeffective dose model is thus
reduced, and through the fitting experimental data in Figure 4.8, the following values
listed in the Table 4.2 are obtained for the U87 cell line.

α [Gy−1] β [Gy−2]

Boron 2.4 ± 0.5 0
Neutrons 0.6 ± 0.6 0.5 ± 0.9
Photons 0.17 ± 0.08 0.021 ± 0.009

Table 4.2: Parameter values of the survival curves obtained by fitting the experimental
data in Figure 4.8.

IT_STARTS calculates the photon isoeffective dose distribution in each voxel inside the
patient using the model fed with these radiobiological data, experimentally determined.

The software generates the corresponding DVH histograms for the dosimetric analysis.
Figure 4.9 shows the dose-volume distributions inside the OAR and the GTV applying
fixed-RBE and photon isoeffective dose models.

The DVH of the brain shows a rapid and steep decline: this is the curve that was used
to determine the irradiation time and normalize all the histograms to obtain the dose.
It is interesting to compare the curves regarding the GTV dosimetry calculated with the
two models, echoing concepts introduced in the first chapter. The RBE-weighted dose
model yields tumor photon-equivalent doses significantly higher than those derived from
the photon isoeffective dose model [43, 144]. Table 4.3, reports the minimum, mean and
maximum dose values. An important consideration concerns the minimum dose value: it
is important because the probability to control a tumor critically depends on this. An
adequate treatment, in fact, does not underdose any part of the tumor. On the other
hand, the maximum dose value absorbed in tumor is not that significant for the clinical
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Figure 4.9: DVHs of the brain (orange line), and the GTV calculated by applying both
RBE-weighted (blue line) and the photon isoeffective dose (red line) models.

outcome. It is from these considerations that it was possible to test whether the RBE or
the isoeffective model was the most appropriate to explain retrospective clinical outcomes
through TCP calculations [41, 43, 144]. In those works it was demonstrated that RBE
dose model delivers unrealistic high dose in the tumor which is, in fact, not equivalent to
photon therapy.

For this reason, in the rest of my thesis I will consider only the photon isoeffective dose
model for the GBM dosimetry.

RBE-weighted Dose Photon Isoeffective Dose
Minimum Dose [Gy] 38.7 23.3

Mean Dose [Gy] 53.6 28.0
Maximum Dose [Gy] 63.2 30.7

Table 4.3: Values of minimum, mean, and maximum dose calculated using the two equiv-
alent dose models. The minimum dose refers to the dose value received by 98% of the
volume, the mean corresponds to the dose received by 50%, and the maximum to 2% of
the total volume of the GTV.
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The overlay of isodose curves computed applying the photon isoeffective dose model on
the CT images shown in Figure 4.10 illustrates the distribution of radiation dose absorbed.
They are calculated as a percentage of the maximum dose absorbed by the OAR. The
fact that the maximum isodose comprises the GTV, demonstrates a good positioning of
the patient.

Figure 4.10: Isodose curves computed using the photon isoeffective dose model overlaid on
the patient’s medical images.

4.4.1 Tumor Control Probability

The DVH and the consideration on the difference in minimum and mean dose are indi-
cators that can be used to evaluate the impact of the AI contouring. However, from a
radiotherapy point of view, a fundamental criterion to evaluate a treatment planning is
the Tumor Control Probability (TCP). This figure of merit, in fact, is a single number that
summarises the effectiveness of a treatment in terms of its potential to achieve the tumor
control. Of course, the purpose of this work is not to calculate TCP to make a clinical
assessment of BNCT for GBM, because this would require an in-depth study of the TCP
model itself, extended to the case of non-uniform BNCT dose distributions. In this work,
the TCP has been used as a figure of merit to compare the impact of the difference in
dose distributions obtained in automatic and human-based ROIs. As a matter of fact, it
is very difficult to understand a priori the clinical implications of the variations in the
minimum, mean and maximum dose on the treatment outcome. The TCP is an indicator
closely related to the effect on the patient and therefore is more meaningful and easy to
understand. IT_STARTS provides a module to calculate TCP, by implementing a chosen
model with its radiobiological parameters.

Currently, there is no TCP model specifically tailored for the BNCT treatment of GBM.
Therefore, for this study, I have adopted a TCP model derived from clinical photon
treatments, which was then converted and adjusted for BNCT. This is justified because
the use of photon isoeffective dose model translates the BNCT dose into photon-equivalent
units; previous work has validated this approach with other tumors [144, 145].

The TCP model is based on the concept of cell survival fraction, previously introduced in
the first chapter and defined as a function of dose according to Equation 1.6. Cell survival
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follows the linear-quadratic (LQ) model, where the survival fraction S(D) of cells in the
tissue exposed to a total radiation dose D = nd is defined as

S(D) = e
−D(α+βd)+ ln 2

Td
(T −Tk)

, (4.1)

where n is the number of fractions and d is the dose per fraction. In this model α represents
the intrinsic whole tumor radiosensitivity, and β its repair capability, while the time
factors Td instead indicates the repopulation doubling time, Tk the kick-off time for
accelerated repopulation and T the treatment time.

The TCP model adopted here is based on the Poisson assumption, which states that cell
death events follow a Poisson probability distribution, resulting in the Equation

TCP = e−NS(D) = e−N ·e
−D(α+βd)+ ln 2

Td
(T −Tk)

, (4.2)

where N represents the number of clonogens for a given regimen of fractionation.

In the paper by Pedicini et al. [146], data concerning the conventional photon therapy
of patients affected by GBM following a specific fractionation regimen were collected.
These data were analyzed to obtain the parameters for Equation 4.2, in particular N =
(9.1 · 103 ± 1.2 · 104), α = (0.12 ± 0.02) Gy−1, and β = (0.015 ± 0.005) Gy−2.

The TCP model was then adapted to BNCT by setting a value of n = 1, as BNCT does
not involve fractionation. To do this, the biologically effective dose, BED, is employed.
Considering n fractions, BED is defined as

BEDn = − ln (S)
α

= nd(α + βd) − ln 2
Td

(T − Tk) (4.3)

This concept is particularly important in radiation oncology when comparing treatment
plans or different fractionation schemes. By equating the BED values for different frac-
tioned schemes (BEDn = BED1), TCP equation for single fraction dose is thus obtained
as

TCP = e−NS(D) = e−Ne−αBEDn = e−Ne−αBED1 = e−Ne−D(α+βD) (4.4)

The available data of Tumor Control Probability as a function of the delivered dose,
is then plotted in the case of single fraction dose (n = 1) as shown in Figure 4.11. To
calculate the TCP value corresponding to a certain DVH it would be necessary to extend
the calculation and include the information of dose distribution (which is not uniform as
in conventional radiotherapy). However, for the purpose of this work, we rely on what
demonstrated in [53]: the overall TCP is always comprised between the TCP due to the
minimum and the TCP due to the mean dose values. Therefore, the minimum and mean
dose values obtained from IT_STARTS into the Equation 4.4 give the range of values
where the tumor control probability lies. In this specific case, the respective values of
TCPmin = (0.854 ± 0.176) and TCPmean = (0.997 ± 0.003) are obtained when the dose is
calculated in the GTV contoured by the physician. The uncertainties have been calculated
through error propagation of the fit described in the original work [146]. The two TCP
values are very close and overlap within the uncertainties. It can thus be estimated that
in this case the TCP is very close to 1.
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Figure 4.11: Single Fraction TCP Model for GBM as a function of the delivered photon
dose dose. Data taken from [146].

4.5 Comparison with AI segmentation

The procedure was applied to the artificially segmented GTV image generated by the
AI. After feeding the CT file into the nnU-Net algorithm (Chapter 3.3.1), the AI-based
GTV mask is provided. By comparing the manually segmented tumor volume provided
by the database with the one obtained from the neural network, a high Dice Coefficient
value of DC=0.824 was achieved, along with low values of Geometrical Miss Index and
Discordance Index, respectively GMI=0.198 and DI=0.152. The segmentation algorithm
thus appears to perform well on Patient_0022’s CT scan, with the two tumor regions
largely overlapping, as shown in Figure 4.12.

To perform a dosimetric comparison, it is necessary to repeat some of the previously de-
scribed operations, replacing the original GTV mask with the AI-based one. Consequently,
a new voxelized patient geometry is obtained, where the new GTV and OAR differ from
the previous ones. The calculated irradiation time in this case was 38.05 minutes.

The photon isoeffective dose values are collected in Table 4.4 and compared with those
previously obtained. Figure 4.13 reports the DVHs in both cases, showing a minimal
difference between the two dose distributions.
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Figure 4.12: CT of Patient_0022 overlaid with the manually segmented GTV (green) and
the one segmented by the neural network (red).

Regarding the uncertainty in dose values, this is linked to the error in Monte Carlo
simulation. By simulating with 108 particles, it was possible to achieve an error in the
GTV voxels even below 10% (in some instances, even below 1%). Considering the high
number of voxels over which the dose measurement is averaged, the uncertainty is reduced
to below 2%.

Manual Segmentation AI Segmentation
Minimum Dose [Gy] 23.3 23.1

Mean Dose [Gy] 28.0 28.4
Maximum Dose [Gy] 30.7 31.1

Table 4.4: Photon isoeffective dose values delivered inside the GTV. The minimum dose
refers to the dose value received by 98% of the volume, the mean corresponds to the dose
received by 50%, and the maximum to 2% of the total volume. The uncertainty associated
to these dose values is 2%.

Regarding the calculation of TCP, the obtained range of values overlap with the case
of manual contouring. By using the artificially segmented GTV, I obtained minimum
and mean TCP values of respectively TCPmin = (0.829 ± 0.203) and TCPmean =
(0.998±0.002). Therefore, even when contouring is performed automatically by the neural
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Figure 4.13: Plot of DVHs for both manual segmentation and neural network segmenta-
tion. It reveals minor variations in the distributed dose values within the GTV volumes.

network, the value of TCP is close to 1.

This entire procedure was then replicated for all 18 cases that I analyzed, each one having
different values of DC, GMI, and DI, in order to extract information regarding a potential
correlation between dose values and coefficients and to observe how the segmentation of
GTV images affects the dose distribution within the examined patient. However, to give
an overview of the situation encountered when the AI segmentation is not good, I describe
below the analysis in Patient_0137.

Patient_0137

In this case, the manually contoured GTV and the AI-based GTV have significantly dif-
ferent dimensions, respectively 31.274 cm3 and 113.013 cm3. The Dice Coefficient value
evaluated is lower, corresponding to DC=0.417, while GMI=0.038 and DI=0.734. Con-
sequently, the correspondence of the two GTV segmentations is limited, as observed in
Figure 4.14.

The low GMI value reflects the fact that the automatic segmentation almost entirely
encompasses the manual one, resulting in G ∩ S ≃ G, where G, the ground-truth vol-
ume represents the manually defined GTV and S the NN predicted one. Utilizing the
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Figure 4.14: CT of Patient_0137 overlaid with the manually segmented GTV (green) and
the one segmented by the neural network (red).

arithmetic definition of GMI, its calculated value tends to fall to zero, as

GMI = G − (G ∩ S)
G

≃ G − G

G
≃ 0 .

On the other hand, the significant difference in volumes results in

S − (G ∩ S) ≃ S − G >> 0 ,

leading to a high value of DI.

The dose distribution within the patient exhibits disparities in the two cases, as reported
in Table 4.5, particularly concerning the minimum dose value. This is especially evident
when observing the DVHs depicted in Figure 4.15.

This is because the artificially obtained GTV extends deeper, hence receiving a lower
minimum dose value due to low-energy neutron beam penetration: the deeper the tumor,
the more difficult is to ensure a suitable minimum dose.

As a result, TCP value represents a lower tumor control in the second case, as summarised
in Table 4.6.

The reason why the neural network sometimes fails to segment the GTV is unknown,
since, as illustrated in Chapter 3.2.2, what happens within the hidden layers of the algo-
rithm cannot be observed or controlled by the user. Considerations on the performance of
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Figure 4.15: Plot of DVHs for manual segmentation and neural network segmentation.
Note the difference of the minimum dose values in the GTV volumes.

Manual Segmentation AI Segmentation
Minimum Dose [Gy] 25.4 22.5

Mean Dose [Gy] 29.1 26.7
Maximum Dose [Gy] 30.9 30.2

Table 4.5: Photon isoeffective dose values absorbed by the GTV. The minimum dose refers
to the dose value received by 98% of the volume, the mean corresponds to the dose received
by 50%, and the maximum to 2% of the total volume.

the AI-based algorithm in segmenting the chosen cases are detailed below. ANN learns to
contour the GTV region by minimizing a loss function. In this case Dice Similarity Index
was used; in future work, results may be improved by introducing a new loss function.
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Manual Segmentation AI Segmentation
TCPmin 0.973 ± 0.035 0.734 ± 0.107
TCPmean 0.999 ± 0.001 0.992 ± 0.011

Table 4.6: TCP values calculated considering the minimum dose absorbed by 98% of the
GTV and the mean dose absorbed by 50% of the GTV for manual and automatic segmen-
tations.

4.6 Overall results

The procedure described so far was repeated on the remaining 16 cases selected from
the test dataset. The dose and TCP values obtained for each of the 18 cases under
consideration are compiled in Table 4.7.

For each case, nnU-Net processed the artificial segmentation of the GTV. Once this
process has been successfully accomplished, I gathered the results and compared various
parameters to obtain an in-depth analysis. It is worthwhile to assess the parameters
while seeking potential correlations among them. To achieve this, I have implemented a
correlation matrix, as depicted in Figure 4.16, to show any existing correspondence
between the evaluation parameters of the network (i.e., DC, GMI, and DI) and those
characteristic of dosimetry obtained from the treatment plan.

4.6.1 Volume - Dice Correlation

A first consideration that can be drawn is that a clear correspondence exists between the
volumes of manually segmented GTVs and the Dice Coefficient, as shown in Figure 4.17.

The majority of cases where the GTV has a volume above 100 cm3 are concentrated in
the region corresponding to a medium-high DC. Conversely, low DC values correspond to
volumes below 50 cm3. One possible explanation may lie in the training dataset used. In
addition to being limited, since the small number of available GBM cases, it was probably
composed mostly of large GTVs, making the network more efficient in recognizing large
tumors.

A further observation was conducted on multi-volume GTVs. A notable case regards the
patient from Taiwan (DC=0.118) shown in Figure 4.20. In this case, the network struggles
to recognize and distinguish the separated volumes, but, instead, it creates a single, very
large GTV that encompasses them all. Also this problem may be linked to the restricted
training dataset. This issue leads to significant differences in the dose delivered in the
tumor. There is a noticeable trend in the network to expand smaller volumes of GTV
and narrow down larger ones, as depicted in the plot in Figure 4.18. The average volume
value thus remains relatively constant and around 150 cm3. Since I focused mainly on
small tumors, the network generated GTVs with, on average, a larger volume compared
to those manually contoured, as depicted in Figure 4.19.
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Figure 4.16: Correlation matrix between all parameters obtained. The colours represent
the correspondence value that lies in a range between 1 (maximum correlation) and -1
(maximum anticorrelation).

4.6.2 Dose - Dice Correlation

An analysis was then conducted on how the absorbed dose distributions in patients change
depending on whether the GTVs were manually segmented or by the neural network.
Clearly, by altering the shape, size, and in certain cases, the position of the GTV, the
OAR will also vary, consequently affecting irradiation times and doses delivered to the
patient. Figure 4.21 shows a box-violin plot of the distribution of minimum, mean, and
maximum doses in all the patients. A first consideration is that in AI-based GTVs the
values of minimum and mean absorbed dose are lower. This tendency to underestimate
the minimum and the mean doses may be a direct consequence of the different volume
value, as shown in Figure 4.16, and a different tumor location predicted by the network.
Moreover, the deeper the GTV develops, and therefore farther from the beam-port, the
lower the minimum dose absorbed by 98% of the irradiated volume is. This difference
tends to disappear regarding maximum dose values, which all remain slightly above 30
Gy(IsoE). The maximum dose absorbed by 2% of the GTV, in fact, is located closer
to the patient’s surface and is more closely related to the prescription, the irradiation
time (see Figure 4.16) and dose limits, set equally for all patients under examination.
Low correspondence between irradiated volumes and maximum doses are confirmed in
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Figure 4.17: Distribution of GTV volumes as a function of the Dice Coefficient.

Figure 4.18: Box-violin plot of the distri-
bution of all the GTV volumes. The mean
value is the green triangle and the me-
dian is graphically represented by the or-
ange line.

Figure 4.19: Box-violin plot of the distri-
bution of the GTV volumes analysed. The
mean value is the green triangle and the
median is graphically represented by the
orange line.

the correlation matrix.
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Figure 4.20: CT of Taiwan Patient overlaid with the manually segmented GTV (green)
and the one segmented by the neural network (red).

It is interesting to observe how the difference in minimum doses varies depending on the
evaluation parameters. The general trends are summarised in the 3D graph in Figure 4.22.

The cases where the ratio of minimum doses tends to 1 are mainly situated in the re-
gion of high Dice coefficient and low Geometrical Miss Index and Discordance Index.
The reason is strictly related to the definition of these parameters. Higher DC as well as
lower GMI and DI are attributable to a good correspondence and overlapping between
the two GTVs, it is thus reasonable to assume that the distributions of doses in the two
volumes are similar. As expected, a better overlap and a proper volume reconstruction
lead to similar minimum doses. Focusing more on the relationship between the ratio of
minimum doses and the Dice Coefficient, two different behaviors are observed in Fig-
ure 4.23 depending on the Dice value. For Dice coefficients greater than 0.7, dose values
are the same within a 10% uncertainty. For lower Dice Coefficients, however, a random
behavior is observed. Multiple assumptions can be made regarding this trend. Probably
other factors come into play, including depth and volume. So, despite a poor overlap of
the segmented volumes and despite a significant difference in GTV volumes, there is no
significant disparity in minimum dose values. The fact that a similar dosimetry can be
achieved in the two ROIs despite a low DC score suggests that while this coefficient may
be a useful indicator in certain cases, it is sometimes insufficient for evaluating the perfor-
mance of the neural network. Therefore, it is necessary to complement it with additional
representative parameters to gain a more comprehensive understanding and to discern
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Figure 4.21: Box-violin plot of the distribution of doses in the GVTs. From left to right,
the values of minimum, mean, and maximum doses deposited in the GTVs are compared.
The mean value is the green triangle and the median is graphically represented by the
orange line.

when the contouring obtained through the application of AI algorithms can be considered
adequate.

4.6.3 TCP - Dice Correlation

An additional parameter worth analyzing in its correlation with the contouring per-
formance is certainly the TCP. Minimum and mean dose values for each patient, and
the corresponding artificial contouring, have been collected and incorporated into Equa-
tion 4.4, allowing the calculation of TCP values using the previously introduced model.
TCP values of both manually and “artificially” segmented images are collected in the
box-violin plot shown in Figure 4.24.

The TCP values calculated with the minimum dose associated with the GTV images
produced by the network are on average significantly lower compared to those produced
manually. Therefore, the dosimetry obtained in the GTVs generated by the network
but optimised with the GTV manually contoured leads to lower probability of tumor
control. One possible explanation can be sought by examining the correlation matrix in
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Figure 4.22: 3D representation of the cases under examination based on the parameters
DC, GMI, and DI. The ratio is defined as the fraction between the minimum dose esti-
mated on the GTV produced by the network and that manually obtained. The color of the
dots is linked to the value of the minimum dose ratio, as indicated on the right.

Figure 4.16. TCPmin is indeed highly correlated with both the volume of GTV (correlation
index of -0.62) and, especially, with the value of the minimum dose (correlation index of
0.9), and this is what is expected. In fact, TCP is lower for big tumors and depends on
the possibility to administer a sufficient dose to the whole GTV. Moreover, while the
distribution of TCPmin shown in Figure 4.24 underlines a slightly lower average value,
the median is markedly reduced, decreasing from 0.3 to a value ranging between 0.1 and
0.2.

The values of TCPmean evaluated considering the mean doses are instead more similar
and on average markedly high. In this case as well, the value of TCP is highly correlated
with the absorbed dose, whereas it shows very little correlation with the volume of the
GTV, unlike what occurs with TCPmin.

A further observation is the extremely low correlation between TCP and the Dice Co-
efficient, as evidenced by the correlation matrix in Figure 4.16. As a consequence, the

95



Treatment planning and dosimetrical analysis

Figure 4.23: Plot of the trend of the minimum dose ratio as a function of the Dice Coef-
ficient.

TCP may be used alongside the Dice Coefficient to enhance the performance of neural
networks for medical image segmentation. Indeed, TCP and DC are two distinct indices,
with different meanings and, importantly, uncorrelated and independent from each other.
Therefore, incorporating both of them during the neural network training phase could
lead to an enhancement in its performance.
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Figure 4.24: Box-violin plot of the distribution of TCPmin and TCPmean for both manually
and artificially segmented GTVs. The mean value is the green triangle and the median is
graphically represented by the orange line
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Conclusions and future work

The aim of this thesis was to assess the suitability of AI algorithms in contouring med-
ical images for BNCT treatment of Glioblastoma Multiforme (GBM). The comparison
between manually segmented CT images of GBM for dosimetry purposes and those seg-
mented with the assistance of Artificial Intelligence provides valuable insights into the
effectiveness and reliability of automated segmentation techniques in radiotherapy plan-
ning.

As manual segmentation provides more accuracy in the identification and the detection
of the tumor volume, it allows for a much more precise treatment tailoring. However,
this approach demands significant time and resources and it is subject to unavoidable
variability. On the other hand, employing Artificial Intelligence methods for segmentation
offers greater efficiency, since it reduces the human workload, but the outcome must be
carefully tested. A preliminary evaluation of the reliability of such approach has been
assessed in this study by observing how closely the automatic contouring matches the
manual one using quantitative parameters such as DC, GMI, and DI, as well as conducting
a dosimetric analysis. This work has revealed that the majority of studied cases showed
good performance, as shown in the box-violin plot in Figure 4.21. In many instances,
indeed, good overlapping contours and similar dose distributions were achieved. This
behavior has been observed in those cases characterized by high Dice Coefficient. As
shown in the plot in Figure 4.23, corresponding to high DC values, typically 0.7 and
above, minimum dose values absorbed by the GTVs match within 10%.

This findings support the conclusion that the training of a neural network nnU-Net as-
suming the Dice Coefficient as the Loss Function can be efficient in achieving adequate
segmented medical images. However, it is also observed that, for low Dice values, pre-
dicting correct dose distributions becomes more challenging. Clearly, additional factors
come into play, such as, for example, the difference in depth-distribution of the GTVs.
This is typical of BNCT, where the distribution of the total dose varies significantly as
the neutron beam penetrates the patient’s body.

Overall, some of these complications arise from the limited number of clinical cases used
to train the nnU-Net. It is challenging for the neural network to generalize the obtained
results, to take into account the complexity of the problem, and to achieve accurate
outcomes with the number of cases analyzed in this work. However, even with these limi-
tations, this study has demonstrated, for the first time, the possibility to apply Artificial
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Intelligence algorithms for the BNCT treatment of patients affected by brain tumors.
These artificial segmentations can indeed be incorporated into a treatment plan, and a
corresponding dose distribution can be efficiently generated. This represents an initial
approach and application of AI in BNCT, which has yielded encouraging results, upon
which further research and development of increasingly efficient neural networks can be
built.

Another novelty introduced in this work is the employ of the TCP as a method to evaluate
the performance of an AI-based contouring. A strong correlation was found with the values
of the minimum dose within the GTV, as well as the absence of correspondence with the
DC values. For this reason, in the future, it may be considered to improve and optimize the
training of the neural network not only by maximizing the Dice Coefficient, but also the
TCP value. Clinical figures of merit linked to the outcome of the therapy could become
a powerful tool to prepare the treatment planning itself. With the next developments
dedicated to the optimization of TCP models for GBM, TCP can become a parameter,
whose maximisation could establish the best irradiation position automatically.

Improvements in GTV contouring ANN could come from defining alternative loss func-
tions, different from the dice similarity index. New loss functions may include more eval-
uation metrics, leading GTV prediction to ponder over multiple coefficients, increasing
the ANN learning ability. Metrics that may be added to the loss function are GMI and
DI. The former because, as observed in the correlation matrix in Figure 4.16, it is not
correlated with DC. Therefore, incorporating GMI would provide additional information
to the neural network, potentially benefiting its learning process. On the other hand, DI,
being highly correlated with DC, would not provide any significant additional information
to the ANN through the loss function. Hence, to enhance GTV segmentation, a function
combining DC and GMI could be devised.

This study represents an initial approach in applying AI algorithms in the field of BNCT.
The results obtained are encouraging and lead to further research in this sector. Indeed,
one may wonder how to improve the network performance when applied to clinical cases.
Firstly, as I have found differences in dose distributions within the GTV, it is difficult
to ascertain whether these differences are clinically significant. In this work, I assumed
the manually contoured structures provided as ground truth, as they were the only ones
available. However, as stated in Chapter 3.1, manual contouring itself is subject to un-
certainties and inter-observer variability. Contouring performed by a different radiologist
would produce a different segmented GTV, resulting in a different dose distribution. It
is thus interesting to compare the variability between different manual contours and the
discrepancy observed between ground truth and AI.

Additionally, in this study, I analyzed the applicability of CNNs for tumor region contour-
ing. However, other ROIs, particularly OARs, play a key role in BNCT treatment and
therefore also require investigation. In this case, it would be useful to apply the Normal
Tissue Complication probability (NTCP) models to the OARs, similarly to what was
shown with TCP for GTVs. Currently, there is no established NTCP model for BNCT of
GBM, but effeorts are being devoted to this end.
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Finally, regarding the applicability of nnU-Net, the range of cases will be broadened by
incorporating MRI or multimodal images. This approach would yield a more versatile
ANN capable of recognizing a greater variety of different clinical images.

This field of development in BNCT represents an innovation that will yield positive effects
both in research and clinical settings. In research, more patients can be studied and
evaluated, and computational dosimetry can become more refined and robust, towards
a better description of the dose distribution in the tissues. In clinics, a more efficient
treatment planning procedure would enlarge the number of patients. This, in turn, would
stimulate new research and a general improvement of the quality of the therapy for
enhanced clinical applicability in the future.
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