

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

FCC - Detectors

lacopo Vivarelli Università di Bologna

6/7 May 2024 - L'INFN e la Strategia Europea per la Fisica Delle Particelle

These projects have received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreements No. 101004761 (AIDAinnova), 101057511 (EURO-LABS).

Istituto Nazionale di Fisica Nucleare

The physics we have

• The take-home message from the LHC so far: this universe is very SM-like.

I. Vivarelli - INFN e la HEP strategy - 6-7 May 2024

No significant deviation from SM with 140 fb⁻¹ of pp collisions (not promising for BSM at HL-LHC)

The physics we need

Original idea/slide from C. Grojean

FCC-ee in pills

	Z pole	WW pole	ZH pole	
Beam energy (GeV)	45.6	80	120	
Beam current (mA)	1270	137	26.7	
Number of bunches	11200	1780	440	
Luminosity (per IP - 10 ³⁴ cm ⁻² s ⁻¹)	140	20	5	
Integrated luminosity (per IP - ab ⁻¹ /year)	17	2.4	0.6	
Planned running time (years)	4	2	3	

Which translates in

 2×10^{6} H unprecedented at $e^{+}e^{-}$

The physics we need

- The whole physics programme (not just the "Higgs factory") makes the difference
 - $\sin^2 \theta_W^{\text{eff}}$, mainly from $A_{\text{FR}}^{\mu\mu}$.
 - m_W and width to o(1 MeV).
 - m_{top} and width at o(10 50 MeV).
 - Auxiliary measurements ($\alpha_{
 m OED}(m_Z^2)$, Z boson mass and width, $\alpha_s^2(m_z^2)$).
 - Model-independent Γ_H , Higgs couplings and Higgs to invisible.
 - BSM models (ALPs, dark photon, light dark matter,). ullet

I. Vivarelli - INFN e la HEP strategy - 6-7 May 2024

A little bit of advertisement

I. Vivarelli - INFN e la HEP strategy - 6-7 May 2024

Essential for precision measurements

The physics case drivers

- Higgs boson tagging and BR into invisibles sets requirements on:
 - Tracking performance
 - Material in the tracking volume.
 - Magnetic field (and thickness of solenoid).
- Higgs boson BR sets requirements on e, γ and jet energy and angular resolutions.
- Tagging $H \rightarrow bb, c\bar{c}(s\bar{s}?)$ sets requirements on tracking and vertexing.
- ...and in general requirements grow as more and more physics is explored.

	Critical detector	Requirement	Comments
$ZH \to \ell^+ \ell^- X$	Tracker	$\frac{\sigma(p_{\rm T})}{p_{\rm T}^2} \sim \frac{0.1 \%}{p_{\rm T}} \oplus 2 \cdot 10^{-5}$	But also precision EW, flavour, BSM
$H \rightarrow b\bar{b}, c\bar{c}$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 15(p\sin\theta^{\frac{3}{2}})^{-1}[\mu m]$	Additional case study: $B \rightarrow K^* \tau \tau$
$H \rightarrow gg, q\bar{q}, VV$	ECAL, HCAL	$\frac{\sigma(E_{\text{jet}})}{E_{\text{jet}}} \sim 4\% \text{ (at } E_{\text{jet}} \sim 50 \text{ GeV)}$	Also BSM and missing energy reconstruction
$H o \gamma \gamma$	ECAL	$\frac{\sigma(E_{\gamma})}{E_{\gamma}} \sim \frac{10 - 15\%}{\sqrt{E_{\gamma}}}$	But flavour physics may need better EM energy resolution

Benchmark physics channels for Higgs/Top/EW factories discussed in 2401.07564 will improve detector requirements by spring 2025

FCC detectors

<u>CLD (CLIC-like Detector)</u>

2 T solenoid outside calo Full silicon tracker SiW high-granularity EM Calo Sci-steel high-granularity HAD Calo **RPC-based Muon detector**

2 T solenoid outside calo Tracking with ultra light drift chamber + Si Wrapper (improved tracking + timing) LAr EM Cało + Sci-steel HAD Calo

- Beam crossing angle + need to keep vertical beam emittance low \Rightarrow **B field limited to 2 T** lacksquare
- They should be taken as **frameworks/benchmarks** a lot of room for (even radical) changes. lacksquare
 - These concepts show already different approaches to tracking/calorimetry.

IDEA (Innovative Detector for e+e-Accelerators)

sciencid within calo Vertex detector g with ultra light drift chamber Readout Calorimeter + pre-shower D (µRwell) based Muon detector

Not discussed further in this talk

Vertex detectors

General requirements

Flavour physics and tagging requires 3-5 μ m \rightarrow pixel size ~15 μ m. Small material budget (0.1% of X_0 /layer) \rightarrow Thickness ~ 50 μ m. Low power consumption (especially inner layers) \rightarrow 10-30 mW/cm².

Solution: CMOS MAPS

high spacial resolution and **small material** (integrated circuitery)

- Used in a number of LHC experiment upgrades (ALICE ITS, ATLAS ITK, etc.)
- No need for bump-bonding: allow smaller pixel size
- Affordable overall

Bent silicon sensors (ALICE ITS3 R&D)

The IDEA design (see G. Gaudio's talk)

All-silicon tracking - the CLD approach

VTX:

- Pixel size $25x25 \mu m^2$ 50 μm sensor thickness aiming at 3 μm resolution.
- Material and cooling benchmarked on ALICE ITS (LS2) upgrade design.
- Power dissipation: 40 mW/cm² water cooled.

ID:

- Single point resolution 7x90 μm² 5x5 μm² in 1st layer.
- Inner tracker: Barrel 3 layers, end-cap 7 discs.
- Outer tracker: Barrel 3 layers, end-cap 4 discs.

11

Light-weight tracking

ALLEGRO: VTX similar to CLD

- Tracking with **drift chamber** (As in IDEA similar in concept to MEG II chamber).
- Minimising multiple scattering, adding only 2% X₀ to material in front of calorimeter.
- Drift time o(300 ns).
- Cluster counting (12.5 cm⁻¹ clusters) **improves spacial resolution and dE/dx** measurement.
- Single point precision (with cluster counting) better than ~ 100 µm. Many points on each track.

Challenges

- Full silicon tracking:
 - **Keep material down**, despite cooling and services
 - Particle identification may need alternative detectors (RICH?) lacksquare
- Drift chamber:
 - Mechanical stability, cluster-counting compatible electronics \bullet

Detector occupancy driven by incoherent pair creation and synchrotron radiation photons. Estimated < 1% for full silicon detectors. It is almost a no-go for a TPC (see <u>here</u>) OK (but need to keep an eye on) for DWC.

Particle-flow oriented calorimeters

- Basic idea: for charged particles, measure their contribution to jets by using tracker rather than calorimeter.
- Requirements: High granularity compactness (small Moliere radius).
- Drawbacks: confusion term (when the calorimeter subtraction goes wrong - produces tails in jet energy distributions).
- Studied in detail for linear colliders.

SiW ECAL

Active area: silicon PiN Diodes Typical segmentation: 0.5x0.5 cm²

Analogue Scintillator HCAL and ECAL

Scintillator tiles/strips + SiPM Typical segmentation: 3x3cm²

Gas RPCs Typical segmentation: 1x1cm²

Semi Digital HCAL

Challenges:

- Cooling despite challenging environment (no power pulsing possible)
- Timing for particle flow?
- Al-boosted particle flow?

Calorimeters (CLD)

of the energy measurement)

CLD paradigm: calorimeter optimised for particle flow (emphasis on granularity rather than quality

I. Vivarelli - INFN e la HEP strategy - 6-7 May 2024

Calorimeters (ALLEGRO)

EM Calorimeter:

- Noble liquid calorimeters: good energy resolution, long-term stability, easy to calibrate.
 - Ideas to achieve high granularity targeting particle flow.
- Solution heavily inspired to ATLAS: LAr + copper but different geometry.

Hadronic section with an increased granularity scintillator tile + steel (a la TileCal).

Example optimisation of material

Calorimeters (other ongoing R&Ds)

GRAiNITA

scintillator grains and absorber suspended in a liquid. Trapped light extracted with WLS fibres - high density EM calorimeter.

A crystal calorimeter for FCC-ee?

Traditionally achieve superb EM resolution but limited granularity.

Recent R&D shows potential for particle flow.

DECAL - Ultra-high granularity CMOS Ecal High-density digital CMOS readout - count hits rather than measuring energy

Crystal fibers for high granularity

Synergies: Consortia and ECFA DRD

- A lot of leverage done in the past within consortia and proto-collaborations.
- Challenges connected with detector R&D find a common framework (aimed at increasing coherence and optimising resources) with ECFA DRD.
- **INFN** positioning for many of these items is strategic.

Synergies: Common tools

Nice sub-products of these collaborations already widely used

Key4HEP

A common software framework used for FCC, but also for many of the other future collider projects. Includes a common event data model, tools for easy and portable detector geometry handling, a consistent set of tags of **the most used HEP softwares**.

EUDAQ

A common data acquisition software, often used in conjunction with **common hardware** for beam monitor (EUDET), and data quality tools

	eudad kun Concro	l 1.9.1+1~gacae464			CO C EUDA	Q Online-Mor	litor 1.9.1+1~	gacae464		
State: Cur Control	rent Sta	te: Runn	ing		MIMOSA26	ප් 🚺 <u>1</u> 🛓	10-	Hits vs Eve	ent Hits Entr Mea	ies 5 n 26
Init:	/opt/eudaq1/conf/	telescope.init	Load	Init	Correlations Vs Tin	ne	-		Mea	ny 4.1
Config:	/opt/eudaq1/conf/	telescope.conf	Load	Config	EUDAQ Monitor	ue -	8-1		Std	Devy 2
Run:			Start	Stop	Windowski Number of Pla	nes				
Log:			Log		Hits vs. Event	• Ciamo				
GeoID:	0		Terminate		Eventiv vs Tim 	estamp	6			
File Byte TLU Stat Connecti type DataCol	es: 1169 kB tus: 00,,,, ions	Particle , (0,1) Scalers state Running	es: 5242 connection 192 168 22 1-8	53018			2			
LogColl Monitor Produce Produce	lector r OnlineMo er TLU er MimosaNI	Running n Running Running: Starte Running: Starte	192.168.22.1: 192.168.22.1: d 192.168.22.1: d 192.168.22.1:	53012 53034 53028 53022				1000 2000 3000 4000	5000 6000	7000
LogColl Monitor Produce Produce	lector r OnlineMo er TLU er MimosaNI	Running n Running Running: Starte Running: Starte	192.168.22.1: 192.168.22.1: d 192.168.22.1: d 192.168.22.1: d 192.168.22.1:	53012 53034 53028 53022	Starting run	run: 1	00 ¹¹	1000 2000 3000 4000 Curr. event: 5190	Analysed events: \$	7000
LogColl Monitor Produce Produce	lector r OnlineMo er TLU er MimosaNI EUDAQ Log Collec From:	Running n Running Running: Starte Running: Starte	192.168.22.1: 192.168.22.1: d 192.168.22.1: d 192.168.22.1:	53012 53034 53028 53022	Starting run	run: 1	00 ¹¹¹¹	1000 2000 3000 4000	Analysed events: \$	20
LogColl Monitor Produce Produce Level: 4-INFO	lector r OnlineMo er TLU er MimosaNI EUDAQ Log Collec From: ¢ All	Running n Running: Starte Running: Starte Running: Starte	192.168.22.1: 192.168.22.1: d 192.168.22.1: d 192.168.22.1:	53012 53034 53028 53022	Starting run	run: 1	o	1000 2000 3000 4000	Analysed events: 5	20
LogColl Monitor Produce Produce Level: 4-INFO Receive	lector r OnlineMo er TLU er MimosaNI EUDAQ Log Coller From: C All d Sent	Running Running: Starte Running: Starte Running: Starte	192.168.22.1: 192.168.22.1: d 192.168.22.1: d 192.168.22.1:	53012 53034 53028 53022	Starting run	run: 1	File	1000 2000 3000 4000 Curr. event: 5190	Analysed events: \$	20

19

So... is everything done already?

- Indeed, a lot of work done, but way more ahead ullet
 - Detector concepts are **nice frameworks** fresh ideas and redesign are **more than welcome**. ullet
 - ... and we have 3 detector concepts and 4 IPs....
 - **New technologies** (timing for optimal particle flow? UV/digital light sensors for crystals/fibres?). \bullet
 - **Software is in development** (starting from detector simulations) better software means more opportunities for improved physics requirements.
 - Etc..
- 'Detector communities" fairly compact (o(20) people) a lot of room for new collaborators).
 - Opportunities for **younger colleagues**:
 - Doing "core" HEP detector/software work after highly optimised LHC detectors. \bullet

Talks and proceedings - - N_{talks}

 $\frac{N_{contributors}}{N_{contributors}} \sim 1$ (maybe while spending the majority of their time on a major LHC experiment).

Summary

- Work for the definition of the detectors for FCC-ee in full swing.
- A game of ideas (already at play):
 - Full-silicon or ultra-low material tracking? Calorimeter with high granularity or high energy resolution?
- International collaboration in detector R&D being shaped by ECFA DRD initiative.
 - INFN strategically placed in many of the key R&Ds.
- It is a long time to FCC-ee
 - ...but a **big push is happening now**! Feasibility study + European Strategy update key ingredients for council approval.
 - Some very important signals at international level (including P5 endorsement and signing of Sol from US).

