

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Bari

 INFN/CCR-07/06
 25 Maggio 2007

 CCR-09/2006/P
 Dicembre 2006

dCACHE, STORM/GPFS AND DPM: PERFORMANCE TESTS, SRM
COMPLIANCE, ADVANCED CONFIGURATIONS

Giacinto Donvito, Vincenzo Spinoso

INFN, Sezione di Bari, I-70100 Bari, Italy

Abstract

Grid storage managers represent a new way to deal with large sets of files in a Grid

environment. They are growing quickly, meeting LHC experiment requirements; in particular,
nowadays they must honour SC4 requirements as a subset of the whole complete set of
features to be implemented for 2008.

The SRM interfaces are needed, both in version 1 and 2, and higher and higher transfer
rates (i.e. in SC4, 100MB/sWAN/disk and 1GB/s inside LAN) can’t be managed through a
classic SE. Possible candidates as SRMstorage managers are dCache, DPM and StoRM.

This work aims to test installation, configuration, features and limits of those storage
managers; the resulting overview will be useful both for Tier 2 sites and dCache/DPM
developers, and will represent a basis on which to start a regular testing activity about grid
storage management.

All the results reported in this note are updated to January 2006. All the software tested is
now released in a newer version, with more functionalities added. This work is the result of a
working activity born as a requirements of the INFN ”Commissione Calcolo e Reti”.

PACS:11.30.Er; 13.20.Eb; 13.20Jf; 29.40.Gx; 29.40.Vj

Published by SIS–Pubblicazioni
Laboratori Nazionali di Frascati

1 Our experience on dCache performances at CNAF

The testbed described here has been deployed at CNAF as part of the activities of INFN

Storage Group[5]. The target has been the analysis of dCacheand GPFS performances

and limits in a Tier2-like infrastructure; in particular weare interested in measuring:

• performances during concurrent access conditions, as concerns open, read and write

operations;

• performances during opening and reading a high number of filedescriptors; in par-

ticular, these tests have been inspired by CMS-experiment applications.

To achieve our measures, we have written two ad-hoc clients,called respectively

benchandbopener.

1.1 benchand bopener

Both the clients aremultilibrary (libdcap, GFAL, libshift) andmultiprotocol(DCap, RFIO,

SRM[7]).

Library Protocol Access to
system file any local/network fs
libdcap DCap, GSIDCap dCache
GFAL SRM dCache, DPM, CASTOR, DRM
libdpm GSI-enabled RFIO DPM
libshift RFIO CASTOR, classic SE

Table 1: Linked libraries (client side) and available protocols (server side)

We have written both clients in C, in order to:

• minimize the overhead of execution;

• maximize client-side performances;

• guarantee portability and small size of binaries;

• use already available C/C++ libraries.

Throughbench you can write an arbitrary number of files, with arbitrary filesize;

then, you can read a group of files, previously written, even in a randomized order. All

2

CLIENT

dCache:
speaks
DCap,

GSIDcap,
SRM

DPM:
speaks

GSI-enabled RFIO,
SRM

Castor:
speaks
RFIO,
SRM

Classic SE:
speaks
RFIO

StoRM/GPFS:
speaks

file,
SRM

libdcap:
uses

DCap,
GSIDcap

GFAL:
uses
SRM,
dCap,

GSIDCap,
GSI-enabled RFIO

libshift:
uses
RFIO

system:
uses
file

Libraries

Storage
Managers

Protocol

Figure 1: The client interfaces to may libraries, the serveruses many protocols

open, read, write and close operations are logged on a MySQL server, so that you can

process data off line afterwards. The content of each generated test file is random and

alphanumeric.

The other client (bopener) is a stress test, so it behaves mostly like aCMS analysis

job: each job opens about ten files; in a Tier2-like farm, with about a hundred worker

nodes, we expect about a thousand files opened at the same time. Each file contains about

a GB; bopener reads chunks of about one megabyte, in a random order (seek),until it

reads the entire file.bopener never stop during reading, so its way of reading is much

more I/O intensive than a CMS analysis job.

See figure 3 for details on howbopenerworks: for example, let’s suppose you read

3 files, each of them subdivided into 4 chunks, and so 12 chunksto be read in a random

3

Another file?

Open (testfile <n>)
Read OR Write (testfile <n>)

Close (testfile <n>)

YES

START

STOP

NO

Figure 2: Executingbench

order. Our tests have opened about 200 files of 1 GB, subdivided into about a thousand of

chunks. When you start it,bopener:

1. opensall the test files, and keeps them opened;

2. draws a random order of reading for chunks;

3. then, starts readingall the chunks of all the filesin that order;

4. when it finishes reading, it closes the file descriptors.

Each client logs I/O operations on a MySQL server, in order topermit the recon-

struction of the operations.

Each entry in the database contains, in particular:

• the library name (lib) and the protocol name (proto) used to perform the test;

• name (fullfilename) and other parameters of the file;

• type of operation (open, read, write, close);

• transfer parameters (transfer buffer, read-ahead buffer.. .);

• client hostname, endpoint (server) on which the file is allocated;

4

file1 file2 file3

RANDOMIZE

01 - (file3, chunk3)
02 - (file1, chunk2)
03 - (file1, chunk4)
04 - (file2, chunk1)

...
12 - (file3, chunk2)

READING: 01 => 12

Chunk 1

Chunk 2

Chunk 3

Chunk 4

OPEN (file1, file2, file3)

CLOSE (file1, file2, file3)

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Figure 3:bopeneron 3 files, 4 chunks/file

• the most important,the time of execution of each single operation.

It is possible to start many contemporaneous sessions ofbenchor bopeneron many

clients, in order to carry out an “aggressive access” on a storage manager.

When the test is finished, it is possible to read the log through Bash/Perl scripts, to

generate interesting graphics.

1.2 Description of the testbed

The testbed installed at CNAF consists in:

• 4 GPFS[8] servers (installed and configured by CNAF administrators), which are

used by StoRM developers to test StoRM[9];

• 5 servers, available for a large dCache installation.

The main features of the servers are reported in table 2. Besides we have used 34

client hosts to run 34 contemporaneous sessions ofbenchor bopener. Each client host is

5

Lanch bench/bopener on each client host
(via SSH/Bash scripts)

All clients have finished Wait
NO

YES

Perl scripts:
retrieve data!

DB MySQL Client Server

Call (ID)

t1

t2Log (ID,t2-t1)

On each client:

Call (ID+1)

... ...

Gnuplot:
create graphs!

Figure 4: Performing a multi-client test, with log on DB (MySQL)

Hostname Role CPU RAM Disk space
diskserv-san-28 Admin node 4 X Intel Xeon 3200 MHz 4GB 0
diskserv-san-29 Pool node 2 X AMD Opteron 2500 MHz 4GB 10.8TB
diskserv-san-30 Pool node 2 X AMD Opteron 2500 MHz 4GB 10.8TB
diskserv-san-31 Pool node 2 X AMD Opteron 2500 MHz 4GB 10.8TB
diskserv-san-32 Pool node 2 X AMD Opteron 2500 MHz 4GB 12.6TB

diskserv-san-33 GPFS 2 X AMD Opteron 2500 MHz 4GB 10.8TB
diskserv-san-34 GPFS 2 X AMD Opteron 2500 MHz 4GB 10.8TB
diskserv-san-35 GPFS 2 X AMD Opteron 2500 MHz 4GB 10.8TB
diskserv-san-36 GPFS 2 X AMD Opteron 2500 MHz 4GB 10.8TB

Table 2: Hardware used in the testbed

used as grid worker node in production, and has got Opteron biprocessor architecture and

4GB RAM.

Figure 5 describes the connections between the servers and theStorage Area Net-

work (SAN). The SAN consists in a StorageTek Flexline Raid-5 diskarray, connected to

a Fiber Channel (FC) switch. The SAN exports (via SCSI) 24 volumes of 1.8 TB and 2

volumes of 0.9 TB for 4dCache pools, and 20 volumes of 1.8 TB on 4 GPFS servers;

thus GPFS manages 36 TB of storage space, while dCache manages 45 TB.

6

diskserv-san-29 diskserv-san-30

diskserv-san-31 diskserv-san-32

StorageTek
Flexline

Disk Array

Gigabit switch

diskserv-san-28
(dCache admin)

Gigabit switch

diskserv-san-35 diskserv-san-36

diskserv-san-33diskserv-san-34

FC Switch

to
the

distributor

FC connection
Gigabit connection

dCache GPFS

LEGEND:

Figure 5: CNAF Testbed - Connection scheme

Figure 6 shows the connection between the switches and the WNcontainer through

the distributor. dCache and GPFS servers are connected to different switches; thanks to

this topology, if you run tests on dCache or GPFS, but not at the same time, then you

will enjoy a bandwidth of 4Gbit/s. In reality, one of the two uplinks is broken, so we can

experience at most 3Gb/s, that’s to say 375MB/s.

The 4 GPFS servers export the GPFS on all the worker nodes, so that you can enter

the file system under/gpfs. We have used it to copy and runbenchandbopener.

1.3 Tuning and preparation

The proposed configuration requires all the control connections to be established with the

admin node, and all the data connections with the 4 servers mounting the SAN via SCSI.

7

DISTRIBUTOR

Switch to servers

Switch to servers
WN container

WN container

2 Gbit

2 Gbit

2 Gbit

2 Gbit

Figure 6: Testbed CNAF - Connection to the distributor

The operating system used on each machine is Scientific LinuxCERN 3[6], using

the Linux kernel 2.4.

The first step has been the tuning of the operating system, to be sure that the network

interfaces and the disks were correctly configured to support our tests: in this phase, the

programiperf [10] has been useful to test the quality of a sustained disk-to-disk data

transfer.

Then we have installed MySQL 5.0 on a separate host in LAN, to register the logs of

benchandbopener; the last step, of course, has been the standard installation of dCache

(version 1.6.6).

1.4 Performance comparison between dCache and GPFS

The following tests consist in writing and reading files, running a singlebenchprocessor

each WN, having 34 WN. Each WN writes and reads 20 files; so the storage manager

must manage a total number of 680 files. Each test file has a sizeof 1 GB.

The first comparison concerns contemporaneous write operations from the 34 WN

to dCache or GPFS. In this case, the “bottle necks” are respectively the dCacheadmin

node, which has to schedule the write operations on the pools, andthe shared access to

the GPFS.

As you can see in figure 7, dCache wins: it opens the files at a flatrate (under

0.6[s/open] in open for write), while GPFS becomes slower and slower, until it exceeds

more than 80 seconds.

dCache seems also to be faster in the “write” operation (fig. 8) with a flat rate of

about 250MB/s; GPFS, on the contrary, starts writing at the same rate, but with decreasing

performances.

8

Figure 7: Writing - Average time to execute “open”

Figure 8: Writing - Average time to execute “write”

9

Figure 9: Reading - Average time to execute “open”

Figure 10: Reading - Average time to execute “write”

10

The read test shows about the same behaviour of dCache and GPFS:a file is opened

in less than a second(fig. 9), and the transfer rate is flat 10 in both cases. GPFS is alittle

bit faster (270 MB/s against 235 MB/s of dCache).

1.5 “bopener” on dCache

The read test withbopeneracts in this way:

• 34 processes are started at the same time on the 34 worker nodes;

• each process reads 60 files;

• each file has a size of 1 GB;

• each file is subdivided into chunks of 1 MB, so we have 1000 chunks/file.

The 34 processes:

• open a total number of60 × 34 = 2040 descriptors on the server side;

• read all the chunks of all the files, for a total number of

1000[chunks/file] × 60[files/WN] × 34[WN] = 2.040.000[chunks],

and so a total amount of2.040.000[chunks] × 1[MB/chunk] ∼= 2TB;

• close, finally, all the files.

Let’s notice that, during the test, the same file can be read simultaneously from two

or more processes; in this way the test is closer to the real behaviour of CMS analysis

jobs.

We have considered a set ofN = 720 files, generated bybench. Let’s sayn is the

number of files opened by a single process ofbopeneron a WN, andD is the total number

of opened descriptors; the scheme used in the test is the following:

• the first WN opens files from number1 to numbern;

• the second WN opens files from number1 + x to numbern + x;

• the third WN opens files from number1 + 2x to numbern + 2x;

• and so on, until WN number 34, which opens from number1 + 33x to number

n + 33x = N .

11

It’s clear that, when you fixn (number of file to be opened from a single WN), you

also fixx:

x =
N − n

33

WN Read from file # to file #
1 1 60
2 21 80
3 41 100
4 61 120
5 81 140

.
30 581 640
31 601 660
32 621 680
33 641 700
34 661 720

Table 3: Example (n = 60) of scheduling read operations for a “bopener test”

It’s easy to computeD, that’s to say the number of opened descriptors:

D = 34n

and alsothe average amount M of descriptors per file in shared reads:

M =
D

N
=

34n

N
Whenn = 60 (N = 720), we obtain the scheme in table 3 (x = 20, D = 2040).

Logging information in the DB has been helpful to control thecorrect end of each

operation. The test has been repeated increasing the numbern of files opened on each

WN, from 60 to 120 (2X)), 147 (2.5X) and 180 (3X).

Let’s show the results in table 4 and figure 11:when opening 180 files/WN the test

has failed. The number of “read” in the last test had to be 6 120 000, whilewe verify a

clear inconsistency with the expected values.

As you can see in table 5:

• not all the open operations seem to be committed;

• not all open files have been completely read;

12

n D M Read Rate[MB/s] Durata TB Tot

� 60 2 040 2.9 2 040 000 214 3h 49m 2TB

� 120 4 080 5.8 4 080 000 238.5 5h 44m 4TB

� 147 4 998 7 4 998 000 247 6h 36m 5TB
× 180 6 120 8.7 6 120 000 105 17h 6TB

Table 4: “bopener” on dCache (chunksize = 1MB, 1000 chunks/file)

Figure 11: “bopener” on dCache

• not all open files have been closed.

The test, of course, has been re-executed several times.

Expected Measured Missed
Open 6 120 5 835 285
Read 6 120 000 5 126 252 993748
Close 5 835 5 040 795

Table 5: Log inconsistency with expectation, bopener on 6120 files

13

It has not been possibile to catch any systematic error message to identify the prob-

lem; anyway, we received severaltimeout messagesfrom the libdcap library on some

bopenercommand line, while running on a WN.

We think that the failure is due to the small amount ofmoverson the dCache

servers1. We tried to increase the maximum number of movers, but the behaviour didn’t

get better: the Java threads overloaded each server (load > 10).

1.6 The replica manager of dCache

The replica manager is a module which can be startedon demand, and whose target is to

duplicate files and monitor the copies in the cache. It wakes up with a given customizable

frequency, so let’s say 10 minutes (which is the default). Every time it wakes up, the

replica manager counts the number of replicas for each file: if it is lower than the mini-

mum required (let’s say 2, which is the default), it schedules a new copy. In the same way,

if it is higher than the maximum required (let’s say 3, which is the default), it schedules a

removal.

The advantages are many. Theread accessgets better: if two clients read the same

file, then the admin node can forward the requests to different copies of the same file,

decreasing the overhead on a single pool (fig. 12).

Other (more) obvious advantages are: high fault tolerance and high availability. If

a pool experiences a “downtime” the replica manager orders,if needed, a new copy.

The tests shown here have the following targets:

• comparison between a dCache on 4 pool servers without replica manager, and

dCache with replica manager using 34 WN as pool nodes along the 4 servers;

• comparison using dCache on 4 pool servers, with or without replica manager, just

to verify if the replica manager introduces overhead.

1.6.1 Pools on worker nodes

As just said, we have configuredall the 34 WN as dCache pools, along the 4 disk servers;

each WN offers 40 GB of disk space. Doing so, we have added 34 WN* 40 GB/WN =

1.3 TB to the 45 TB on the 4 servers2.
1A moveris a Java thread which is responsible, on a pool node, of the I/O on a single file. A maximum

number of movers is assigned to each pool; over that limit, requests are forwarded to other pools, hoping
they have free movers available.

2Let’s underline this new way of using replica manager to recover unused disk space on grid worker
nodes!

14

POOL POOL POOL

Replicas of
the same file
on many pools

Figure 12: Multiple reads are forwarded to multiple replicas

POOL POOL POOL

the replica manager triggers a replica
because of the downtime of a pool

POOL

Figure 13: Automatic replication of files

We have started the replica manager: we have observed a perfectly redistribution of

the files on the new pools.

After having waited enough to be sure that any WN had registered itself on the

admin node, and that the replica manager had triggered all needed replicas, we have

started the test. Results are in fig. 14.

How can the rate be higher than “the possible one”? A suggestion follows:

15

Figure 14: Read dCache files with or withoutreplica manager

network access
(100MBit/s)

network access
(100MBit/s) local access!!!

>>100MBit/s

bopener
bopener

bopener
bopener

Figure 15: bopener reads replicas on the WN

1. a WN makes a request to the admin node to read a file;

2. the admin node chooses the best pool, among the pools containing that file (see 7.2

on “dCache, the Book”[3]);

3. the file is handled by the elected pool.

Due to the way in which the replica manager works, the replicas are never put on the

same pool. If a WN, being a client, opens a file shared by itself(as pool node), then the

16

cost value for that pool is the lowest! The biggest speed of that data transfer is NOT 100

Mbit/s (of the NIC), but much more, because it is alocal access.

1.6.2 Write test

We want to measure the overhead produces by the activation ofthe replica manager on

the 4 servers.

Figure 16: Replica manager - Write - Average time to open

So the result is thatactivating the replica manager doesn’t modify the average time

to open files(fig. 16); this time still remainsshorter than the GPFS average time to open

files(fig. 17). Neither the average time to write has been modified(fig. 18).

2 How to distribute administrative tasks on dCache

Let’s give an overview of a dCache installation with a spreaded admin node. We are going

to use five hosts, following the layout in table 6. The operating system installed on each

server is Scientific Linux Cern 3.

The “classic” dCacheadmin nodehas been distributed on three different hosts, mov-

ing away the PostgreSQL server and the PNFS server. Disk space has been allocated on

3 pools, each one offering about 23 GB.

17

Figure 17: Replica manager - Average time to open on write (cmp. to GPFS)

Figure 18: Replica manager - Write - Average time to “write”

18

Host IP Role Cert.
vgridba4.ba.infn.it 192.167.40.6 Admin node + Pool YES
vgridba6.ba.infn.it 192.167.40.8 PostgreSQL server NO

gridtutorial5.ba.infn.it 192.167.40.105 PNFS Server NO
vgridba3.ba.infn.it 192.167.40.5 Pool YES

gridtutorial6.ba.infn.it 192.167.40.106 Pool NO

Table 6: Layout of the dCache installation

Two of five servers have got host certificates, which allow authentication on typical

grid protocols throughauthenticated doors(GridFTP, GsiDCap, SRM).

Let’s give full details on how to deploy this kind of installation (see fig. 19).

POOL

PostgreSQL

PNFS

POOL

 Host

Certificate

POOL

 Host

Certificate

DATA

ADMIN

Figure 19: Distributed dCache admin node

2.1 Installation

First of all, we must download all needed RPMs. PostgreSQL can be downloaded from

its official site[1]. Then, we can install RPMs on our PostgreSQL host:

ls
postgresql-8.1.3-1PGDG.i686.rpm
postgresql-contrib-8.1.3-1PGDG.i686.rpm
postgresql-devel-8.1.3-1PGDG.i686.rpm
postgresql-docs-8.1.3-1PGDG.i686.rpm
postgresql-jdbc-8.1.3-1PGDG.i686.rpm

19

postgresql-libs-8.1.3-1PGDG.i686.rpm
postgresql-pl-8.1.3-1PGDG.i686.rpm
postgresql-python-8.1.3-1PGDG.i686.rpm
postgresql-server-8.1.3-1PGDG.i686.rpm
postgresql-tcl-8.1.3-1PGDG.i686.rpm
rpm -ivh *

Now, let’s download dCache 1.6.6-5 from it’s official site[2]. It is distributed in a

tarred “bundle”, which contains the RPMs:

ls
dcache-client-1.6.6-5.i386.rpm
dcache-server-1.6.6-5.i386.rpm
INSTALL
pnfs-gdbm-3.1.10-3.i386.rpm
pnfs-postgresql-3.1.10-3.i386.rpm

We have to install just the PNFS server on its host:

rpm -ivh pnfs-postgresql-3.1.10-3.i386.rpm

All hosts must have installed both dCache client and server:

rpm -ivh dcache-server-1.6.6-5.i386.rpm dcache-client-1.6.6-5.i386.rpm

After having installed dCache stuff on all the machines, let’s start with PostgreSQL

configuration. With the service stopped, modify/var/lib/pgsql/data/postgresql.conf

so that it listens to client requests (listen addresses must be‘*’, not‘localhost’):

listen addresses = ’*’

Besides,/var/lib/pgsql/data/pg hba.conf must be altered:

TYPE DATABASE USER CIDR-ADDRESS METHOD
local all all trust
host all all 127.0.0.1/32 trust
host all all ::1/128 trust
PNFS server
host all all 192.167.40.105/32 trust
Admin
host all all 192.167.40.6/32 trust
SRM door - Cert Pool
host all all 192.167.40.5/32 trust

Doing so, you are allowing only needed hosts to connect to PostgreSQL. Then, let’s

follow the Book[3] in creating DB stuff on PostgreSQL:

createuser -U postgres –no-superuser –no-createrole –createdb –pwprompt pnfsserver
createuser -U postgres –no-superuser –no-createrole –createdb –pwprompt srmdcache
createdb -U srmdcache dcache
createdb -U srmdcache companion
psql -U srmdcache companion -f /opt/d-cache/etc/psqlinstall companion.sql
createdb -U srmdcache replicas
psql -U srmdcache replicas -f /opt/d-cache/etc/psqlinstall replicas.sql
createdb -U srmdcache billing
/etc/init.d/postgresql start

20

We must tell the PNFS server that the PostgreSQL server is noton the local host. To

do so, we must modify some files. First of all, let’s open/opt/pnfs/etc/pnfs config

and add a new line:

PNFSPSQLHOST = vgridba6.ba.infn.it

This config file is generally called$PNFS CONFIG inside the installation scripts.

Then, modify/opt/pnfs/tools/autoinstall-s.sh, replacing this line:

export dbConnectString=”user=$PNFSPSQL USER”

with this one:

export dbConnectString=”host=$PNFSPSQL HOST user=$PNFSPSQLUSER”

and adding these following lines to match the new variablePNFS PSQL USER in

$PNFS CONFIG:

if cat $PNFSCONFIG — grep PNFSPSQLHOST ; then
PNFSPSQLHOST=‘cat $PNFSCONFIG — grep PNFSPSQLHOST — awk ’{print $3}’‘
else
PNFSPSQLHOST=”localhost”
fi

Finally, run these commands:

/opt/pnfs/install/pnfs-install.sh
/opt/pnfs/bin/pnfs start

dCache is based on Java[4]. You must install a JVM everywherebut the PostgreSQL

server:

rpm -ivh j2sdk-14 2 08-linux-i586.rpm

PostgreSQL is ready, but we still have to work on the configuration of the PNFS

server and the Admin node. The file/opt/d-cache/config/dCacheSetup has the same

content for all the machines. Let’s give a look just at the customized value:

serviceLocatorHost=vgridba4.ba.infn.it
java=”/usr/java/j2sdk1.4.208/bin/java ”
companionDatabaseHost=vgridba6.ba.infn.it
srmDatabaseHost=vgridba6.ba.infn.it
spaceManagerDatabaseHost=vgridba6.ba.infn.it
pinManagerDatabaseHost=vgridba6.ba.infn.it
replicaManagerDatabaseHost=vgridba6.ba.infn.it
billingDatabaseHost=vgridba6.ba.infn.it
defaultPnfsServer=gridtutorial5.ba.infn.it
billingToDb=yes
billingDatabaseHost=vgridba6.ba.infn.it

You can easily see that we have set the following common parameters:

• LocatorHost is the admin node;

21

• the JVM is located under our (eventually) customized path;

• the PostgreSQL server is different from the admin node: thisis set by the “*Database-

Host” variables;

• the PNFS server is a machine apart from the admin node and the PostgreSQL server.

We can leave defaults in/opt/d-cache/etc/node config, except for some global

parameters:

pnfsServer=gridtutorial5.ba.infn.it
ADMIN NODE=vgridba4.ba.infn.it

and some other parameters which is very host-peculiar (see table 7).

Admin PNFS server Pool (no-cert) Pool (cert)
NODE TYPE admin pool pool pool

GSIDCAP yes no no yes
GRIDFTP yes no no yes

SRM yes no no yes
replicaManager yes no no no
pnfsManager no yes no no

Table 7: Writing thenode config parameters

Another file to be configured on pools is/opt/d-cache/etc/pool path; in our

case, we configure it inserting just the following line, which adds 23 GB of free space

under/pool to the disk cache:

/pool 23 no

Now we must set access control on to the pnfs filesystem via mount points. This

can be done on the PNFS server, just following the Book ([3,§ 47̇]):

cd /pnfs/fs/admin/etc/exports
echo ”/pnfs /0/root/fs/usr 0 nooptions ”> 0.0.0.0..0.0.0.0
echo ”/pnfsdoors /0/root/fs/usr/ 0 nooptions”>> 0.0.0.0..0.0.0.0
echo ”/fs /0/root/fs 0 nooptions”>> 0.0.0.0..0.0.0.0

We have to install some LCG packages useful for authentication purposes both on

the admin node and on all those machines which must share an authenticated door. In our

case, we do it on the admin node and on the pool with an host certificate:

apt-get install ig-yaim
/opt/lcg/yaim/scripts/iginstall node ig-site-infonew.def SEdcache
/opt/lcg/yaim/scripts/igconfigurenode ig-site-infonew.def igSE dcache

The setup is complete. Now, what is the correct startup orderfor dCache services?

We follow these simple guidelines:

22

1. PostgreSQL (/etc/init.d/postgresql start), because several entities in dCache

use it both for data and administrative purposes;

2. PNFS server (/opt/pnfs/bin/pnfs start) on its host;

3. PNFS domain (/opt/d-cache/bin/dcache-core start), still on the PNFS server;

4. admin services (/opt/d-cache/bin/dcache-core start) on the admin node;

5. pnfsdoors mounting on all machines which serve GridFTP, GsiDCAP or SRM, with

the command:

mount -o intr,rw,noac,hard,nfsvers=2 gridtutorial5.ba.infn.it:/pnfsdoors /pnfs/ba.infn.it

followed by starting the related door services:

/opt/d-cache/bin/dcache-core start

6. pool services (/opt/d-cache/bin/dcache-pool start) on all machines which

give disk space.

You can access the dCache throughlibdcap, using the POSIX namespace “/pnfs...”,

just setting the environment variableDCACHE DOOR and mounting PNFS:

export DCACHEDOOR=vgridba4.ba.infn.it:22125
mount -o intr,rw,noac,hard,nfsvers=2 gridtutorial5.ba.infn.it:/fs /pnfs/fs

2.2 Different DBs for different VOs

By default, the PNFS server uses a single process and a singleDB to manage all names-

pace access to the dCache.

We are going to explain a procedure to create different databases associated to dif-

ferent VOs and different processes. The advantage of this configuration is that the requests

to the PNFS server load different processes, each one managing its own queue. Most of

these techniques are suggested in the Book ([3,§ 48̇]).

You can show databases managed by the PNFS server on its host,with:

/opt/pnfs/tools/mdb show

By default, you will see two DBs:

ID Name Type Status Path
———————————————-
0 admin r enabled (r) /opt/pnfsdb/pnfs/databases/admin
1 data1 r enabled (r) /opt/pnfsdb/pnfs/databases/data1

Let’s say you want to add a new DB for CMS. Prepare the environment:

23

. /usr/etc/pnfsSetup
export PATH=$pnfs/tools:$PATH

Then create a new database called “cms”3, and inform (update) PNFS about the

changes.

mdb create cms /opt/pnfsdb/pnfs/databases/cms
mdb update

We can usemdb show to see if a new DB has been added. A new line must appear:

ID Name Type Status Path
———————————————-
...
2 cms r enabled (r) /opt/pnfsdb/pnfs/databases/cms

Every database keeps its own ID, so the ID for the cms databaseis “2”. Now enter

/pnfs/fs/usr/data, we must set some parameter in PNFS by hand.

cd /pnfs/fs/usr/data
mkdir .(2)(cms)
cd cms
echo ”StoreName myStore”> ’.(tag)(OSMTemplate)’
echo ”STRING”> ’.(tag)(sGroup)’

Open/pnfs/fs/admin/etc/.(id)(config) and read it’s content. Let’s say it

contains “000000000000000000001F80”. Open also/usr/etc/pnfsSetup and read the

value ofshmkey; let’s say it’s “1122”. Remembering that the DB’s ID is “2”, you must

run the command:

/opt/pnfs/tools/sclient getroot 1122 2 000000000000000000001F80

It’s better to create an automatic procedure to create VOs. Write a text file contain-

ing the names of the VO you want to create:

cms
alice
atlas
lhcb
dteam

and save it with the name, let’s say, “vo-list”.

The following script, also available on the Storage Group Website[5], reads that file

and creates the corresponding VOs:

#—————————create-VO.sh——————————-
#!/bin/bash
VO LIST=vo-list # VO list
PNFSMOUNT=/pnfs # PNFS mountpoint
PNFSDIR=/opt/pnfs # PNFS admin stuff
$PNFSDIR/tools/mdb show
let ”COUNT = 1”

3Don’t use “tmp” as VO name, or you’ll get into trouble, because a directory called.()(tmp) is already
used by dCache for administrative operations.

24

for VO NAME in ‘cat $VO LIST‘ ; do
$PNFSDIR/tools/mdb create $VONAME /opt/pnfsdb/pnfs/databases/$VONAME &&
touch /opt/pnfsdb/pnfs/databases/$VONAME &&
$PNFSDIR/tools/mdb update && $PNFSDIR/tools/mdb show &&
cd $PNFSMOUNT/fs/usr/data/ &&
DBID=‘$PNFS DIR/tools/mdb show — grep $VONAME — awk ’print $1’‘ &&
mkdir ”.($DBID)($VO NAME)” &&
cd $VO NAME &&
echo ”StoreName myStore”> ’.(tag)(OSMTemplate)’ &&
echo ”STRING”> ’.(tag)(sGroup)’ &&
cat ’.(tags)(all)’ &&
IDCONFIG=‘cat ’/pnfs/fs/admin/etc/.(id)(config)’‘ &&
SHMKEY=‘cat /usr/etc/pnfsSetup — grep shmkey — awk -F = ’{print $2}’‘ &&
$PNFSDIR/tools/sclient getroot $SHMKEY $DBID $IDCONFIG
echo ”Done ($VONAME)”
let ”a+=1” ; done &&
$PNFSDIR/tools/mdb show
#—————————create-VO.sh——————————-

2.3 Read and write pools

Everytime dCache has to write some file, it chooses a file usinga “cost function”, as

explained in the Book.

A pool can serve 3 kinds of operations: read, write, cache:

• awrite pool can store data from the outside;

• a read or cachepool can provide data to the outside; in particular, acachepool

loads data from a tape library to its disk space to serve read requests, while aread

pool serves precious space itself.

So it is interesting, in our use case, to examinewrite andreadpools.

Per default, all pools are both read and write, but you can change this behaviour; so

let’s get an example of a pratical configuration.

Let’s say we’ve got 3 available pools: vgridba31, vgridba41, gridtutorial61; they

are located on three different host pools: vgridba3, vgridba4, gridtutorial6. Among these,

vgridba4 e vgridba3 come with host certificates.

We should create two groups into which to include, respectively, read and write

pools. Let’s call them, for example, “readgroup” and “writegroup”. We’re going to con-

figure vgridba3 and gridtutorial6 as read pools, and vgridba4 as a write pool, so that all

write operations will load the only write pool (vgridba4), and read operations will be

available only on the others.

Log into dCache admin node, using the SSH administration interface (or, if you

prefer, the dCache GUI[3]:

ssh -c blowfish -p 22223 -l admin vgridba4.ba.infn.it

25

Now let’s enter the PoolManager-cell and create the groups:

cd PoolManager-cell
psu create pgroup readgroup
psu create pgroup writegroup

and define the right associations (adding to the new groups and removing from the

default group):

psu addto pgroup readgroup vgridba31
psu addto pgroup readgroup gridtutorial61
psu addto pgroup writegroup vgridba41
psu removefrom pgroup default vgridba31
psu removefrom pgroup default vgridba41
psu removefrom pgroup default gridtutorial61

The following commands are suggested by the dCache Book[3] as the simplest

configuration you can do:

psu create unit -net 0.0.0.0/0.0.0.0
psu create ugroup allnet-cond
psu addto ugroup allnet-cond 0.0.0.0/0.0.0.0
psu create link read-link allnet-cond
psu set link read-link -readpref=10 -writepref=0 -cachepref=10
psu add link read-link readgroup
psu create link write-link allnet-cond
psu set link write-link -readpref=0 -writepref=10 -cachepref=0
psu add link write-link writegroup
save
reload -yes

Note “save and reload” at the end of the previous commands: they allow to make

dCache aware of modifications. Refer to chapter 7 of the dCache Book[3] for details on

the following commands.

If you try to use this configuration, you will see that:

• if you write a file on dCache, then the file will be always written on the write pool;

so all the files will be stored on that pool, which provides theso calledprecious

space;

• if you read a file from dCache, and that file is not already stored on any read pools,

then dCache will trigger a copy of that file to one of the two read pools, choosing it

on a cost-basis;

• if you try to read more than one file, you will see dCache load balancing on the two

read pools.

Anyway, if a copy of the requested file is already on one of the two read pools, then

it is unconditionally choosen; so if you read a bunch of ten files, for example, already

stored on the first read pool, then it will be overloaded even if the second one is free.

26

3 Tests on SRM interfaces

Nowadays, every grid storage element should provide all SRM1.1 features, together a

subset of SRM 2.1 features required by LHC experiments, paying particular attention to

CMS requirements.

Storage managers put through tests are dCache, DPM[11] and StoRM[9] (see ta-

ble 3).

SRM server Site Hostname
dCache 1.6.5 Bari pccms2.cmsfarm1.ba.infn.it
DPM 1.5.4 Bari pccms5.cmsfarm1.ba.infn.it

dCache 1.6.6 CNAF diskserv-san-28.cnaf.infn.it
StoRM 1.0.3 CNAF storm01.cr.cnaf.infn.it

Table 8: Installations used in SRM tests

In particular:

1. it seems to be no differences between dCache 1.6.5 and 1.6.6; both of them fully

support SRM 1 and have no support for SRM 2;

2. DPM 1.5.4 has been released officially with full support toSRM 1 and almost all

features belonging to SRM 2;

3. StoRM 1.0.3 has been design to provide only SRM 2 features,so no SRM 1 support

is given.

Thus dCache-StoRM interoperability will be impossible, until dCache releases SRM 2.

3.1 Available clients

Above all, the dCache client providessrmcp.

DPM provides twotest suitesinside DPM CVS, written by Jiri Kosina (for SRM 1)

and Gilbert Grosdidier (SRM 2). We will show how to use the DPMtest suites in a

semi-automatic way, organizing commands in a Bash script .

The StoRM client has been released with StoRM just for test purposes; when we

performed the tests we found it fairly incomplete.

The table 3.1 showsall SRM features that can be tested with some client. The last

column (“Priority”) shows how much each feature is wanted byLHC experiments.

We used the symbol “� ” to mean “used”, else we used “× ”.

27

Feature/Client SRM dCache DPM StoRM Priority
Get v1 � × × High
Put v1 � × × High

Copy v1 � × × High
getFileMetaData v1 � � × High
getRequestStatus v1 � × × High

getProtocols v1 × � × Norm
AdvisoryDelete v1 � � × High

Copy v2 × × � High
Ls v2 × � � High

Mkdir v2 × � � High
Rmdir v2 × � × High
Rm v2 × � × High
Mv v2 × � × High

Copy v2 × × � High
GetRequestSummary v2 × � � High

GetRequestID v2 × � � High
PrepareToGet v2 × � � High
PrepareToPut v2 × � � High
RemoveFiles v2 × � × High
ReleaseFiles v2 × � × High

Putdone v2 × � � High
ReserveSpace v2 × � � High
UpdateSpace v2 × � × High
ReleaseSpace v2 × � × High
AbortRequest v2 × � × High

SuspendRequest v2 × � × High
ResumeRequest v2 × � × High

ping N/A × � × ?

Table 9: SRM client: provided features

3.2 SRM tests

Table 3.2 describes SRM test results on dCache, DPM and StoRM, as concerns both SRM

versions:

• the symbol “� ” stands for “good result and draft compliance”;

• the symbol “× ” stands for “bad result”, or “not supported”, or no draft compliance;

28

• elsewhere we use “? ”, meaning that this tests have to be done in the future.

Section 3.3 and 3.4 shows further details.

Feature/Server SRM Client dCache DPM StoRM Priority
Get v1 dCache � � × High
Put v1 dCache � � × High

Copy v1 dCache � × × High
getFileMetaData v1 dCache � � × High
getRequestStatus v1 dCache � � × High

getProtocols v1 DPM × � × Norm
AdvisoryDelete v1 DPM � � × High

ping N/A DPM × � ? ?

PrepareToGet v2 DPM-StoRM × × × High
ReleaseFiles v2 DPM × ? ? High
RemoveFiles v2 DPM × × ? High
PrepareToPut v2 DPM-StoRM × × � High

PutDone v2 DPM × × ? High
Copy v2 DPM-StoRM × × × High

GetRequestSummary v2 DPM × � ? High
GetRequestID v2 DPM × � ? High
AbortRequest v2 DPM × � ? High

SuspendRequest v2 DPM × × ? High
ResumeRequest v2 DPM × × ? High

Ls v2 DPM × × ? High
Mkdir v2 DPM × � ? High
Rmdir v2 DPM × � ? High

Rm v2 DPM × � ? High
Mv v2 DPM × � ? High

ReserveSpace v2 DPM × × × High
UpdateSpace v2 DPM × × ? High
ReleaseSpace v2 DPM × × ? High
SetPermission v2 DPM × � ? High

CheckPermission v2 DPM × � ? High

Table 10: SRM test results

3.3 SRM 1 tests

This sections show the tests on dCache and DPM. Both of them provide SRM 1; StoRM

doesn’t, so it’s not here.

29

Anyway, SRM 1 functions already implemented seem to be more than enough to

experiment needs.

All tests are made through the dCache client, except forgetProtocols (for which

the DPM test suite is useful).

As you can see in table 3.2 (page 29):

• both dCache and DPM provideGet, Put, getFileMetaData, getRequestStatus, Ad-

visoryDelete;

• dCache doesn’t providegetProtocols, while DPM does; this is not a problem, be-

cause supported protocols can be queried to theinformation system;

• DPM is still lacking in “Copy”, so it cannot handlethird-party transfersyet.

• thePingmethod is not mentioned in any SRM draft, but it’s officially supported by

(and only by) DPM; it’s useful to check if SRM 1 daemon is alive.

3.4 SRM 2 tests

SRM 2 tests have been made on DPM e StoRM, while dCache officially doesn’t provide

SRM 2.

Referring to 2.1 [7], SRM functions can be classified as follows:

Data Transfer Functions Generally speaking, these functions don’t actually move data,

but preparethe SRM for data access. The only exception is “Copy”, which really

moves data from SRM to SRM. In SRM 2, each function returns an error/status

message for each managed file.

Drafts classify under this particular class also some functions belonging tostatus

retrieval, abort, suspend and resume.

Space ManagementIn SRM 1.1, space reservation is made on a file basis; this means

that a transfer request belonging to more than one file could fail, because the user/client

cannot pre-allocate space forall files in the request.

In SRM 2.1, a system administrator is able to reserve spacea priori, with a specific

lifetime. The user request returns atoken, to be send afterwards together with Pre-

pareToGet/PrepareToPut. If disk space runs out, then all subsequent requests fail

with the message “No user space”.

PrepareToPut performs an (implicit space reservation. SRM 2 provides alsoglobal

space reservation: you allocate a so calledcontainer, identified by a token; after-

wards, you will decide how many and which files to store. Global space reservation

30

has its own methods: (ReserveSpace, ReleaseSpace, UpdateSpace, CompactSpace,

GetSpaceMetadata, ChangeFileStorageType, GetSpaceToken).

Directory Functions Posix-style functions to create/remove directories, delete files, re-

name files and directories.

Permission Functions SRM 2.1 provides permissions on files and directories with Ac-

cess Control Lists.

3.4.1 Data management functions

PrepareToGetprepares a file for transfer; in particular, it is sent to an SRM to pin (im-

plicit pinning) a file until transfer ends up. The file transfer must be made subsequently.

After the file transfer, you must call ReleaseFiles or RemoveFiles.

× DPM PrepareToGetdoesn’t pin the file. Let’s use, for example, RFIO:

./srm2testGet rfio cheneso\

srm://pccms5.cmsfarm1.ba.infn.it:8444/dpm/cmsfarm1.ba.infn.it/home/cms/bigfile

the server returns both the TURL and the token to be used on thesubsequent re-

quest:

soapcall ns1 srmPrepareToGet returned rtoken 2709cdd2-28a0-4296-9006-40e4f8a82873

TURL = rfio://pccms5.cmsfarm1.ba.infn.it//storage2/cms/2006-01-28/bigfile.72.0

Using GridFTP, the server replies correctly:

./srm2testGet gsiftp cheneso\

srm://pccms5.cmsfarm1.ba.infn.it:8444/dpm/cmsfarm1.ba.infn.it/home/cms/bigfile

soapcall ns1 srmPrepareToGet returned rtoken 389aea10-9c07-4937-bd8e-7fe0e6245ac4

TURL =

gsiftp://pccms5.cmsfarm1.ba.infn.it/pccms5.cmsfarm1.ba.infn.it:/storage2/[...]/bigfile.72.0

A globus-url-copyworks fine:

globus-url-copy\

gsiftp://pccms5.cmsfarm1.ba.infn.it/pccms5.cmsfarm1.ba.infn.it:/storage2/[...]/bigfile.72.0\

file:///home/enzo/globbo

But if you try to remove the filewhile a transfer is running, then you will succeed.

In particular,it is possibile to remove a pinned file through srm2testRm, which is

an SRM 2 client. We think it should’n happen.

31

× StoRM So does StoRM, pinning doesn’t work.srmRm was not available on

StoRM, so we used a GridFTP client (edg-gridftp-rm) to do the removal.

As StoRM developers suggested, the pin concept exists only inside StoRM appli-

cation: for example, the garbage collector inside StoRM understands when a file

is pinned, and doesn’t remove it until lifetime expires. On the contrary, pinning

cannot be exported “outside StoRM”, because it should be supported at file system

level (GPFS/Lustre) as a lock function.

ReleaseFilesreleases (unpin) pinned files.

? DPM We can’t test it, because we cannot pin files (see 3.4.1).

RemoveFilesreleases(unpin)and removes previously pinned files.

× DPM RemoveFiles is not supported by DPM 1.5.44

PrepareToPut It performs implicit space reservation on a file or a group of files.

The client calls PrepareToPut, sending auser token, the lifetime (in seconds), the

type(volatile, durable, permanent) and, most important, thefilesize.

PrepareToPut returns a request token and the TURL assigned to the file.

At the end of the transfer, the client callsPutDoneto tell the server about comple-

tion.

× DPM Files can be removed while transferring, just like happenedin PrepareTo-

Get. SRM standards don’t want it:

“srmPutDone() is expected after each file is put into the allocated space.

The lifetime of the file starts as soon as SRM get the srmPutDone(). If

srmPutDone() is not provided then the files in that space are subject to

removal when the space lifetime expires.”[13]

PutDonereleases (unpin) files after PrepareToPut.

? DPM We cannot test it until pinning works.

Another fact is thatDPM doesn’t perform any control about filesize, so it can exceed

the size declared in the previous PrepareToPut. This allocates a 1000 byte file:

./srm2testPut ba12 1 0 srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/oversize 100 0 1000

4The function returns “error 16”[12] which stands for SRMNOT SUPPORTED.

32

returned rtoken b27fdc21-46b6-4672-b97b-031b4a23ba28

After the srmStatusOfPutRequest Call ...

state[0] = 23, TURL = gsiftp://pccms5.cmsfarm1.ba.infn.it/pccms5.cmsfarm1.ba.infn.it:/[...]/oversize.661.0

Now we are able to store a 200MB file through gsiftp, and then todo PutDone

(which returns SRMSUCCESS):

./srm2testPutDone b27fdc21-46b6-4672-b97b-031b4a23ba28\

srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/oversize

request state 0

SURL = srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/oversize

However, the standards are not clear about this point. Anyway, quoting the devel-

opers of DPM:

“PrepareToPut does not implement an hard limit on filesize. This has

been discussed in SRM Collaboration meetings and probably all devel-

oppers also implement a soft limit.”

ExtendFileLifeTime extends the lifetime of a pinned file.

� DPM ExtendFileLifeTime seems to work. Anyway, we will confirm this test in

the future.

GetRequestSummaryreturns a detailed report on a request.

� DPM After a PrepareToPut, GetRequestSummary returns:

Finished files: 1

Processing files: 0

Number of files: 1

Type of req: PrepareToPut

Request token: 7f6950f6-a0d7-40c6-9f73-09455059a4f8

and exits with code 0.

GetRequestID returns therequest tokensassociated by the server to a particular

user.

� DPM We sent some requests associated to the same user token; thenwe launched

GetRequestID, verifying that it works as expected.

AbortRequest stops/aborts a queued/running request.

33

� DPM DPM developers said:

“AbortRequest is partially implemented: you may abort a request in the

queue, but you cannot abort a filerequest being processed.”

We have written a “crash test”, which consists in a PrepareToPut iteration, in which

each PrepareToPut allocates 1GB, until allocating all available disk space. Then the

server has rejected subsequent requests.

AbortRequest has permitted to disallocate all PrepareToPut allocations. However,

we noticed that if you don’t call AbortRequest then the spaceremains allocated

over its lifetime.

SuspendRequest/ResumeRequestSuspend/Resume a request.

× DPM Quoting DPM developers:

“For the moment we have no plan to implement Suspend/Resume.”

Copy Performs SRM-SRM transfers.

× DPM DPM developers are currently working on both versions of Copy (1.1 and

2.1).

× StoRM Copy has been tested on StoRM with its own client, showing a problem

related to the mode StoRM GridFTP server uses to code files; that mode must be

changed fromASCII modeto binary mode.

Developers said they would change that behaviour as soon as possible.

3.4.2 Directory functions

Ls performs directory listing.Recursive listingis useful, even if it is very expensive.

× DPM The output of Ls is not a directory listing but a metadata report on that

directory:

./srm2testLs -l srm://pccms5.cmsfarm1.ba.infn.it:8444/dpm/cmsfarm1.ba.infn.it/home/cms

request state 0

request state 0 1

Stat: 0

Path: /dpm/cmsfarm1.ba.infn.it/home/cms

Size: 0

34

Type: 1

OwnR: root

Crea: 2006-01-26T22:47:12Z

Last: 2006-01-26T22:47:12Z

OwnP: 7

OthP: 5

GrpP: 1 cms:7

Mkdir, Rmdir, Rm, Mv let you create and remove (empty) directories, remove

files, move directories and files.

� DPM All these functions work as expected.

3.4.3 Space reservation

ReserveSpace, ReleaseSpace, UpdateSpaceglobally reserve/release/update space on

the SRM, through allocating a (container) and returningspace token.

× DPM As stated by developers:

“Global space reservation will come during the spring. At the workshop

in Mumbai[15], the priority assigned to this item was relatively low.”

They are work in progress; anyway, we have verified a partial implementation of a

metadata management.

srm2 testReserveSpacecan be used as follows to allocate 2 GB ofvolatile (“0”)

disk space, for 10000 seconds (lifetime), identified by the token “blabla”.

So sizes must be written in byte, lifetime in seconds; the last parameter (typeOfS-

pace) is a flag: if set, it meansdurable=permanent, elsevolatile. See these infor-

mation directly in the C sources.

./srm2testReserveSpace srm://pccms5.cmsfarm1.ba.infn.it:8444 blabla info 2000000000 2000000000 10000 0

request state 0

soapcall ns1 srmReserveSpace returned

s token: 361f2155-6a59-4c04-bb0c-e143b4dd705f

srmReserveSpace provided

actuals type: 0

actual t space: 2000000000

actualg space: 2000000000

actual lifetime: 10000

Space reservation metadata have been written in the DPM database, but this is the

only reservation operation made by DPM belonging to reservation.

35

× StoRM ReserveSpace belonging to the StoRM client can reserve up to2GB,

which is the biggest value that can be represented by the integer type in XML-

RPC[14]; to exceed 2GB, you must do more than one request.

Besides, the garbage collector doesn’t care about lifetimeexpiration. Developers

told us that the garbage collector just works (up to now) on implicitely reserved

space (PrepareToPut).

3.4.4 Permission functions

SetPermission/CheckPermissionlets you set/get Posix-style permissions on files and

directories.

� DPM SetPermission and CheckPermission work:

./srm2testSetPermission 2 4 4 srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/bigfile\

1 - gridit 4

request state 0

./srm2testCheckPermission srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/bigfile

request state 0

state[0] = 0, Perm = R, SURL = srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/bigfile

./srm2testSetPermission 2 6 6 srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/bigfile\

1 - gridit 4

request state 0

./srm2testCheckPermission srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/bigfile

request state 0

state[0] = 0, Perm = RW, SURL = srm://pccms5.cmsfarm1.ba.infn.it:8444//dpm/cmsfarm1.ba.infn.it/home/gridit/bigfile

3.4.5 SRM-SRM interoperability with Copy

As you see in table 3.2:

• dCache provides SRM 1 Copy;

• Storm provides SRM 2 Copy;

• DPM provides no Cpoy.

In SRM-SRM transfer,at least one of the two SRMs must provide the Copy support;

that SRM will be the server side of the connection; thus, all transfers from an SRM to itself

are possible just if that SRM provides Copy. dCache and StoRMcan do that, while DPM

doesn’t: it can be client of dCache or StoRM.

Doing some transfer through dCachesrmcp, we used the“push mode” option to

perform asrmCopyBySourceinstead ofsrmCopyByTarget. Infact transfers from dCache

36

to DPM will work fine if you specify-pushmode=true: in this way the request can be

forwarded to dCache (source). If you leave“pull mode” (default), then the request is

forwarded to DPM (target) which is not able to manage it.

target
dCache DPM StoRM

dCache � � ×
source DPM � × ?

StoRM × ? ?

Table 11: Interoperability with SRM Copy

Let’s summarize the situation of interoperability, concerning Copy in in table 11, in

which:

• the symbol� tells us that Copy is possible;

• the symbol× tells us that Copy is not possible;

• the symbol ? means “tests not performed”.

StoRM-StoRM transfers have not been possible, due to logistical troubles in in-

stalling a second instance of StoRM. However, a StoRM-StoRMCopy using a single

instance of StoRM both as source and target, but it doesn’t work.

3.5 Semiautomatic SRM test script

We wrote down a script calledsatest2.sh, and used it on DPM 1.5.4 (and previous ver-

sions). This script wraps SRM client, mainly the DPM test suites, testing the “macro-

scopic” behaviour of the storage manager in certain circumstances: this includes pinning,

space reservation constraints, mo more free space left on disk pools etc.

You can configure it by few parameters, and performs these tests:

put PrepareToPut of a 200MB file, and then itsglobus-url-copyand PutDone;

get PrepareToGet of a 200MB file, and then itsglobus-url-copyand ReleaseFiles;

rmonput/rmonget as above, but making an attempt to remove the file while the transfer

is in progress; this testsimplicit pinning;

putoversize performs a globus-url-copy of a 200MB file, but preallocating just 300 bytes,

to verify if there is any control on filesize by the SRM;

37

putoverspace is acrash test: it repeatedly executes PrepareToPutuntil free space runs

out; this verify if the SRM is notified about saturation;

dirs tests on Mkdir, Rmdir, Mv, Rm, Ls through a 3-level tree with files and directories.

All tests above are based on the tools listed in table 12.

Test name Function
get PrepareToGet, GetRequestID, GetRequestSummary,

ReleaseFiles, RemoveFiles
rmonget PrepareToGet, GetRequestID, GetRequestSummary,

ReleaseFiles, RemoveFiles, Rm
put PrepareToPut, GetRequestID,

GetRequestSummary, PutDone
rmonput PrepareToPut, GetRequestID,

GetRequestSummary, PutDone, Rm
putoversize PrepareToPut, GetRequestSummary, PutDone

putoverspace PrepareToPut, AbortRequest
dirs PrepareToPut, PutDone, Ls, Mkdir, Rmdir, Mv, Rm

Table 12: List of functions tested throughsatest2.sh

By default, the script stops on all errors.

To use the script, you must run it once in an empty directory, so it create aconfigu-

ration template(CONFIG), which must be customized. Then you should run it again to

let it download, build and install the DPM test suites. If it builds successfully, then you

can run it and choose the test to execute.

The scriptsatest2.shis available on the Storage Group Website[5].

4 Conclusions

At the moment, no storage manager seems to satisfy completely the experiments’ needs

as far as SRM is concerned. In particular,there is no SRM server compatible with both

versions of SRM. We must wait for dCache to release its SRM 2 interface, and DPM to

complete and correct its own implementation of SRM 2. StoRM risks not to be used in

production as long as SRM 1 is required together with new SRM 2functions.

All the result reported in this note is updated on January 2006. All the software

tested is now released in a newer version, with more functionalities added, and we hope

to publish soon a newer note in order to evaluate this improvement.

As far as performances are concerned, we tested dCache and GPFS, verifying that:

38

• dCache spends less than a second in opening files, sustaininga rate of about250MB/s

both while reading and writing;

• GPFS is a little faster in reading files, butit gradually collapses while opening for

writing and writing itself.

Besides,the use of the replica manager in dCache can dramatically improve per-

formances if you configure your grid worker nodes as dCache pools: it happens

that a job performs its file accesses on the worker node he runson.

During the “SC4 / pilot WLCG Service Workshop”[15], which had place in Febru-

ary 2006 at Mumbai, many developers discussed about the common direction to

follow about storage manager implementations.

5 Acknowledgements

The test production has been possible with the needful contribution of CNAF and INFN

Storage Group. Here is the complete list of authors:

• V. Vagnoni and D. Bonacorsi (INFN Bologna);

• L. Dell’Agnello, G. Lore, L. Magnoni, B. Martelli, P.P. Ricci, V. Sapunenko and R.

Zappi (INFN-CNAF).

References

[1] “PostgreSQL: The world’s most advanced open source database”,

http://www.postgresql.org/

[2] “dCache.ORG”,

http://www.dcache.org/

[3] “dCache, the Book”,

http://www.dcache.org/manuals/Book/

[4] “Java technology”,

http://java.sun.com/

[5] INFN - Storage Group Web Site,

http://grid.ct.infn.it/swiki

[6] “Scientific Linux CERN 3”,

http://linux.web.cern.ch/linux/scientific3/

39

[7] “SRM Working Group”,

http://sdm.lbl.gov/srm-wg/

[8] “IBM General Parallel File System”,

http://www-03.ibm.com/servers/eserver/clusters/software/gpfs.html

[9] “StoRM”,

http://grid-it.cnaf.infn.it/storm/

[10] “Iperf - Network performance tester”,

http://dast.nlanr.net/Projects/Iperf/

[11] “LCG Disk Pool Manager (DPM) Administrator Guide”,

https://uimon.cern.ch/twiki/bin/view/LCG/DpmAdminGuide

[12] “SRM 2.1 Status Codes”,

http://sdm.lbl.gov/srm-wg/doc/SRM.StatusCode.v2.1.Expl.pdf

[13] “srmPrepareToPut”,

http://sdm.lbl.gov/srm-wg/doc/SRM.spec.v2.1.1.html#srmPrepareToPut

[14] “XML-RPC Specification”,

http://www.xmlrpc.com/spec

[15] “Conclusions from SC4 workshop - Data management”,

http://agenda.cern.ch/askArchive.php?base=agenda&categ=a056461&id=a056461/document

40

