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R I A S S U N T O

Il cosiddetto proton radius puzzle è uno dei tanti problemi aperti nel pano-
rama della fisica moderna. Il fatto che il protone potesse avere una struttura
interna era già stato ipotizzato negli anni Trenta, quando le prime misure del
momento magnetico del protone diedero risultati totalmente incompatibili con
la previsione di Dirac. La prova definitiva del fatto che il protone non fosse una
particella puntiforme dovette attendere lo sviluppo dei primi acceleratori di par-
ticelle: seguendo il percorso già tracciato da Rutherford, lo scattering elastico
di elettroni di alta energia venne utilizzato da Hofstadter e collaboratori per
indagare la struttura elettromagnetica del protone. Le deviazioni dalla sezione
d’urto calcolata per una particella puntiforme furono tali da estrarre un valore
del raggio quadratico medio della distribuzione di carica del protone dell’ordine
di 1 fm.

Per molti anni lo scattering elastico di elettroni su nuclei di idrogeno è stato
l’unico metodo per indagare la struttura del protone. Negli anni Novanta la sen-
sibilità degli esperimenti di spettroscopia atomica divenne tale da rendere os-
servabili gli effetti della dimensione finita del protone sul Lamb shift dell’atomo
di idrogeno. Il Lamb shift è la somma di tutti i contributi allo spettro ener-
getico dell’atomo che non sono compresi nella descrizione della struttura fine
e iperfine; tipicamente il contributo maggiore al Lamb shift è dovuto a cor-
rezioni di vertice o a loop calcolabili con una trattazione puramente quantistica
dell’interazione elettromagnetica, mentre l’effetto del raggio finito del protone
è piuttosto ridotto ma comunque misurabile. Le misure di spettroscopia ato-
mica diedero risultati compatibili con quelli ottenuti attraverso gli esperimenti
di scattering elastico, contribuendo ad aumentare la precisione del valore del
raggio del protone.

Nel 2001 venne proposto un nuovo metodo per la stima del raggio del protone
basato sulla misura del Lamb shift nell’idrogeno muonico, ovvero nel sistema
legato formato da un protone e un muone (µp). Essendo il muone molto più
pesante dell’elettrone, il raggio di Bohr del µp è circa duecento volte minore
di quello dell’idrogeno ordinario e ciò porta a un contributo molto maggiore
della dimensione del protone al Lamb shift. I risultati di questo esperimento
furono pubblicati nel 2010 e fornirono un valore del raggio del protone molto
inferiore a quello ottenuto dagli esperimenti di scattering e di spettroscopia
atomica. La differenza tra i due valori era maggiore di 5σ; questo risultato
inaspettato venne ulteriormente rinforzato nel 2013, quando vennero pubbli-
cati nuovi risultati dell’esperimento che portarono la discrepanza tra le misure
“muoniche” ed “elettroniche” sopra 7σ.

Questa differenza dopo cinque anni è ancora senza spiegazione e sono ancora
molte le ipotesi in gioco: da incertezze non considerate nei metodi sperimen-
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viii R I A S S U N T O

tali a effetti di nuova fisica al di là del Modello Standard. Questa tesi descrive
i primi stadi dello sviluppo di un nuovo esperimento che mira a contribuire
alla soluzione di questo enigma. Infatti anche lo splitting iperfine mostra una
sensibile dipendenza dalla struttura del protone. Questo effetto è molto pic-
colo nell’idrogeno ordinario (≈ 40ppm nello stato fondamentale), ma diventa
molto più rilevante nell’idrogeno muonico, dove contribuisce per lo 0.8% circa
dell’energia della transizione iperfine nel ground state.

L’esperimento FAMU intende misurare, per la prima volta in maniera diretta,
lo splitting iperfine dello stato fondamentale dell’atomo di idrogeno muonico
con una precisione tale da poter estrarre il raggio di Zemach (ovvero il primo
momento della convoluzione della densità di carica e di momento magnetico) del
protone con una accuratezza ≤ 1%. Il confronto con i valori del raggio di Zemach
ottenuti in precedenza considerando l’interazione tra protone ed elettrone potrà
delimitare o rafforzare il proton radius puzzle: se l’esperimento desse valori
compatibili spingerebbe a riconsiderare le metodologie delle misure del raggio
quadratico medio della distribuzione di carica, mentre qualora si evidenziasse
una discrepanza ci sarebbero ulteriori motivi per cercare effetti di nuova fisica.

La strategia sperimentale di FAMU combina tecniche proprie della fisica nu-
cleare e sub-nucleare a quelle della spettroscopia atomica: atomi di idrogeno
muonico nella configurazione di singoletto vengono eccitati nello stato di tri-
pletto da un impulso laser con frequenza pari all’energia della transizione iper-
fine (λ ≈ 6.8µm); questi atomi si diseccitano nelle collisioni con altre molecole
di H2 ma circa 2/3 dell’energia della transizione è convertita in energia cine-
tica dell’atomo di idrogeno muonico, che risulta accelerato di ≈ 120meV. Questi
µp “caldi” possono trasferire il proprio muone ad altri elementi con Z più alto
con maggiore probabilità rispetto agli altri µp termalizzati, e il trasferimento
del muone è seguito immediatamente dall’emissione di raggi-X caratteristici
dell’atomo muonico così formato. Contando i raggi-X caratteristici emessi dopo
l’impulso laser per diverse frequenze del laser stesso si ha una indicazione del
numero di µp “caldi” da cui è possibile ricavare la posizione della risonanza
dello splitting iperfine.

Una prima serie di misure atte a valutare la fattibilità dell’esperimento è
stata effettuata nel giugno 2014 presso la RIKEN-RAL muon facility dei Ruther-
ford-Appleton Laboratories (UK): un odoscopio letto da Silicon PhotoMultiplier
era stato costruito per monitorare il fascio di muoni, mentre un rivelatore HPGe
specificatamente indicato per la spettroscopia X e γ di bassa energia è servito
da riferimento per gli spettri X generati dalle transizioni degli atomi muonici.
Il cuore del sistema spettroscopico era costituito da rivelatori a scintillazione
basati su cristalli di LaBr3(Ce). Questi cristalli, oltre ad avere una eccellente
risoluzione energetica, sono scintillatori estremamente veloci, e ciò li rende par-
ticolarmente indicati all’ambiente di misura che presentava un alto event rate.
Per poter estrarre la maggior quantità di informazioni possibile dai rivelatori
LaBr3, il segnale in uscita da questi ultimi è stato registrato da un digitizer con
una frequenza di campionamento di 500 MHz per un tempo di 5 µs successivo al
trigger dato dall’arrivo del fascio di muoni. Ciò ha richiesto lo sviluppo di un al-
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goritmo che analizzasse off-line le forme d’onda: questo programma è in grado
di riconoscere automaticamente gli impulsi e di estrarre da questi tutte le in-
formazioni utili (altezza, integrale, tempo, etc.) attraverso il fit della regione di
interesse del segnale con una funzione che descrive uno o più impulsi a seconda
della situazione. In questo modo è stato possibile identificare e recuperare gli
eventi che altrimenti sarebbero stati scartati perché affetti da pile-up (circa il
26%).

Durante il test-beam sono stati esposti a un fascio di muoni di 61 MeV/c un
bersaglio di grafite e tre diverse miscele di gas contenute in un vessel di allu-
minio. Per ognuno di questi bersagli è stato ricostruito lo spettro X: dagli spettri
degli scintillatori LaBr3 si sono potuti osservare tutti i picchi dovuti alle tran-
sizioni attese degli atomici muonici, confermando così la validità della scelta
di questi rivelatori per l’esperimento in esame. Per ogni bersaglio si è studiato
anche lo spettro temporale degli eventi: sebbene gli andamenti rispecchino le
attese non è stato possibile spingersi in analisi più dettagliate vista l’assenza di
uno studio teorico dedicato che spieghi anche l’origine del fondo osservato dagli
scintillatori.

Un nuova presa dati sul fascio della RIKEN-RAL muon facility è prevista per
l’estate del 2015: in questo nuovo test-beam verranno utilizzati quattro nuovi
rivelatori basati su cristalli di LaBr3(Ce) e un nuovo vessel dotato di un sistema
criogenico. Nel frattempo è auspicabile lo sviluppo di una simulazione Monte
Carlo per comprendere il ruolo che gli elettroni generati dal decadimento dei
muoni possono avere nell’orgine del fondo.





I N T R O D U C T I O N

The hydrogen atom is one of the cornerstones of modern physics. The un-
known origin of its discrete energy levels was one of the problems that boosted
the formulation of quantum theory in the first years of the XX century, and
the explanation of the discreteness of atomic spectra was one of the greatest
achievements of this theory.

It’s been a long time since Bohr’s first works on the hydrogen atom (which pre-
ceded of more than a decade the formulation of the Schrödinger equation) and
quantum physics has now a solid theoretical and experimental background1,
but the hydrogen atom still manages to astonish physicists.

Atomic spectroscopy measurements have reached in the years outstanding
levels of precision, showing that the energy levels predicted by quantum me-
chanics were actually slightly shifted. The first observation of this phenomenon
dates back in 1947 when the physicists Willis Lamb and Robert Retherford mea-
sured a small discrepancy between the (2S)1/2 → (2P)1/2 transition energy in hy-
drogen and the value predicted by the theory2. This observation was explained
a few months later by Hans Bethe, opening the way for the development of a
quantum theory of the electromagnetic field.

The so-called Lamb shift groups all the corrections to the energy levels pre-
dicted by the “standard” quantum mechanics, including radiative corrections,
recoil effects and taking into account also the small effects of the nuclear struc-
ture instead of considering the nucleus as a point-like particle. The level of
accuracy needed to measure the effect of the finite nuclear size (namely the
RMS of the proton charge radius) on the hydrogen energy levels was reached
in the nineties, providing values of the proton charge radius compatible with
the ones obtained in previous experiments. Indeed, up to then the only way to
investigate the size of the proton was through elastic scattering experiments.
Following the legacy of Rutherford, many experiments of this type have been
performed since the 1950s and their results, combined with the ones from spec-
troscopic measurements in hydrogen, contributed to determine the mean value
of the proton charge radius

rp = 0.8775±0.0051fm

In 2001 a new method was proposed. An accurate measurement of the Lamb
shift in muonic hydrogen (a hydrogen atom where the electron is replaced by
a muon) could provide a value of the RMS proton charge radius an order of

1 This despite the fact that Richard Feynman (Nobel prize in Physics in 1965 and one of the fathers
of the quantum field theory) declared “I think I can safely say that nobody understands quantum
mechanics”.

2 In 1955 Willis Lamb was honoured with the Nobel prize in Physics “for his discoveries concerning
the fine structure of the hydrogen spectrum”.

1



2 I N T R O D U C T I O N

magnitude more accurate than the ones obtained with ordinary hydrogen. In
fact in muonic hydrogen the muon is much closer to the proton than the electron
in the common hydrogen atom, thus the atomic energy levels are much more
sensitive to the proton finite size.

The first results of the proton size obtained from the measurement of the
Lamb shift in muonic hydrogen were published in 2010, presenting a size of
the proton incompatibly smaller with respect to the previous measurements.

This thesis work describes the first stages of a new experiment that can shed
new light on this puzzle. Indeed, the Lamb shift is not the only contribution
which depends on the proton size; also the hyperfine splitting presents a slight
dependence on the proton structure. This effect is very small in ordinary hydro-
gen (∼ 40ppm), but its importance is much more relevant in muonic hydrogen,
where it contributes for ∼ 0.8% of the transition energy. The FAMU experiment
aims at measuring the hyperfine splitting of the ground state of muonic hy-
drogen for the first time in a direct way and with a high accuracy, which may
allow to extract the Zemach radius (i.e. the first moment of the convolution of
the charge and magnetic moment density distributions) of the proton with a
precision ≤ 1%. The experimental method is a combination of particle physics
and laser spectroscopy techniques: muonic hydrogen at the ground state and in
singlet configuration is excited to the triplet state by means of a ∼ 6.8µm wave-
length laser pulse. Atoms in the triplet configuration are spin-flipped back to
the singlet state colliding with H2 molecules, but about 2/3 of the transition en-
ergy (≈ 120meV) is converted into kinetic energy of the muonic hydrogen atom.
These “hot” atoms can transfer their muons to some other higher-Z elements
with a higher rate with respect to the thermalized atoms; the muon transfer
event is promptly followed by the emission of a characteristic X-ray from the
just formed muonic atoms, thus a detection system capable of performing X-ray
spectroscopy with a precise timing of the events is needed.

In the first chapter of this thesis, the history of the measurements of the
proton size will be presented considering the two “classical” approaches men-
tioned earlier: the proton–electron elastic scattering measurements and the
spectroscopy of the hydrogen energy levels. The last part of the chapter is de-
voted to the description of the results of the Lamb shift experiment with muonic
hydrogen, which raised the proton radius puzzle.

In chapter 2, after a brief summary of the physics behind the hyperfine split-
ting, the proposed measurement will be described. The experimental strategy
is quite complex, thus only some of the key aspects of the proposed experiment
are discussed in detail at the end of the chapter.

In June 2014 a first set of measurements has been performed at the RIKEN-
RAL muon facility at the Rutherford Appleton Laboratories (UK) in order to
test the feasibility of the experiment and the fitness of the experimental set-
up imagined for this measurement. Different targets were exposed to an in-
tense 61 MeV/c muon beam in order to measure the characteristic X-rays of the
muonic atoms transitions and their time distribution. Chapter 3 is devoted to
the description of the experimental set-up. A high-purity germanium detector
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specifically designed for the detection of low-energy X-rays was used to state a
benchmark on the X-ray spectrum due to muonic atoms formed in the target.
However, because of its long dead time it was not the ideal instrument. For
their short decay time (∼ 25ns) and good energy resolution, LaBr3(Ce) scintil-
lating crystals have been chosen as the main component of the detection system:
as mentioned earlier, not only the energy spectrum is relevant, but also the tim-
ing of the recorded events has a capital importance. This is not an easy task,
since the intense muon flux (∼ 105 muons/s on an area of 4×4cm2) corresponds
to a high event rate that caused a relevant pile-up rate also in fast detectors
like the ones based on LaBr3(Ce). To overcome this problem and not lose any
information for the analysis, the output of the LaBr3 detectors was recorded by
a 500 MHz digitizer for a time of 5 µs after the beam trigger. An algorithm has
been developed for the off-line analysis of the scintillating detectors waveforms;
this program automatically detects the pulses and defines a “region of inter-
est” which is fitted with a function describing one or more pulses, according to
the situation. In this way, pile-up events are not only identified, but recovered
for the analysis. This results in saving about 26% of the recorded events, that
otherwise would have been rejected.

This strategy for the off-line pulse analysis allows to associate to each pulse
a mathematical function, from which it is easy to extract almost every infor-
mation about the pulse, like its height, its integral and its starting time. In
particular, the X-ray spectrum can be obtained from the distribution of both
the pulse height and the pulse integral. Comparing the results of these two
approaches, the pulse integral method was found to provide a better energy
resolution, compatible with the one obtained using a standard spectroscopic
acquisition system.

The results of the beam test are described in chapter 4. The main goal of
this test was to prove that a scintillator-based detection system is capable of
performing X-ray spectroscopy with an energy resolution good enough while
providing accurate information also on the time of the recorded events. Dur-
ing the beam test, three different gas targets and a graphite target were tested
and all the expected lines of the characteristic X-rays due to the different tran-
sitions in the various muonic atoms have been identified. On the other hand,
the obtained time spectra are difficult to judge since dedicated Monte Carlo
simulations have to be implemented in order to understand the results. Also
the origin of the background of the measurements, which is quite relevant, is
not well understood yet and requires more theoretical work and Monte Carlo
simulations to be explained and possibly reduced.

Finally, in chapter 5 some outlooks for the future development of the detec-
tion system will be presented.





C H A P T E R 1
T H E S T R A N G E C A S E O F T H E P R O T O N R A D I U S

In 2010 one of the main cover stories of Nature was about a puzzling mea-
surement of what it can appear as a simple property of one of the most known
and studied particles in the history of physics: the proton. This particle is one
of the building blocks of matter as we usually intend it and has been one of the
first “elementary” particles being discovered in 1919 by Ernest Rutherford just
a few years after his first idea about the atomic structure. Since then, the pro-
ton has been widely studied contributing fundamentally to build the Standard
Model of Particle Physics (SM).

In the 2010 research the radius of the proton was measured with a tech-
nique never used before, giving a value totally incompatible with the previous
measurements. This unexpected outcome raised great interest in the scientific
community, and since then many other experiments have been proposed to try
to solve this puzzle.

In this thesis work, a new method to measure the proton radius will be pre-
sented with the preliminary results of a first set of measurements whose goal
was to test the feasibility of the proposed experiment.

In this chapter, after a brief introduction about the proton, the main strategy
for the determination of the proton radius will be presented, from the “histori-
cal” elastic scattering measurement to the effect of the finite size of the proton
on the hydrogen energy levels. The last part of the chapter is devoted to the
“puzzling” measurement that raised the question of the proton radius.

1.1 A B R I E F H I S T O R Y O F T H E P R O T O N

The proton is an essential constituent of our universe. Together with the
electron and the neutron, it is one of the three fundamental bricks that make
up atoms and thus matter as we usually intend it.

In the long road to the discovery of the structure of matter, one of the first
steps is due to Rutherford and his collaborators Geiger and Marsden, that in
the early years of the twentieth century studied α particles scattered off a thin
gold foil. Surprisingly, they observed that most of these particles crossed the
foil almost undeflected but some of them were deflected at large angles in a
way incompatible with the hypothesis of the positive charge spread in the atom
volume [1]. This was the first evidence of the internal structure of the atom and

5



6 T H E S T R A N G E C A S E O F T H E P R O T O N R A D I U S

led Rutherford to develop an atomic model as a hull of electrons surrounding
a small positive-charged nucleus [2]. The unique role of the hydrogen nucleus,
i.e. the proton, as a constituent of heavier nuclei was discovered when Ruther-
ford transmuted nitrogen into oxygen through the reaction 14N+α→ 17O+p
[3]. The proton was then considered a fundamental particle just like the elec-
tron (discovered in 1897 by Thomson [4]) but heavier and with a positive charge.
The subsequent discovery of the neutron by Chadwick in 1932 [5] seemed to
complete the description of the building blocks of matter.

Besides these experimental discoveries, the quantum theory was quickly grow-
ing. The relativistic theory developed by Dirac to describe point-like spin-1

2
particles predicts a particle with mass M and charge Ze to have a magnetic
moment

|µ| = g
2

Ze
M

ħ
2

(1.1)

where g is the gyro-magnetic ratio and its predicted value is 2. Small devia-
tions from the foreseen g = 2 gyro-magnetic ratio of the electron are perfectly
explained by QED (Quantum electrodynamics) corrections. For the proton one
defines

|µ| =µpµN ms (1.2)

being µN = eħ/(2mp) the nuclear magneton and ms the spin quantum number.
In the thirties Stern and collaborators found a value1 of µp of about 2.5, totally
inconsistent with the Dirac theory which predicts µp = 1 [7]. This was the first
evidence that the proton was not just a heavier and positively charged electron,
but it could have an internal structure.

However, in 1947 the picture of particle physics seemed complete: besides the
proton, the neutron and the electron, the anti-electron predicted by the Dirac
theory was discovered and the Yukawa theory of the interaction between nucle-
ons to form atomic nuclei found its mediator in the pion. Apart the remarkable
exception of the muon2, every particle had its role and this scheme provided a
fully satisfactory theory for the building blocks of matter.

The discovery of strange particles in cosmic rays [8] destroyed this comfort-
able picture. Gell-Mann [9] was able to arrange the known baryons (heavy par-
ticles such as p, n, Λ0,. . . ) and mesons (particles with a “middle”-mass between
the proton and the electron like π±, π0,. . . ) into geometrical patterns according
to their quantum numbers. This intuition led to the hypothesis formulated in-
dependently by Gell-Mann and Zweig [10] that considers baryons and mesons
as formed by three and two quarks respectively, a new type of elementary par-
ticle3. In the meantime, particle accelerators appeared on the scene of physics.

1 The last value of the proton magnetic moment (in nuclear magnetons) recommended by
CODATA (Committee on Data for Science and Technology) is µp = 2.792847356(23) [6].

2 The role of the muon was not clear and it looked like unnecessary in the overall picture. The
puzzlement of the physicists of that time is well represented by the famous question of Isidore
Rabi “Who ordered that?” speaking of the muon.

3 Among the many phenomena explained by the quark theory, also the anomalous magnetic mo-
ment of the proton mentioned earlier can be easily understood in the framework of the quark
model [11].
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Experiments performed in the mid fifties by Hofstadter and collaborators at
SLAC [12] (described in sec. 1.2.1) showed that the proton and the neutron have
a finite size. The quark model was then integrated with Feynman’s parton the-
ory [13] and proved in deep inelastic scattering experiments at SLAC [14].

The quark theory described the proton as formed by three valence quarks
(two up quarks and one down quark) and a number of other quarks—antiquarks
pairs forming the so-called sea quarks; all these quarks interact via the ex-
change of gluons, that are the mediators of the strong interaction. The inter-
action between quarks is described by Quantum Chromodynamics (QCD). This
theory works fine at high energy, but becomes almost impossible to manage in
the low energy range. In recent years some of these difficulties have been over-
come with the development of a particular discrete calculation technique (Lat-
tice QCD), but despite some remarkable results [15], an accurate description of
the electromagnetic structure of the proton is still far from being reached.

1.2 P R O T O N R A D I U S M E A S U R E M E N T S T R A T E G Y

As shown in the previous section, the typical way to investigate the inter-
nal structure of an object in particle physics is to observe scattering processes.
Historically, although the first evidence of an internal structure of the nucleon
came from the measurement of the proton and neutron magnetic moment, the
spatial distribution of the charge inside a nucleon remained unknown until elas-
tic electron scattering experiments on proton and deuteron were performed in
the mid-fifties by Hofstadter and collaborators4.

The discovery of the internal structure of the proton, and thus of its finite size,
led to discard the hypothesis that considered the proton as a point-like particle
in the calculation of the hydrogen energy levels. Thanks to the extreme accu-
racy of QED predictions, these effects can be calculated and thus experimental
spectroscopic measurements can provide further information about the electro-
magnetic structure of the proton.

In this section these complementary methods will be briefly described. Sec-
tion 1.2.1 will present the theoretical foundations of e−–p elastic scattering and
the last measurements performed at the Mainz Microtron (MAMI), while in
sec. 1.2.2 the main correction due to the finite proton size in hydrogen atomic
levels will be described.

The proton RMS charge radius recommended value obtained by CODATA
with a combined analysis from both e−–p elastic scattering and hydrogen spec-
troscopy measurements is

rp = 0.8775±0.0051fm (1.3)

In 2010 another measurement of the proton charge radius was performed
by Pohl and collaborators using the Lamb shift in muonic hydrogen (µp). This

4 For his studies on the structure of the nucleons Robert Hofstadter was awarded with the Nobel
prize in Physics in 1961.
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experiment is briefly described in sec. 1.2.3 and provides a value for the proton
charge radius of [16]

rp = 0.84184±0.00067fm (1.4)

which differs from the CODATA 2006 reference value of 5σ. Further measure-
ments on the 2S-2P transition frequency in muonic hydrogen worsened this dif-
ference, giving a value of rp = 0.84087±0.00039fm consistent with the previous
µp measurement but 7σ distant from the CODATA value. These spectroscopy
measurements exploiting muonic atoms and their non-compatibility with the
previous “classical” measurements of the proton charge radius raised the so
called proton radius puzzle, which is the reason of the experiment proposed
and described in the following chapter.

1.2.1 Proton radius measurement via electron scattering

Scattering is a fundamental tool for physicists to investigate the properties
of an object. As the structure of condensed matter can be studied by means
of scattering of neutrons or X-rays, protons and neutrons can be examined in
a similar way using electrons (or muons). Indeed, in his famous experiment,
Rutherford studied α particles scattered by gold nuclei proving that the positive
charge that balances the negative charge of electrons in an atom is concentrated
in a much smaller volume than the one of the whole atom [2]. However, since
α particles themselves are not point-like objects and can also interact via the
strong force, they are not the best choice to dig into the internal structure of the
proton. Electrons and muons, being point-like particles, are much more suited
for such measurements.

For low energy scattering (E ¿ mW , where mW is the W boson mass), the
weak interaction between e− and quarks forming the proton can be neglected,
leaving only the electromagnetic interaction, whose theory (QED) can be consid-
ered well-established [17].

Theoretical introduction

The simplest case of scattering with electrons is the elastic case. In an elastic
process energy and momentum are transferred from the electron to the nucleon
via the exchange of a single photon without exciting any nuclear state. In his
calculation of the differential cross section for a charged particle scattered off a
heavier nucleus, Rutherford assumed a static and point-like target, leading to

dσ
dΩ

Ruth
=

(
Zα
2E

)2 1

sin4 θ
2

(1.5)

were α= e2(4π)−1 is the fine structure constant (≈ 1/137), Z is the atomic number
of the nucleus and θ is the electron scattering angle.

This result, derived using classical mechanics more than a century ago, al-
lowed to describe Rutherford’s experiment. However, to investigate the pro-
ton structure a spatial resolution of ∼ 1fm is needed: using the scale set by
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(a) (b)

Figure 1.1: Feynman diagrams representing the elastic scattering of an electron off
(a) a heavier point-like particle (e.g. a muon) and (b) a proton.

ħc ∼ 200MeV · fm, it follows that ∼ 200MeV/c momentum electrons, that are
relativistic objects, are needed [17].

The relativistic expression of the cross section for elastic scattering off a
static target is due to Mott [18]

dσ
dΩ

Mott
= dσ

dΩ

Ruth (
1−βsin2 θ

2
)

(1.6)

being β the incident particle velocity in units of the speed of light (β = v/c).
However, this expression still contains no information on the internal structure
of the target. To appreciate the difference between a point-like target (e.g. a
muon) and a finite size object, a full QED treatment is needed.

Let’s start considering elastic scattering between two point-like, spin-1
2 ob-

jects, such as an electron and a muon. The cross section from the Feynman
diagram in fig. 1.1a is [19, 20]

dσ= 1
J

|M |2 d3 p′

2E′(2π)3
d3k′

2ε′(2π)3 (2π)4δ(4)(p+k− p′−k′) (1.7)

where (p, p′) and (k,k′) are the initial and final four-momentum for the muon
and the electron respectively and the (2E′)−1 and (2ε′)−1 factors (being E′ and ε′

the final energy of the muon and the electron) are related to the normalization
of the wave functions in the final state. The calculation is carried out with the
muon at rest in the laboratory frame, where the flux factor J = 4P ·k is simply
4Mε with M being the mass of the muon. The factor |M |2 is the spin-averaged
invariant amplitude and it follows from the Feynman rules of QED

M =−e2ū(k′)γµu(k)
1
q2 ū(p′)γµū(p) (1.8)

where u(k) and u(p) are the spinors associated to the electron and the muon
respectively and q is the exchanged four-momentum (q = k−k′). It is convenient
to write the squared modulus, spin-averaged invariant amplitude as

|M |2 = e4

q4 Lµν
e Lmuon

µν (1.9)
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with the leptonic tensor defined as

Lµν
e = 1

2

∑
spin

[
ū(k′)γµu(k)

][
ū(k′)γνu(k)

]∗ (1.10)

and similarly for Lmuon
µν .

These tensors can be expressed in a much simpler form using trace identities
[19, 20], resulting in

Lµν = 2
[
k′µkν+kµk′ν− gµν

(
k ·k′−m2)]

(1.11)

Neglecting the electron mass and using p′ = p+ k− k′, one finds in the labo-
ratory frame

Lµν
e Lmuon

µν = 8
[
2

(
p ·k′) (p ·k)+ (

k ·k′)(p · q−m2)]
= 16m2εε′

(
cos2 θ

2 − q2

2m2 sin2 θ
2

) (1.12)

Integrating eq. (1.7) over d3 p′ and inserting dk′ = k′2dk′dΩ ' ε′dε′dΩ, the
differential cross section can be written in the form

d2σ

dΩdε′
= α2

4ε2 sin4 θ
2

(
cos2 θ

2 − q2

2m2 sin2 θ
2

)
δ

(
ν+ q2

2m

)
(1.13)

where ν is ε′− ε = E −E′ and, given the fact that in an elastic process energy
and momentum are conserved, ν=Q2/2m (with Q2 =−q2).

Finally, the integration over dε′, with ε′ kinematically determined by ε and θ

ε′ = ε

1+ (2ε/m)sin2 θ
2

(1.14)

gives

dσ
dΩ

pl
= α2

4ε2 sin4 θ
2

1

1+ (2ε/m)sin2 θ
2

[
1− q2

2m2 tan2 θ
2

]
cos2 θ

2

=
(

dσ
dΩ

)Mott

β→1

ε′

ε

[
1+ Q2

2m2 tan2 θ
2

] (1.15)

where the ratio ε′/ε takes into account the recoil of the nucleon. Equation
(1.15) is the cross-section for the scattering of two point-like spin-1

2 Dirac parti-
cles in the laboratory frame obtained using the rules of QED. But if one consid-
ers a proton, or any object with an internal structure, the situation is slightly
different. As shown in the diagram in fig. 1.1b, in calculating the spin-averaged
invariant amplitude one has to replace the leptonic tensor of the muon in eq. (1.9)
with a nucleon tensor Nµν. In the definition of the leptonic tensor the standard
electromagnetic current (and its expression obtained using the Gordon decom-
position5)〈

ψe(k′)
∣∣ jµ(x)

∣∣ψe(k)
〉= ū(k′)γµu(k)ei(k′−k)·x

= ū(k′)
[

(k′+k)µ

2m
+ iσµνqν

2m

]
u(k)ei(k′−k)·x (1.16)

5 The σµν tensor indicates the anti-symmetric tensor defined by σµν = i
2 [γµ,γν]
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was used (|ψe(k)〉 is the state vector of a free electron with momentum k), but
since the proton is an extended object the exact form of the interaction current
Jµ is unknown. Whatever the electromagnetic interaction is, Jµ must be a
Lorenz four-vector: the most general four-vector that one can obtain from k,
k′, q and the Dirac γ-matrices between the ū and u spinors includes only two
independent terms, namely γµ and iσµνqν, and their coefficients are functions
of Q2 (since Q2 is the only independent scalar variable at the proton vertex).
The terms involving γ5 are excluded by parity conservation.

Therefore, the general expression of the proton interaction current can be
written as

〈
ψN (p′)

∣∣ Jµ(x)
∣∣ψN (p′)

〉= eū(p′)
[
F1(Q2)γµ+ iσµνqν

2M
κF2(Q2)

]
u(p)ei(p′−p)·x

(1.17)
where F1(Q2) and F2(Q2) are two independent form factors also called Dirac-
and Pauli- form factor respectively and κ is the anomalous magnetic moment
of the proton6. Comparing eq.s (1.17) and (1.16), one can notice that for Q2 → 0,
that is for long-wavelength photons, it does not make any difference that the
nucleon has an internal structure at the order of 1 fm. In this case the proton
will appear like a point-like particle of charge e and magnetic moment 1+κ, i.e.
F1(0)= 1 and F2(0)= 1.

The resulting cross section for an extended object, known as the Rosenbluth
cross section, is

dσ
dΩ

Ros
=

(
dσ
dΩ

Mott
)
ε′

ε

{
F2

1 (Q2)+ Q2

4M2

[
κ2F2

2 (Q2)+

+2
(
F1(Q2)+κF2(Q2)

)2
tan2 θ

2

]}
(1.18)

It is more convenient to define the Sachs form factors

GE(Q2)= F1(Q2)− Q2

4M2κF2(Q2) (1.19)

GM(Q2)= F1(Q2)+κF2(Q2) (1.20)

also referred to as electric (GE) and magnetic (GM) form factors. At this point,
the Rosenbluth cross section can be written in the form:

dσ
dΩ

Ros
=

(
dσ
dΩ

Mott
)
ε′

ε

{
G2

E(Q2)+τG2
M(Q2)

1+τ +2τG2
M(Q2)tan2 θ

2

}
(1.21)

where τ = Q2/(2M2). The physical meaning of the electric and magnetic form
factors becomes clear in the Breit frame, defined by

p(B) + p′(B) = (2E(B),0,0,0) (1.22)

6 The anomalous magnetic moment is defined as κ = (g−2)/2 where g is the gyromagnetic ratio.
For the proton κ≈ 1.79.
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In this frame, the first component of the proton transition current (eq. (1.17))
reduces to

〈
ψN

( q
2

)∣∣∣ J0(x)
∣∣∣ψN

(−−−q
2

)〉
= 2MeGE(q2) (1.23)

but the zeroth component of the electromagnetic current is the charge density,
so eq. (1.23) can be written in an explicit form as7

2E(q)
∫

d3xρ(x)eiq·x = 2MGE(q2) (1.24)

Thus the electric form factor GE(Q2) is strictly connected with the Fourier
transform (FT) of the charge density of the nucleon. In particular, for a small
transferred momentum q, E(q) → M, so that GE can be approximatively in-
terpreted as the FT of the charge density. Assuming an exponential trend
in the charge density ρ(r), the electric form factor is a dipole. The standard
parametrization is the following:

Gst.dip.
E (Q2)=

(
1+ Q2

0.71(GeV/c)2

)−2

(1.25)

In this situation, expanding the Fourier transform of ρ(x) at small q, one
finds

GE(Q2)=
∫

d3xρ(x)eiq·x '
∫

d3x
[
1+ iq · x− 1

2 (q · x)2 − . . .
]
ρ(x)

=Q(0)− 1
6Q2

∫
x2ρ(x)d3x+ . . .

=Q(0)− 1
6Q2〈r2〉+ . . .

(1.26)

where Q(0) is set by the charge of the nucleon (Q(0) ' 0 for the neutron and
Q(0)' 1 for the proton).

Therefore, the mean-squared charge radius of the nucleon is defined as

〈r2
E〉 =− 6

GE(0)
dGE(Q2)

dQ2

∣∣∣∣
Q2=0

(1.27)

Similarly, it can be demonstrated that GM(Q2) is related to the Fourier trans-
form of the magnetic density, thus the mean-squared magnetic radius of the
proton is

〈r2
M〉 =− 6

GM(0)
dGM(Q2)

dQ2

∣∣∣∣
Q2=0

(1.28)

7 Here the standard expression for the spinor u(k)=
p

E+M
(

χs
σ·k

E+M χs

)
is adopted.
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Figure 1.2: Scheme of the arrangement of the three spectrometers used at MAMI by
the A1 collaboration [22].

Experimental measurements

Since the time of the Hofstadter experiment in the fifties, many experimen-
tal measurements of the electric and magnetic form factors of the proton and
neutron have been performed. As shown in eq. (1.27), in order to obtain the
charge radius the slope of the electric form factor GE(Q2) at Q2 = 0 must be ex-
trapolated. The last measurements considered by CODATA for the 2010 review
of the Recommended Values of the Fundamental Physical Constants [6], were
the ones presented by Bernauer at al. in [21] on behalf of the A1 collaboration.

The results of the A1 collaboration were obtained from the analysis of 1400
cross sections measured at the Mainz Microtron using an electron beam in the
180–855 MeV energy-range, covering Q2 from 0.004 to 1 (GeV/c)2. The measure-
ment of the elastic e−–p cross section (eq. (1.21) with higher order electromag-
netic corrections) with a statistical precision better than 2% was performed
exploiting three high-resolution spectrometers, achieving to extract the form
factors up to a negative four-momentum transfer squared of Q2 = 0.6(GeV/c)2.

The arrangement of the three spectrometers is shown in fig. 1.2. The mag-
netic system of Spectrometer A and C is composed of a quadrupole, a sextupole
and two dipoles (QSDD). This system allowed a high resolution measurement of
the particle momentum and angle inside a relatively large angular acceptance
(28 msr). The B spectrometer in fig. 1.2 is equipped with a single dipole magnet
in clamshell configuration, characterized by a slim design, higher momentum
resolution and smaller acceptance (5.6 msr) than the A and C spectrometers [22,
23].

Each of the three spectrometers has a momentum resolution of 10−4 and is
equipped with a detector system consisting of two scintillator tiles of different
thickness, two packets of two vertical drift chambers layers (VDC) and a gas
Čerenkov detector (fig. 1.3).

The scintillators are used for triggering and to provide a time reference. The
different thickness of the two planes (3 mm and 1 cm) allows to distinguish be-
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(a) (b)

Figure 1.3: (a) Rendering of one of the magnetic spectrometers A (from: http://
wwwa1.kph.uni-mainz.de/A1/gallery/) and drawing of the detector sys-
tem (b) [22].

tween minimum ionizing particles (MIPs) and heavier particles given the differ-
ent energy deposit. The vertical drift chambers are used to reconstruct the par-
ticle trajectory inside the detector system with a spatial resolution of 200 µm
and 400 µm in the dispersive and non-dispersive direction respectively, while
the Čerenkov detector is used to discriminate electrons from heavier particles.

A cryogenic hydrogen target was placed in a vacuum scattering chamber lo-
cated on the rotation axis of the spectrometers (center of fig. 1.2).

Since in the elastic scattering process the final energy of the electron E′ and
the scattering angle are related by eq. (1.14)

E′(θ)= E
1+E/M(1−cosθ)

(1.29)

being E the initial energy of the electron and M the proton mass, electrons
elastically scattered (without the emission of any photons) are identified con-
sidering only those events where the difference between the detected energy
E′

exp and the energy calculated from the detected scattering angle E′(θexp) is
near to zero.

Two strategies were adopted to obtain the form factors from the measure-
ment of the elastic cross section. The first is the classical “Rosenbluth sepa-
ration” [24]: the Rosenbluth cross section in eq. (1.21) can be written in the
form

dσ
dΩ

Ros
= dσ

dΩ

Mott*
·
[
G2

E(Q2)+ τ

ξ
G2

M(Q2)
]

1
1+τ (1.30)

http://wwwa1.kph.uni-mainz.de/A1/gallery/
http://wwwa1.kph.uni-mainz.de/A1/gallery/
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where the label “Mott*” indicates the recoiling Mott cross section and ξ denotes
the polarization of the virtual photon

ξ= [
1+2(1+τ)tan2 θ

2
]−1

(1.31)

The method takes advantage of the linear dependence in ξ of form factors in
the reduced cross section σR which can be written as

σR =
(

dσ
dΩ

Ros
exp

)
(

dσ
dΩ

Mott*) ξ(1+τ)
τ

= ξ

τ
G2

E +G2
M (1.32)

Thus, for fixed values of Q2 one can obtain the electric and magnetic form
factors from a linear fit in ξ. This method is model independent to the first
order in the photon propagator, but requires data at a constant value of Q2 for
a range large enough of ξ and given the finite angular range of the three spec-
trometers, the covered kinematical range is limited. This problem was solved
by the A1 collaboration with a direct fit of the models of the form factors to the
measured cross section (“super-Rosenbluth separation”). This procedure allows
all the Q2 and ξ to contribute in the fit, without the need to project Q2 on a
specific value, but introduces a dependence from the model. To avoid a large
model-dependence, a wide range of models was used and their outcomes were
compared: generally good values of χ2/DOF were achieved with flexible forms
such as polynomials or splines, but not with inflexible forms (e.g. dipoles or
double-dipoles).

The results of the direct fits were generally compatible with the results ob-
tained from the Rosenbluth separation method, but this latter method was
found to be more sensitive to systematic deviations being therefore a worse
estimator of the electric and magnetic form factor. The results of the spline
model for GE(Q2) are shown in fig. 1.4.

The use of polynomials and splines led to slightly different values in the ex-
tracted charge radius, resulting in an additional uncertainty term (group) in
the average value

rp =
√

〈r2
p〉 = 0.879±0.005stat ±0.004sys ±0.002model ±0.004groupfm (1.33)

In a recent review [25], Pohl et al. listed some of the issues of this kind of
measurements. In particular the role of the two photon exchange (TPE) is con-
troversial: in the data presented by Bernauer this contribution was initially
neglected, and the later application of the TPE correction after a comment by
Arrington showed a variation of the extracted proton radius compatible with
the previously associated error [26, 27].

In order to shed some light on the role of the exchange of two photons, high
precision experiments are under way to determine observables that depend on
the two-photon exchange, such as the differences between the e+–p and e−–p
cross section.
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Figure 1.4: The electric form factor GE(Q2) normalized to the standard dipole
(eq. (1.25)) as a function of Q2, as obtained by the A1 collaboration. Black
line: best fit to the data; blue area: statistical 68% pointwise confidence
bound; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50% [21].
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1.2.2 Proton charge radius from atomic spectroscopy measurements in hydro-
gen

Spectroscopy of atomic hydrogen has been fundamental for the development
of modern physics since the dawn of quantum theory more than a century ago.
It was the discovery of deviations of the energy levels from the ones expected
from the Dirac equation that first showed effects of QED beyond the Dirac equa-
tion. Since the observation of this effect in 1947 by Lamb and Retherford [28],
QED has reached an impressive level of accuracy in the calculation of the hy-
drogen levels: as an example, the 1S–2S transition in now known with an
associated error of four parts in 1015 [29]. With such a level of accuracy, QED
can be tested comparing the results of the calculation of the hydrogen levels
with the experimental values.

However, the precision of the QED test is limited by two parameters that
enter in the calculation: the Rydberg constant R∞ and the root-mean-squared
radius of the proton. Thus, one can either obtain these parameters in differ-
ent ways and use them to test QED with experimental measurements of the
hydrogen levels, or extract them from the measurements of the energy levels.

To achieve this goal, besides a great experimental precision, an accurate de-
scription of the energy levels in the range of fourteen orders of magnitude is
needed and is thus necessary to keep into account the many corrections to the
Dirac energies at this level of precision.

In this section, a brief description of the calculation of the hydrogen energy
levels is given following the path marked by Antognini in [30]. For more de-
tailed calculations see for instance [31]. The energy eigenvalue of a solution of
the Dirac equation for a static Coulomb source is

En j = mc2 f (n, j) (1.34)

where m is the mass of the electron and

f (n, j)=

1+ (Zα)2(
n− j− 1/2+

√
( j+ 1/2)2 − (Zα)2

)2


−1/2

(1.35)

with n the principal quantum number and j the sum of the orbital and spin
angular momentum of the electron. States with the same principal quantum
number n but different angular momentum are thus split into n components
of the fine structure. Considering the effect of the finite mass of the nucleon
and the hyperfine splitting Ehfs

n jlF , the total energy of the electron in the level
characterized by the (n, j, l,F) quantum numbers (F being the total angular
momentum of the proton–electron system) can be expressed as

Etot
n jlF = mc2 +Mc2 + [ f (n, j)−1]mrc2−

− [ f (n, j)−1]2 m2
r c2

2(m+M)
+Ln jl +Ehfs

n jlF (1.36)
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where mr is the reduced mass (mM)/(m+M)' 0.9995·m for hydrogen (M is the
proton mass) and Z the atomic number of the nucleus. To give an idea of the
magnitude of the different contributions in the transition 1S–2S, one can notice
that the first two terms always cancel out when measuring transition energies;
the third term contributes about 2.5×103 THz, while the fourth term (recoil)
contributes ≈ 22MHz. The hyperfine splitting of the 1S state is Etot

1S(F=1) −
Etot

1S(F=0) ' 1420MHz. The term Ln jl indicates the Lamb shift, which is defined
as the sum of any corrections to the energy level predicted by the Dirac equation
(partially corrected for the finite nucleus mass). The difference of the Lamb
shift of the state 1S and 2S is L1S −L2S ' 8−1= 7GHz.

The Lamb shift arises from QED corrections to the energy levels that can be
written in the form of a power series in three small dimensionless parameters
α, Zα and m/M. Although these parameters enter in the calculations in a non-
perturbative way, nevertheless it is convenient to use them to set the scale of
the corrections magnitude.

The main sources of the corrections combined in the Lamb shift are usually
classified in four groups, here listed in decreasing order of relevance:

R A D I A T I V E C O R R E C T I O N S take into account pure QED effects like the elec-
tron self-energy and the vacuum polarization for an electron in a Coulomb
potential of an infinitely heavy point-like nucleus. These contributions de-
pend only on α and Zα.

R E C O I L C O R R E C T I O N S describe corrections due to the finite mass of the nu-
cleus that are not included in eq. (1.36) without considering any further
QED correction. These contributions derive from the fact that the intro-
duction of the reduced mass mr alone cannot account for all the recoil
corrections in a relativistic two-body system. Recoil corrections depend
only on the mass ratio m/M and Zα.

R A D I A T I V E – R E C O I L C O R R E C T I O N S concern the mixed recoil and radiative
contributions such as recoil contributions with one or more photon loops
in the fermion line. Given their “mixed” nature, these corrections depend
simultaneously on m/M, α and Zα.

N U C L E A R S T R U C T U R E C O R R E C T I O N S are mainly due to the finite size of
the nucleus. The smearing of the nucleus charge over a finite volume
makes electrons experience a smaller attraction than in the case of a
point-like nucleus. Another contribution related to the nuclear structure
comes with the nucleus polarization which accounts for the nuclear exci-
tation to virtual excited states.

Fortunately, the most of these contributions can be calculated independently
one from the other, e.g. radiative corrections can be evaluated without taking
into account the effect of the nuclear structure and vice-versa.

The main contribution to the Lamb shift in hydrogen comes from the elec-
tron self-energy (fig. 1.5a). These corrections are due to the emission and re-
absorption of virtual photons by the electron that, as a result, appears with
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Figure 1.5: Feynman diagrams of the leading order contributions to the electron self-
energy (a) and to the vacuum polarization (b).

its charge spread over a finite volume instead of being point-like [31]. As it
was shown in the previous section, the description of non-point-like particles
requires the introduction of form factors (F1(Q2) and F2(Q2)). The smearing
of the electron charge makes the binding energy weaker than the one of a
point-like electron, resulting in higher energy levels. Moreover, this effect is
non-vanishing only at the source of the Coulomb potential, thus it influences
in a different way energy levels with different angular momentum, splitting
the energy levels with the same j but different orbital angular momentum [31].
Another consequence of this effect is the anomalous magnetic moment (g−2) of
the electron and the muon, firstly calculated by Schwinger in [32].

The Vacuum Polarization correction (fig. 1.5b) is a QED correction of the same
order of the electron self-energy. It accounts for the creation of a fermion loop
in the photon propagator that results in a modification of the Coulomb field.
The electron surrounded by this polarization cloud sees a larger charge that
makes the electromagnetic interaction stronger and the energy level smaller
[31]. Numerically, Vacuum Polarization is much less relevant than the effect of
the electron self-energy, but, as it will be shown in the next section, it plays an
important role in muonic hydrogen.

On the other hand, the electric potential V (r) of the extended nucleus differs
from that of a point-like nucleus by [30]

δV (r)=V (r)−
(
−Zα

r

)
(1.37)

In the momentum space this perturbation takes the form

δV (q)= 4πZα
q2 (1−F1(q))' 2πZα

3
r2

p (1.38)

where F1(q) is the Dirac form factor introduced in eq. (1.17). The resulting
energy shift is

∆E = 〈ψ(r)|δV |ψ(r)〉 = 2πZα
3

r2
p|ψ(0)|2 = m2

(ħ/mc)2
2

3n3 (Zα)4r2
pδl0 (1.39)

being ψ the state vector of the electron [31].
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Figure 1.6: Scheme of the experimental set-up used for the measurement of the 1S–2S
transition energy in [29].

To give an idea of the magnitude of the proton size contribution to the Lamb
shift in the 1S state of hydrogen, this is

L1S ' (8172000+1.5 · r2
p) MHz (1.40)

with r2
p expressed in fm, for a contribution of ∼ 1.5×10−4 [25]. However, since

the nineties, the increase of experimental and theoretical accuracy makes hy-
drogen spectroscopy sensitive to the effects of the proton size.

To extract the Rydberg constant and the proton radius from such spectro-
scopic measurements, one needs at least two transition frequencies in hydrogen.
Given this fact, the energy of the S-states in hydrogen can be approximated as

E(nS)'−R∞
n2 + L1S

n3 (1.41)

where L1S is the Lamb shift in the 1S state; typically one uses the 2S–8S, D or
the 2S–12D transition to extract the Rydberg constant and the 1S–2S transi-
tion to determine the proton radius. This choice is motivated by the fact that for
high n the Lamb shift contribution is smaller due to the n−3 scaling allowing
an easier determination of the Rydberg constant, while the 1S–2S transition
contains the maximal 1S Lamb shift and is therefore maximally sensitive to
the proton radius [25].

For this kind of measurements an outstanding experimental accuracy is re-
quired. An example of the experimental strategy for the precise determination
of the 1S–2S transition energy can be found in [29]. In this experiment, a beam
of atomic hydrogen dissociated in a radio-frequency (RF) cavity was cooled to
5.8 K and was injected in a Faraday cage to avoid the interference of stray fields.
Here the hydrogen atoms are excited from the 1S to the 2S state by two pho-
tons provided by an extended-cavity diode laser near 972 nm whose frequency
was doubled twice within two resonant cavities to obtain the required UV light
near 234 nm.
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Figure 1.7: Photon count rate as a function of the frequency detuning for differ-
ent values of the delay τ (from: http://www2.mpq.mpg.de/~haensch/
hydrogen/).

In the scheme shown in fig. 1.6, hydrogen is excited by a co- and counter-
propagating photon: the co-propagating photon is red-shifted because of the
Doppler effect due to the velocity of the atoms, and the counter-propagating
photon is blue-shifted of the same amount, cancelling the systematic Doppler
effect at the first order.

For the detection, atoms in the long-lived 2S state are quenched via the 2P
state by an electric field of 10 V/m. The 2P state decays quickly emitting a
121 nm photon which is detected by a PhotoMultiplier Tube.

The Lyman-α count rate for different delays τ is shown in fig. 1.7. The strong
asymmetry in the τ= 10µs data is due to the second order Doppler effect which
maps the maxwellian velocity distribution of the thermal atomic beam onto
the spectral line. This asymmetry disappears at increasing delays. To correct
this residual Doppler shift, the velocity distribution of the atoms was measured
independently via the first-order Doppler effect on the 2S–4P one-photon tran-
sition.

With this procedure, a value of the transition frequency between the 1S and
the 2S state with a fractional uncertainty of 4.2×10−15 was extracted [29].

Fig. 1.8 shows the different values of the proton radius rp obtained by combin-
ing the 1S–2S transition and each of the other precisely measured transitions
in hydrogen (blue dots). In addition, three values of rp extracted directly from
measurements of the 2P–2S transition are reported (green dots). The blue line
and the light blue area are the average value and its uncertainty as calculated
by CODATA. Fig. 1.9 shows the comparison of the average value of the proton
radius obtained with spectroscopic measurements in hydrogen and the ones
extracted from e−–p elastic scattering experiments and world data analysis.

http://www2.mpq.mpg.de/~haensch/hydrogen/
http://www2.mpq.mpg.de/~haensch/hydrogen/
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Figure 1.8: Proton charge radii rp obtained from hydrogen spectroscopy [25]. The val-
ues of rp can be extracted by the combined measurement of the 1S–2S [29]
and 2S–8S,D/12D [33, 34] transitions. The value of rp obtained from the
Lamb shift in muonic hydrogen (sec. 1.2.3) is also shown in red.

1.2.3 The proton radius puzzle: the Lamb Shift experiment

As can be noticed from fig. 1.8 and 1.9, in the last twenty years the results on
the proton charge radius obtained from e−–p elastic scattering experiments and
with spectroscopic measurements in hydrogen are fully compatible. The fact
that compatible values of the proton radius were provided by two completely
different experimental techniques was encouraging, but in 2010 a new value of
the proton radius extracted by a measurement of the Lamb shift between the
2SF=1

1/2 and the 2PF=2
3/2 states in muonic hydrogen heavily questioned the results

obtained until then.
The determination of the proton radius with muonic hydrogen was originally

motivated by the need to improve the accuracy of this parameter (≈ 0.58% in the
last CODATA review) to enhance the precision of the test on bound state QED,
that was (and still is) limited by the large (∼ 1%) uncertainty on the proton
radius obtained by the only independent method, which is e−–p scattering.

A rp determination from an independent source was therefore highly desired.
Muonic hydrogen is a good system to study the proton structure since, given the
larger mass of the muon, the Bohr radius for µp is about 200 times smaller. The
ratio between the reduced masses of ordinary and muonic hydrogen is ≈ 186,
thus the binding energies of µp are 186 times larger than the ones of ordinary
hydrogen, falling in the keV region.
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Figure 1.9: Recent “history” of the proton charge radius. Only the recent elastic scat-
tering experiment at MAMI [21] and JLab [35] are reported (red). The
green dots refers to world data analysis (from left to right [36], [37], [38],
[39]), while the blue line is the average value of the proton radius extracted
from laser spectroscopy measurements in hydrogen with its uncertainty
(fig. 1.8). Finally, black dots indicate the value presented in the CODATA
review of 2006 [40] and 2010 [6].
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2S1⁄2
F = 1
F = 0

2P1/2 F = 1
F = 0

2P3/2 F = 1
F = 0

44 µeV

≈ 4µeV (LS)

(a) ordinary hydrogen

2S1⁄2
F = 1

F = 0

2P1/2 F = 1
F = 0

2P3/2 F = 2
F = 1

≈ 206meV

≈ 23meV (HFS)

Finite size effect
4 meV

(b) muonic hydrogen

Figure 1.10: Comparison of the n = 2 energy levels in ordinary hydrogen (left) and
in muonic hydrogen (right). Note the different energy scale. The 4 µeV
energy difference between the 2S1/2 and the 2P1/2 energy levels in ep was
discovered by Lamb and Retherford in 1947 [28] and is mainly due to the
electron-self energy correction. In the µp atom the contribution of the
Lamb Shift (LS) is such that the 2S1/2 state lies ∼ 200meV below the 2P1/2
state because of the dominant vacuum polarization effect.



1.2 P R O T O N R A D I U S M E A S U R E M E N T S T R A T E G Y 25

In fig. 1.10 the remarkable difference between ep and µp 2S–2P states is
depicted. The main contribution to the ep(2S) Lamb shift is the electron self-
energy, about 1 GHz (≈ 4µeV), which affects the binding energy of the 2S state
for 1 ppm, while the vacuum polarization effect is 40 times smaller. In contrast,
the µp(2S) Lamb shift is dominated by vacuum polarization, that contributes
as −206 meV and shifts the 2S level well below the 2P1/2,3/2 states. The effect of
the muon self-energy is about 300 times smaller (≈ 0.7meV) [41].

The S states of muonic hydrogen overlap considerably with the nuclear vol-
ume, and as a consequence their energy is much more sensitive to the proton
structure. The corrections due to the finite size of the proton represent about
1.8% of the Lamb shift for n = 2, about two orders of magnitude more than
in the ep atom. Thus, the measurement of the 2S–2P Lamb shift in muonic
hydrogen is an excellent tool to investigate the proton structure.

Such a measurement was performed at the proton accelerator of the Paul
Scherrer Institute (PSI) in Switzerland, where a beam line dedicated to low-
energy muons (with kinetic energy in the 3 keV–6 keV range) was built.

The beam line delivers about ∼ 600 muons/s that must be detected before
entering the target vessel to trigger the laser system and the acquisition; this is
done by two transmission muon detectors consisting of two stacks of ultrathin
carbon foils separated by ∼ 35cm able to detect muons with an efficiency of
80% and 70% respectively using the electrons ejected by the carbon foils when
crossed by muons.

About one half of the muons are stopped in a 20 cm long vessel filled with
1 mbar H2 [25] where they form highly excited (n ≈ 14) µp atoms.

Most of these atoms de-excite quickly to the 1S ground state, but about 1%
populates the long-lived 2S state. About 0.9 µs after the passage of the muon
through the transmission detector, a short laser pulse (75 ns) with a wavelength
tunable around 6 µm enters a non-resonant multipass mirror cavity surround-
ing the gas target, inducing a 2S → 2P transition on resonance. The estimated
laser fluence is ∼ 6mJ/cm2, which results in a transition probability of ∼ 30%
at the center of the resonance [25]. The de-excitation from the 2P to the ground
state is almost immediate (τ2P = 8.5ps) and takes place via the emission of a
1.9 keV X-ray that was detected using 20 large-area (14× 14mm2) avalanche
photo-diodes (LAAPDs) [42], whose typical time and energy resolution at 1.9 keV
are 35 ns and 25%.

A scan on the laser wavelength was performed. For every laser frequency, the
Kα X-ray time spectrum was recorded. Fig. 1.11 shows two examples of such a
time spectrum: the large “prompt” peak contains 99% of the muons that did
not form the metastable µp(2S) state and de-excite directly to the ground state,
while the 75 ns-long laser time window, where the Kα events are expected, is
indicated in red for the on-resonance and off-resonance case.

A resonance curve, shown in fig. 1.12, was obtained by plotting the number
of Kα events recorded in the laser time window normalized to the number of
prompt events as a function of the laser frequency. The resonance was fitted
using a Lorenzian function over a flat background obtaining a value of χ2 =
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Figure 1.11: Integrated X-ray spectrum recorded on (a) and off (b) resonance. The
laser time window is coloured in red, while the prompt peak is indicated
in blue [16].

28.1 for 28 degrees of freedom and the centroid position for the 2SF=1
1/2 –2PF=2

3/2
transition at 49881.88(76) GHz.

The corresponding transition energy is ∆Ẽ = 206.2949(32)meV. The pre-
dicted value of the 2SF=1

1/2 –2PF=2
3/2 energy difference, calculated as the sum of

the radiative, recoil and proton structure contributions, was

∆Ẽ = 209.9779(49)−5.2262r2
p +0.0347r3

p (1.42)

(with rp expressed in fm) and from the experimental measurement of the tran-
sition energy, a value of rp = 0.84184(67)fm was found.

Further measurements of the 2SF=0
1/2 –2PF=1

3/2 transition energy and a re-eval-
uation of the 2SF=1

1/2 –2PF=2
3/2 energy difference in µp atoms were published in

2013 [43], presenting a value of rp = 0.84087(39)fm compatible with the previ-
ous measurement in muonic hydrogen, but 7σ distant from the CODATA-2010
reference value.
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Figure 1.12: The ratio of the delayed/prompt events (blue dots) as a function of the
laser frequency, forms a resonance peak, fitted by a Lorenzian distribu-
tion over a constant background. The prediction of the transition energy
obtained using the value of rp from CODATA–2006 and e−–p scattering
is shown for comparison. The calibration of the laser system with the
absorption spectra of water vapour is also shown (black dots, green line)
[16].





C H A P T E R 2
C O N C E P T O F T H E FA M U E X P E R I M E N T

The unexpected results of the Lamb Shift experiment at PSI on the proton
charge radius [16] immediately raised great sensation in the scientific commu-
nity. The huge discrepancy between the value obtained from the Lamb shift
in muonic hydrogen and the one calculated by CODATA has not been explained
yet although several hypotheses have been made since the first days after the
publication of the results in 2010.

Pohl et al., in their review on the proton radius puzzle [25], listed some possi-
ble origins of this disagreement. The first possibility is that electronic hydrogen
experiments are almost, but not quite, as accurate as stated. In particular, the
correlation coefficient between the Rydberg constant R∞ and the proton radius
in the 2010 CODATA adjustment is 0.984, therefore any new determination of
R∞ at a level of a few parts in 1012 would help in shedding new light on the
discrepancy between ordinary and muonic hydrogen results [25]. A number of
projects for new high-precision spectroscopic measurements in hydrogen and
hydrogen-like atoms are under way in this sense (see [25] for a brief review of
these experiments). Also in the field of elastic e−–p scattering, new experiments
at low-Q2 are in programme [44].

Another possibility is that the QED calculations of the hydrogen energy levels
are not precise as stated. This is quite unlikely, given the fact that these effects
have been calculated independently by many groups using different approaches
obtaining compatible results, but it is always possible that something in the the-
ory is missing. In particular, the proton polarizability effect on the two-photon
exchange term is still affected by a relatively large theoretical uncertainty that
would be nice to reduce.

The most intriguing hypothesis is that the electron and the muon interact
differently with the proton. This difference would require physics beyond the
Standard Model that violates the principle of lepton universality. This possibil-
ity attracts discrete interest since the recent measurements of the anomalous
magnetic moment of the muons (aµ = (gµ−2)/2) shows a discrepancy with the
theory of ∆aµ = aexp

µ −ath
µ = (288±80)×10−11, that, although very small, has a

statistical significance of 3.6σ [45]. This difference, as well as the proton radius
puzzle, could be due to a new kind of interaction that acts differently on the
muon and on the electron. In addition, new gauge forces mediated by particles

29
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at the MeV–GeV scale could be dark matter candidates [46, 47]. Very recently
also a possible solution based on quantum gravity has been proposed [48].

The hypothesis of a different behaviour of the electron and the muon interact-
ing with the proton needs to be carefully tested. For this reason, a µ–p elastic
scattering experiment at PSI has been proposed to shed some light on the role
of the two-photon exchange contribution and test theories beyond the Standard
Model [49]. Another way to test possible differences in the e−–p and µ–p in-
teraction is the comparison of another characteristic of the proton, the Zemach
radius Rp, that can be obtained from the measurement of the hyperfine split-
ting (HFS) in ordinary and muonic hydrogen.

The extraction of the proton Zemach radius from the measurement of HFS
in the ground state of muonic hydrogen is the goal of the FAMU (Fisica Atomi
MUonici, Muonic Atoms Physics) collaboration and this chapter is devoted to
the description of the experimental method developed for this measurement.

The physics behind the hyperfine splitting and the role of the proton struc-
ture in this interaction will be described in sec. 2.1. In sec. 2.2 the motivation for
a precise measurement of the hyperfine splitting of the ground state of muonic
hydrogen will be briefly exposed.

The experimental method proposed for this measurements is described in
sec. 2.3: some of its key aspects will be examined in the following sections.

2.1 P H Y S I C A L O R I G I N O F T H E H Y P E R F I N E S P L I T T I N G

The hyperfine splitting of the atomic energy levels is due to the interaction be-
tween the electron and nucleus magnetic dipoles. As already outlined in sec. 1.1,
from the relativistic theory of Dirac, a spin-1

2 particle with mass m has a mag-
netic moment

µ= g
2

e
m

s (2.1)

where g ≈ 2 is the gyromagnetic ratio and s is the spin of the particle. The
magnetic moment of the proton is much smaller than the one of the electron
given the m−1 mass dependence, but its effect is still relevant. From classical
electrodynamics, a magnetic dipole generates a magnetic field [50]

B(r)= 1
|r3|

[
3(µ · r̂)r̂−µ]+ 8π

3
µδ3(r) (2.2)

The Hamiltonian for the electron in the magnetic field due to the proton mag-
netic moment is

Hhfs =
2µpe2

2Mm
3(sp · r̂)(se · r̂)− sp · se

|r|3 + 8πµpe2

3Mm
sp · seδ

3(r) (2.3)

According to the perturbation theory, the first order correction to the energy
is the expectation value of the perturbative hamiltonian Hhfs. When consider-
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ing the S states, which are spherically symmetric, the first term in eq. (2.3)
vanishes, leaving for the hydrogen generic nS state

E(1)
hfs =

8π
3
µp

e2

Mm
〈sp · se〉|ψ(0)|2 = 8

3n3a3
0
µp

e2

Mm
〈sp · se〉 (2.4)

where a0 is the Bohr radius (calculated using the reduced mass of the proton–
lepton system). The scalar product between the proton and electron spin can be
written as

sp · se = 1
2

(
S2 − s2

p − s2
e

)
(2.5)

being S the total spin operator S = sp+se and S2 the squared total spin operator.
Both the electron and the proton are spin-1

2 particles; thus the squared-spin
eigenvalue is s2

e = s2
p = 1

2 (1+ 1
2 )ħ2 = 3

4ħ2. In the triplet state, when the spins
are “parallel”, the total spin is 1 and hence S2 = 2ħ2, while in the singlet state
(“anti-parallel” spins) the total spin is 0 and S2 = 0.

This spin–spin coupling breaks the spin-degeneracy of the energy levels lift-
ing the triplet configuration and depressing the singlet one. The resulting en-
ergy difference is

∆Ehfs(1)
n = 8α4

3n3µp
m2M2

(m+M)3 (2.6)

which, for the ground state of ordinary hydrogen, corresponds to a frequency
of about 1420 MHz (or, equivalently, to a wavelength of 21 cm) that is of great
importance in radio-astronomy.

As for the case of the Lamb shift (sec. 1.2.3), QED provides the framework for
the calculation of many corrections to the value in eq. (2.6) derived by Fermi
in 1930 [51]. Once again the corrections are expressed in an expansion of the
three terms α, Zα and m/M and are typically factorized as

∆Ehfs
n = EF

n

(
1+δDirac +δQED +δstructure

)
(2.7)

where EF
n is the ∆Ehfs(1)

n in eq. (2.6) also known as Fermi splitting, while the
δ terms refer to the relativistic, QED and proton structure corrections respec-
tively (note that these effects cannot be treated separately at higher order).
Without going too deep into the details, these contributions can be summarized
as follows:

R E L A T I V I S T I C C O R R E C T I O N δDirac

Purely relativistic corrections are the simplest adjustments to hyperfine
splitting. In the same way in which the relativistic corrections to the fine
strucutre of the hydrogen atom are basically an expansion of the solution
of the Dirac equation (eq. (1.34)) in series of (Zα)2, the relativistic cor-
rections to the Fermi splitting consists of a power-series expansion of the
solution of the relativistic problem. As found by Breit [52], the hyperfine
splitting of an energy level for a generic nS state is

∆Br
nS =

1+2
√

1− (Zα)2

N2

N3γ(4γ2 −1)
EF

n (2.8)
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where N =
√

n2 −2(Zα)2(n−1)/(1+γ) and γ=
√

1− (Zα)2. The expansion
of this expression in terms of (Zα) for the hydrogen ground state gives

∆Br
1S = EF

1√
1− (Zα)2 ·

(
2
√

1− (Zα)2 −1
) =

[
1+ 3

2
(Zα)2 + 17

8
(Zα)4 + . . .

]
EF

1

(2.9)
The δDirac correction for the hydrogen ground state is thus

δDirac = ∆
Br
1S −EF

1

EF
1

=
[

3
2

(Zα)2 + 17
8

(Zα)4 + . . .
]

(2.10)

Q E D C O R R E C T I O N S δQED

The leading radiative correction in the hydrogen HFS is due to the anoma-
lous magnetic moment of the electron ae that was mentioned in sec. 1.2.2
as an effect of the electron self-energy (fig. 1.5a). The first calculation
of this effect is due to Schwinger [32], and further contributions were
included by Sommerfield [53] and Petermann [54] in 1957. The current
value of the electron anomalous magnetic moment is ae = (1159.65218076
±0.00000027)×10−6 [6]. Other QED corrections involve many complex di-
agrams that require the full employment of QED to be evaluated. Up to
terms of order α3, δQED is given by [55]

δQED = ae +α2
(
ln2− 5

2

)
− 8α3

3π
lnα

(
lnα− ln4+ 281

480

)
+18.984 · α

3

π
+ . . .

(2.11)

S T R U C T U R E C O R R E C T I O N S δstructure

As in the case of the Lamb shift, the effects of the composite structure of
the proton on the hyperfine splitting must be taken into account. In order
to separate the different contributions, structure corrections are often put
in the form [56]

δstructure = δpol +δrec +δvp +δweak +δZ (2.12)

where the different δ terms refer to the proton polarizability, recoil (and
radiative-recoil), hadronic and muonic vacuum polarization, weak inter-
action and finite size corrections respectively. Polarizability and recoil
corrections were already introduced in sec. 1.2.2 (for the specific case of
HFS see [31]), while the contribution for muonic and hadronic vacuum
polarization is due (at the leading order) to the muon and hadron loops
in the photon propagator in fig. 1.5b. The weak interaction plays a small
role in the hyperfine separation with a Z0 exchange between the proton
and the bound lepton [31, 57].

The last term is relative to the finite size of the proton. The main term
in this contribution was calculated by Zemach in 1956 [58] without the
need of a field theory treatment but starting from intuitively and rea-
sonable assumptions. The main Fermi contribution to hyperfine splitting
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(eq. (2.4)) considers the proton as a point-like particle, so the interaction
between the proton and electron magnetic dipole takes place at the posi-
tion of the proton, thus involving the squared Schrödinger wave function
at the origin (|ψ(0)|2). However, the proton has a finite size, and the nu-
clear magnetic moment is distributed over a finite region according to a
magnetic moment density distribution ρM(r). This effect can be taken
into account with the obvious substitution

|ψ(0)|2 →
∫

d3rρM(r)|ψ(r)|2 (2.13)

in eq. (2.4). Hence, the correction to hyperfine splitting due to the proton
size depends on the behaviour of the bound-state wave function close to
the origin. As shown by Zemach [58], near a distributed source of electric
field (described by the charge density ρE), given the exp(−Zαmrr) depen-
dence, the wave function can be approximated as

ψ(r)≈ψ(0)
[
1−mrZα

∫
d3r′′′|r− r′′′|ρE(r′′′)

]
(2.14)

Inserting this expression of ψ(r) in eq. (2.13) one can find

|ψ(0)|2 →|ψ(0)|2
[
1−2mrZα

∫
d3rρM(r)

∫
d3r′′′|r− r′′′|ρE(r′′′)

]
(2.15)

The last expression can be simplified by the introduction of an electro-
magnetic distribution function fEM(r) defined as the convolution of the
electric and magnetic distributions

fEM(r)=
∫

d3sρE(r− s)ρM(r) (2.16)

The Zemach correction to the hyperfine splitting then becomes

δZ =−2(Zα)mrRp (2.17)

where Rp is the first moment of fEM(r)

Rp =
∫

|r| fEM(r)d3r (2.18)

and is known as Zemach radius.

In the momentum space, the expression of the Zemach radius can be put
in the form [59]

Rp =−4
π

∫
dQ
Q2

[
GM(Q2)

µp
GE(Q2)−1

]
(2.19)

where GM and GE are the magnetic and electric form factor introduced
in sec. 1.2.1. The radiative corrections to δZ have been calculated in [60].
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EF
1 (MHz) 1418.84008(2)

δQED 0.00105621(1)
δDirac 0.00007988
δps† −0.00004011(61)
δrec 0.00000597(6)
δpol 0.0000014(6)
δvp 0.00000008(2)
δweak 0.00000006

Ehfs(th)
1 (MHz) 1420.4057(12)

Ehfs(exp)
1 (MHz) 1420.405751767(1)

Table 2.1: Numerical values for the various corrections to the hyperfine splitting in
hydrogen ([56] and references therein).
† δps indicates the proton size correction, that Volotka et al. evaluated to be
δps = 1.0154(2)δZ +1.4×10−8.

2.2 M O T I VA T I O N F O R T H E M E A S U R E M E N T O F T H E H Y P E R F I N E
S P L I T T I N G O F T H E G R O U N D S T A T E I N M U O N I C H Y D R O G E N

As in the case of the Lamb shift, the hyperfine splitting of the ground state
of ordinary and muonic hydrogen shows very different characteristics. An ex-
ample of the calculated value of the HFS for hydrogen as a result of the many
corrections presented in the previous section is shown in tab. 2.1 [56].

The experimental value of the hyperfine splitting (Ehfs(exp)
1 in tab. 2.1) is

known with a relative uncertainty smaller than 10−12, being one of the most
accurate measured quantities, while the theoretical predictions are less accu-
rate [55]. This is partially due to the increasing difficulties in the calculation
of higher order terms in the perturbative expansion in powers of α and (Zα)
and to the limited precision of the fundamental constants involved in the cal-
culation (α, R∞, m/M). But the main uncertainty comes from the proton struc-
ture contribution, and this limits the possibility to test the QED comparing the
predicted value of the hyperfine splitting in hydrogen to the experimental one.
This barrier was overcome measuring the HFS in muonium, and in this case
an agreement up to 0.5×10−7 was shown between the theory and the measure-
ment, providing an experimental confirmation to the correctness of the QED
corrections [31].

Assuming the different corrections to be accurate, one can then obtain the
Zemach radius of the proton from the hyperfine splitting in hydrogen and com-
pare it to other values based on different proton form factor fits. The recent
values of the Zemach radius are shown in tab. 2.2.

The puzzling result of the Lamb shift experiment renewed the interest in the
evaluation of the proton Zemach radius from a measurement of the hyperfine
splitting in muonic hydrogen, since a comparison between the Zemach radius
extracted from ep and µp could either reinforce or delimit the proton radius
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Reference Rp(fm)

Dupays et al. [55] (2003) 1.037(16)
Friar & Sick [61] (2004) 1.086(12)
Volotka et al. [56] (2005) 1.045(16)
Distler et al. [62] (2011) 1.045(4)

Table 2.2: Recent values of the Zemach radius of the proton Rp.

puzzle: a substantial agreement with the value of Rp obtained with ordinary
hydrogen could suggest that the explanation of the puzzle may lie in uncon-
sidered methodology uncertainties, while a big discrepancy would give good
reasons to look for new physics beyond the Standard Model [63].

In addition to this, muonic hydrogen is much more sensitive to the proton
structure if compared to ep as already explained in sec. 1.2.3. The expressions
derived in the previous section for the calculation of the HFS are still valid
in the µp case, but the relative importance of the different corrections may
change. The Fermi splitting (eq. (2.6)) is now approximatively 182 meV, cor-
responding to a wavelength of 6.8 µm. The latest theoretical values, obtained
taking into account all known corrections, are ∆Ehfs(th)

µ1 = 182.725(62)meV [59]

and ∆Ehfs(th)
µ2 = 22.8148(78)meV. The effect of the Zemach and polarizability

corrections related to the proton structure is enhanced by a factor mµ/me ≈ 206
with respect to ordinary hydrogen and becomes the most relevant correction to
the Fermi splitting in muonic hydrogen. For this reason, a measurement of the
HFS in µp cannot be used as a test of QED at low energy since the effects of
radiative corrections are overshadowed by the δstructure contribution [55].

The theoretical uncertainty on ∆Ehfs(th)
µn is of the order of 10−4 and is mainly

due to the uncertainty on the estimation of the Zemach and polarizability cor-
rections, which have to be added to not yet calculated higher order radiative
terms and to the uncertainty of δvp [55], whose contribution is much larger
than in the case of ep [64]. The accuracy of the current value of δZ and δpol may
be improved by a measurement of the hyperfine splitting in the µp ground state
if the experimental uncertainty is kept below 10−4. In particular, the polariz-
ability correction is not related to a single physical parameter like the Zemach
term, but is expressed in terms of the polarized structure functions of the proton
that introduce model-dependent parameters [55]. Therefore, the measurement
of HFS in ordinary and muonic hydrogen can be regarded as a measurement of
the proton Zemach radius Rp.

In literature, only few experimental values of the hyperfine splitting in muonic
hydrogen are present. The Lamb shift experiment at PSI (described in sec. 1.2.3),
obtained as a by-product of the measurement of the 2SF=1

1/2 → 2PF=2
3/2 and 2SF=0

1/2 →
2PF=1

3/2 transition energy, provides a value of the hyperfine splitting of the n = 2
state of 22.8089(51)meV resulting in Rp = 1.082(37)fm [43]. However the rel-
ative uncertainty of about 4% in the Zemach radius measurement is too large
for any useful comparison between different experimental values and theoret-
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Figure 2.1: Recent values of the Zemach radius of the proton obtained using data from
ordinary hydrogen (green dots) and muonic hydrogen (red dot). See tab. 2.2
and text for references.

ical predictions. The hyperfine splitting of the µp ground state was obtained
directly from the spectroscopic data of the 3P → 1S transition resulting in
∆Ehfs(exp)

µ1 = 211(19)meV [65], but the uncertainty of 9% is way too large for
the determination of the Zemach radius. The current available values of Rp,
including the one obtained with the muonic hydrogen by Antognini et al., are
shown in fig. 2.1.

A measurement of Rp with a relative uncertainty below 0.5%, in addition to
providing new data that could help to solve the proton radius puzzle, would
offer an efficient tool for testing the proton structure, imposing independent
experimental bounds on the low transfer momentum limit of the proton electric
and magnetic form factors ratio [55, 64].

These reasons, together with the outstanding progress in the development of
tunable laser systems in the far infrared (FIR) region, provide a strong motiva-
tion for the accurate determination of the Zemach radius and the development
of a suitable experimental strategy.

2.3 T H E F A M U E X P E R I M E N T A L P R O P O S A L

At present, a direct measurement of the µp(1S) hyperfine splitting has never
been performed, although several experimental methods have been proposed
in the last twenty years [66]. The recent results from the measurement of the
Lamb shift in muonic hydrogen give the motivation needed to intensify the
experimental efforts in this direction.

The FAMU experiment develops in the framework of the research on the elec-
tromagnetic structure of the proton, proposing an accurate measurement of the
hyperfine splitting of the muonic hydrogen ground state. The goal of the exper-
iment is to extract from the measurement of ∆Ehfs

µ1 the Zemach radius of the
proton with a relative precision below 1%.
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Figure 2.2: Schematic representation of the FAMU experimental method. Here a mix-
ture of hydrogen and oxygen is used for simplicity, but also other gases can
be used in place of O2 (see text for explanation).
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The experimental method for this measurement, proposed in [67], combines
elementary particles with laser spectroscopy techniques and its schematic rep-
resentation is shown in fig. 2.2. Muons slowed down and stopped in a hy-
drogen gas target form muonic hydrogen atoms: ∼ 75% in the triplet state
(F = 1) and the remaining part in the singlet configuration (F = 0). Colli-
sions between muonic hydrogen atoms and H2 molecules quickly de-excite the
µp(1S)F=1 atoms to the singlet state, leaving thermalized muonic hydrogen
atoms in the (1S)F=0 state. At this point, a laser tuned on the HFS resonance is
sent inside the target, inducing a series of singlet-to-triplet transitions. Muonic
hydrogen atoms in the (1S)F=1 state are once again de-excited back to the sin-
glet state in collision with H2 molecules and the transition energy is converted
into additional kinetic energy of the µp–H2 system. In this way the µp atom
gains about 2/3 of the hyperfine transition energy (≈ 120meV).

The challenge is then to find a method to detect these “kicked” muonic atoms
exploiting the additional kinetic energy obtained by the hyperfine de-excitation.
This requires a reaction whose rate depends on the µp velocity. The original
idea of Bakalov et al. [66] was to observe the diffusion of µp atoms in a small
volume studying the number of muon-transfer events on the target walls. These
events are easy to detect because when a muon is transferred from µp to a
heavier atom, it usually occupies an excited state and immediately de-excites to
the ground state via the emission of a characteristic X-ray. The main drawback
of this method is the impossibility to embed the target in a multipass optical
cavity in order to amplify the laser radiation. As will be shown in sec. 2.3.2,
this constraint limits dramatically the number of “spin–flipped” µps, making
this method practically inapplicable.

This approach was later improved in [67], when Bakalov et al. proposed
to study the muon-transfer events (µTEs) from muonic hydrogen to another
higher-Z gas instead of the target walls. Indeed, although theory predicts in
the general case a flat behaviour for the muon-transfer rate λpZ at low ener-
gies, there are few gases in which it is proved that this is not the case. The
first gas that was demonstrated to show such a particular behaviour was oxy-
gen [68, 69], that exhibits a sort of peak in the muon transfer rate λepith

pZ at the
epithermal energy (∼ 100eV). Later theoretical and experimental studies sug-
gested that also argon and neon could exhibit similar properties [70, 71]. Thus,
adding small quantities of one of these gases to hydrogen, one can obtain the
number of accelerated µps from the number of muon-transfer events measuring
the characteristic X-rays of the added gas.

Performing a scan over the laser frequency near the HFS transition one and
counting for each frequency the number of the µTEs, one can then obtain a
resonance plot similar to the one in fig. 1.12 and thus the value of the hyperfine
splitting of the 1S state.

In the following sections, the key elements of this method will be described.
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2.3.1 Muonic atoms formation and thermalization

A negative muon interacting in matter is initially scattered from atom to
atom, gradually losing its energy until it decays or is captured into an exter-
nal atomic orbit of an atom. The energy released in the atomic capture pro-
cess is transferred to Auger electrons that are emitted from the atom. The
characteristic cross section for the atomic muon capture1 depends not only on
Z, but also on some features of the atomic structure such as the number of
loosely bound electrons [72]. For hydrogen, the case is much simpler. Typically,
muonic hydrogen is formed at the n ∼ 14 energy levels since the optimum over-
lap of the bound muon and electron wave functions occurs (approximatively) at
n ≈ √

mr(µp)/mr(ep) ≈ 14 [41]. The formation of these highly excited atoms is
followed by a number of transitions, also called muon cascade, down to the 1S
ground state (∼ 99%) or to the 2S metastable state [41]. However, for a pres-
sure of the gas target large enough (above 10 atm) the whole cascade process
takes no more than about 1 ns [63]. The choice of a large target pressure was
motivated by the fact that simulations show that too few muons are stopped in
a gas target with smaller density [63].

A computational study of the thermalization and depolarization of the muonic
hydrogen atoms was then carried out in [63] starting from a collection of µp(1S)
atoms with the singlet and triplet state populated statistically. Part of the en-
ergy released in the de-excitation cascade of the muonic hydrogen is converted
into kinetic energy, spreading the thermal distribution over a broad interval up
to the keV range. Thermalization and depolarization take place via elastic and
spin-flip scattering with the H2 molecules and the heavier gas. The collision
with the lighter hydrogen molecules is the main component of the thermaliza-
tion process; the rate of thermalization depends just slightly on the contami-
nating gas, depending only on the hydrogen density and on the temperature
T through the molecular cross section [73, 74]. The same holds for the rate of
depolarization [63].

The thermalization process can be effectively illustrated with the time evo-
lution of the average kinetic energy of the µp(1S) atoms at different pressures
and temperatures obtained from Monte Carlo simulations.

One can easily notice in fig. 2.3a that the time needed to muonic hydrogen
atoms to thermalize has approximatively an inverse proportionality to the tar-
get pressure P (or to the atomic density φ, where φ is expressed in units of the
liquid hydrogen density ρlh = 4.25×1022 cm−3). Fig. 2.3b shows that for a fixed
density φ = 0.045 the time needed for the thermalization of µp atoms is prac-
tically the same (≈ 150ns) for all the considered temperatures. Thus, the gas
density φ is the crucial parameter that determines the thermalization time.

The quenching of the F = 1 states of muonic hydrogen takes places via the
collision with H2 molecules too. However the depolarization of µp atoms, i.e. the
depopulation of the triplet spin state, is much faster than the thermalization

1 The atomic muon capture is not to be confused with the muon capture process, which is described
by the weak process µ+p→ νµ+n.
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(a)

(b)

Figure 2.3: Time evolution of the average µp(1S) (a) for different target pressures
at a constant temperature and (b) at different temperatures for a fixed
hydrogen density [63].
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Figure 2.4: Time evolution of the population of the triplet state of muonic hydrogen at
a room temperature T = 300K for the pressures P = 5, 10, 20 and 40 atm
[63].

process [63]. As shown in fig. 2.4, the population of the µp(1S)F=1 state (normal-
ized to 3/4 at t = 0) decreases at the same pressure and temperature conditions
of fig. 2.3a about a order of magnitude faster than the thermalization process
[63].

From the results of these simulations it is possible to assume with good ac-
curacy that muonic atoms are completely thermalized and depolarized after a
time t0 given by [63]

t0[ns]≈ 20 · T[K]
P[atm]

(2.20)

2.3.2 Laser requirements

Once the muonic atoms have been thermalized and depolarized, a laser with
a frequency tuned in the HFS region is sent into the target. The required power
of a tunable laser with a wavelength near 6.8 µm to spin-flip a reasonable num-
ber of muonic atoms was evaluated in [64].

The matrix element for the singlet-to-triplet transition of µp(1S) when stim-
ulated by an oscillating magnetic field B(t)=B0 cos(2πνt) is

〈
µp(1S)F ′=1

∣∣∣∣−ecos(2πνt)
(
µp

mp
B0 · sp −

µµ

mµ
B0 · sµ

)∣∣∣∣µp(1S)F=0
〉
=

=− eħ
2

cos(2πνt)
[
µp

mp
+ µµ

mµ

]
(2.21)

where mp, mµ, sp, sµ denote the mass and the spin operator of the proton and
the muon, and the quantization axis is chosen parallel to B0 [64]. The muon
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and the proton magnetic moment µp and µµ are in unit of eħ/(2mp) and eħ/(2mµ)
respectively.

The probability per unit of time for the spin-flip transition is then

dP
dt

(ν,ν0)= 1
ħ2

(
µB|B0|

)2
[
µp

mp
+ µµ

mµ

]2
δ(ν−ν0) (2.22)

being µB the Bohr magneton and ν0 the resonance frequency. The probabil-
ity distribution ρD of ν0 around the resonance at rest ν0 = ∆Ehfs

µ1 /h is not a δ

function because of the Doppler effect, resulting in

ρD(ν0)= 1

σD
p

2π
exp

{
− (ν0 −ν0)2

2σ2
D

}
with σD = ν0 ·

√
kT

(mp +mµ)c2 (2.23)

Taking into account also the laser line width ρL(ν), the observable transition
probability per unit of time becomes [64]

dP
dt

=
∫

dν0ρD(ν0)
∫

dνρL(ν)
dP
dt

(ν,ν0)

'
√√√√ (mp +mµ)c2

2πkTν2
0

[
µB

ħ
(

me

mp
µp + me

mµ
µµ

)]2
|B0|2

(2.24)

given that σD ÀσL in the case of interest.
The squared modulus of B0 is related to the average density of energy flux F

carried by the electromagnetic field by the relation |F| = c/(2µ0)·|B0|2, where µ0
is the vacuum magnetic permeability. Integrating eq. (2.24) over the duration
of the laser pulse τ and substituting |B0|2 with the energy density flux, one
obtains

P ' µ0µ
2
B

ħ2c2ν0

√
(mp +mµ)c2

2πkT

(
me

mp
µp + me

mµ
µµ

)2
|F|τ (2.25)

Expressing the energy density flux |F| in terms of the energy output E, the
duration of the pulse τ and the laser beam cross section A (|F| = E/(Aτ), the
transition probability can be roughly expressed as [64]

P ≈ 8×10−5 · E[J]
A[m2]

p
T[K]

(2.26)

Evaluating eq. (2.26) using the energy output of the IR laser developed for the
Lamb shift experiment (0.25 mJ) [16, 25] focused on a 1 cm2 area, the spin-flip
probability results to be 1.2×10−5 at 300 K, definitely too small for the proposed
experiment [64]. The transition probability may be increased by lowering the
temperature of the target, but T should be kept higher than ∼ 10K to avoid the
formation of unwanted molecular pµp ions.

The efficiency of this process may be substantially increased by squeezing
the laser beam reducing its cross section and placing the target atoms within a
multipass cavity that provides k reflections. Using a multipass cavity similar
to the one used in the Lamb shift experiment (k ∼ 2×103) [16] it is possible to
reach a transition probability of about 12%, much more adequate for the goal
of this experiment.



2.3 T H E F A M U E X P E R I M E N T A L P R O P O S A L 43

2.3.3 Muon transfer to a higher-Z gas

Once a number of muonic hydrogen atoms large enough has been excited to
the triplet state, these atoms are de-excited back to the F = 0 state through
collisions with the H2 molecules gaining about 120 meV of kinetic energy in
the process. The key point of this experimental proposal is the possibility to
detect these kicked atoms by studying the muon transfer rate from µp to specific
higher-Z gases that exhibit a sensitive energy dependence in the muon-transfer
cross section.

The first evidence that some elements could show this particular behaviour
was obtained by Mulhauser and collaborators [69] studying the muon-transfer
rate from µp atoms to SO2 molecules in the framework of the research on the
muon-catalyzed fusion [75].

When a muon is stopped in hydrogen, it forms a muonic hydrogen atom that
is quickly de-excited and thermalized as described in the previous section. If
in the hydrogen target there are small contaminations of another gas G, the
muonic hydrogen can disappear by muon decay, with an associated rate λ0 =
τ−1
µ , or by muon transfer to the G gas with a rate λpG. In order to compare

these rates, they are usually normalized to the liquid hydrogen density ρlh.
Hence, the lifetime τ = λ−1 of the muonic hydrogen atom under the particular
condition of pressure, temperature and contamination of the experiment is [68]

τ−1 =λ=λ0 +φcGλpG (2.27)

where φ is the atomic density of the gas mixture under investigation normalized
to the density of liquid hydrogen and cG is the atomic concentration of the G
element. The characteristic X-rays of the G gas are emitted immediately after
both a direct atomic capture of a muon and the transfer of a muon from a µp
atom. However, with a properly delayed time window, one is able to consider
only the X-rays due to the muon transfer. Their time distribution NγG(t) is
expected to follow the evolution of the number of muonic hydrogen atoms Nµp(t),
being proportional to

NγG(t)∝λpGNµp(t)∝λpGN0
µpe−λt (2.28)

where N0
µp is the initial number of muonic hydrogen atoms.

Observing the time distribution of the characteristic 2P → 1S X-rays for sul-
phur and oxygen in a hydrogen target with a 0.4% addition of SO2 (fig. 2.5),
Mulhauser and collaborators found that the two gases exhibit quite different
behaviours [69].

The time spectrum of the delayed muonic sulphur 2P → 1S transition (fig. 2.5
left), as well as for the Lyman and Balmer transitions, shows an exponential
decay with a characteristic time τ1 as expected. In contrast, the time distribu-
tions of the four Lyman transitions of muonic oxygen µO present a more com-
plex structure with two different “decay” times (fig. 2.5 right) [69], the longer
(τ1) being the same of the sulphur one and the other (τ2) much shorter.



44 C O N C E P T O F T H E F A M U E X P E R I M E N T

Figure 2.5: Measured time distribution of 2P → 1S X-rays of sulphur (left) and oxy-
gen (right). Considering the sulphur X-rays distribution the prompt peak
and the exponential decay are easy to distinguished, while for oxygen the
structure of the time spectrum is more complex [69].

The sulphur characteristic time τ1, which is the same of the far delayed
events of the µO X-rays time spectrum in fig. 2.5, is interpreted as the mean
lifetime of the thermalized µ atoms [68] (τ1 =λ−1 with λ defined in eq. (2.27)).

Repeating the measurement for different pressures and concentrations of
SO2, the same shape of the time distribution of the oxygen characteristic X-rays
was observed. Additional studies using hydrogen with a O2 addition were later
performed [68, 76] obtaining the same peculiar structure in the time spectrum
of the µO X-rays.

The τ2 parameter was found to depend on the target pressure and on the oxy-
gen concentration [69]. This led to the interpretation that τ2 reflects the mean
lifetime of a particular µp(1S) state which decays mainly through a channel de-
pending on the hydrogen density cp and another one depending on the oxygen
concentration cO: the latter channel is clearly related to the muon-transfer to
oxygen, while the first one points to a thermalization process [76]. Hence, the
τ2 parameter was expressed as

τ−1
2 =λ2 =λ0 +φ

(
cpλρ+ cOλ

*
pO

)
(2.29)

where the thermalization (λρ) and the transfer to oxygen (λ*
pO) rates have been

introduced. Using the data collected at different pressures and oxygen concen-
trations, a thermalization rate of λρ = 8.2(7)×108 s−1 was obtained. The muon
transfer rate extracted from τ2 was λ*

pO = 2.1(3)×1011 s−1, to be compared to
λpO = 0.83(8)×1011 s−1 obtained from τ1 using eq. (2.27).

The short-time slope τ2 of the oxygen X-rays time distribution is then inter-
preted as the mean lifetime of ephitermal µp atoms. This can be explained using
a simplified two-components model depicted in fig. 2.6 and assuming an energy
dependence of the muon transfer rate to oxygen. As described in sec. 2.3.1,
muonic hydrogen atoms are formed in high-excited states and part of the de-
excitation energy is converted in kinetic energy. In addition, the quenching of
the triplet states also releases about 120 meV kinetic energy to the µp atoms. As
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Figure 2.6: Schematic representation of the two-component model for the muon trans-
fer to oxygen [76].
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Figure 2.7: Transfer rate λpO as a function of the µp atom kinetic energy used in [68].
The energy dependence is approximated using a simple step-function with
λpO = 8.3×1010 s−1 for ε smaller than 120 meV, λpO = 36×1010 s−1 for ε
between 120 meV and 220 meV and λpO = 0 for higher energies.

a result, the kinetic energy distribution of the muonic hydrogen is not simply a
Maxwellian distribution centered on the nominal target temperature (∼ 40meV
at room temperature), but a strong component with a mean energy of ∼ 20eV is
also present. These hot atoms are slowed down with a deceleration rate λh

0 to
epithermal energies. Once µp has reached the epithermal energy range, it can
either transfer its muon to oxygen with a rate λ∗

pO = λ
epith
pO or be thermalized

with a rate λρ. Thermalized µp atoms join the thermal component of the initial
energy distribution, whose muon transfer rate to oxygen is λpO [76].

Monte Carlo simulations performed using the ultra-simplified step function
shown in fig. 2.7 as a model for the energy dependence of the muon transfer
rate to oxygen λpO(ε) confirmed this interpretation.

A theoretical treatment of the muon transfer process is not easy. A muonic
hydrogen atom in the 1S state is a small electrically-neutral object that can eas-
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Figure 2.8: Number Q(t;P,T) of survived µp(1S) atoms in a H2–O2 gas mixture at
300 K, 35 atm for various oxygen concentrations. Q(t;P,T) is normalized
to the number of depolarized and thermalized µps at the time t0 (eq. (2.20),
here t0 = 0 for simplicity) [63].

ily penetrate the electron hull of other atoms. The muon transfer process then
is reduced to a three-bodies problem involving the proton, the muon and the
Ze nucleus. The evidence of an energy dependence in the muon transfer rate
to some specific elements (in particular, oxygen) motivated detailed theoretical
studies. However, results obtained by Dupays et al. in [77–79] and Le and Lin
[80] are not perfectly compatible and still quite controversial, also for the lack
of experimental data. An accurate analysis of this process is thus needed and
this is one of the goals of the test that will be performed in the future.

However, whatever the exact dependence of λpG(ε) on energy is, in the ex-
periment is fundamental to have a large number of µp(1S) atoms at a time
larger than the width of the peak of the prompt characteristic X-rays that fol-
low the direct atomic muon capture of the G gas. Results of the simulations
in [63] for oxygen (fig. 2.8) show that, for the same conditions of pressure and
temperature, the higher the concentration of O2, the faster the depopulation of
µp is. The optimal oxygen concentration is reached when, given a fixed number
of muons stopped in hydrogen, the maximum number of muon-transfer events
from thermalized muons takes place. The results of the Monte Carlo simulation
for different oxygen concentrations, shown in fig. 2.9, suggest that the statisti-
cal uncertainty of a measurement of the muon transfer rate (being proportional
to the inverse squared root of the number of µTEs) can be drastically reduced
by choosing the right gas concentration.
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Figure 2.9: Number of muon-transfer events from thermalized µp(1S) atoms to oxygen
for T = 300K and P = 35atm scaled for the number of muonic hydrogen
atoms thermalized and depolarized as a function of the oxygen concentra-
tion [63].
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In June 2014 the FAMU collaboration tested the feasibility of the measure-
ment described in the previous chapter using a preliminary version of the set-
up imagined for the final experiment.

To perform the measurement, a pulsed muon beam is needed. Such a require-
ment can be satisfied only by two facilities in the world: the ISIS muon source
located at the Rutherford Appleton Laboratory (RAL, UK) and the MUSE muon
science facility, which is part of J-PARC (Japan Proton Accelerator Research
Complex).

The beam test has been performed at the RIKEN-RAL muon facility, that will
be described in the first part of this chapter. The proposed experiment requires
the construction of a gas target surrounded by a detection system to measure
the X-rays coming from the muonic atoms transition inside the target. The
detection system for the X-ray spectrometry has two main components: a fast
one with five LaBr3(Ce) scintillating detectors placed near the vessel and a slow
but very accurate HPGe detector positioned far from the target.

In order to obtain information both on the X-ray energy and the time of the
detection, both the HPGe and the LaBr3 scintillating detectors were readout
using a 500 MHz digitizer. A detailed description of the Data Acquisition (DAQ)
system is given in sec. 3.3. The last part of the chapter is devoted to the software
for the off-line data analysis (sec. 3.4) and the results of this analysis strategy
applied to calibration runs.

3.1 T H E R I K E N - R A L F A C I L I T Y

The RIKEN-RAL [81] muon facility is one of the structures connected to the
ISIS proton synchrotron located at the Rutherford Appleton Laboratory in the
Harwell Oxford Science and Innovation Campus, Oxfordshire (UK). This lab-
oratory is operated by the Science and Technology Facilities Council1 (STFC),
one of the seven publicly founded Research Councils in the United Kingdom.
Among many scientific facilities, RAL hosts ISIS, a synchrotron able to acceler-
ate protons up to an energy of 800 MeV that are used to produce intense pulsed
muon and neutron beams. Two different targets for neutron production and
a target for muon production are present. A schematic view of the ISIS ac-

1 Web site: http://www.stfc.ac.uk/
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Figure 3.1: Sketch of the ISIS accelerator complex (Image credit: STFC, https://www.
stfc.ac.uk/2912.aspx).

https://www.stfc.ac.uk/2912.aspx
https://www.stfc.ac.uk/2912.aspx
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Figure 3.2: Layout of the RIKEN-RAL muon facility (Image credit: STFC).

celerator complex, including the different target stations, is shown in fig. 3.1.
The muon target is placed 20 m upstream the Target Station 1 for neutron pro-
duction and consists of a 10 mm thick carbon target. Pions produced by the
200 µA, 800 MeV proton beam impinging on carbon as well as surface muons
coming from the pion decay on the surface of the production target, are collected
and momentum-analysed in the pion injection system (fig. 3.2) and transported
into the RIKEN-RAL muon facility2 through a superconducting solenoid mag-
net, where pions decay to muons during the flight. A muon beam is delivered to
four experimental ports (Port 1–4 in fig. 3.2) dedicated to different scientific ac-
tivities such as material science exploiting various µSR techniques (muon Spin
Relaxation, Rotation and Resonance) and the study of muon catalized d-t fusion
(µCF).

3.1.1 Muon beam properties

The muon beam delivered to the experimental ports reflects the behaviour
of the ISIS proton beam showing a 50 Hz double-pulse structure. Each pulse is
about 70 ns long and the time between the two pulses is 320 ns (fig. 3.3).

To exploit most effectively this particular feature, the double-pulsed muon
beam can be separated into two single pulsed muon beams delivered to two
different experimental ports by the kicker magnet system. In order to accom-

2 The RIKEN-RAL muon facility was built by the RIKEN Nishima Center for Accelerator-Based
Science as part of an agreement between RIKEN and the UK Science and Engineering Research
Councils signed in 1990 and extended in 2000 until March 2018.
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Figure 3.3: Time structure of the pulsed muon beam. The pulse width of 70 ns is in-
tended at FWHM.

plish its task, the kicker magnet should generate a pulsed flat magnetic field
of a duration longer than 150 ns with rise/fall times shorter than 230 ns [81]
so that only the first or the second pulse is deflected. Unfortunately, at the
time of the June 2014 beam test, the use of a single-pulsed muon beam was
possible only for a muon beam with a momentum . 30MeV/c, while - as will be
explained later - the measurement would require a muon beam with a higher
momentum.

Surface muons and the ones generated by pions decay (also called decay
muons) present a very different momentum range: surface muons can have
a momentum in the range 20–30 MeV/c, while the decay muons one can vary be-
tween 20 and 120 MeV/c. The typical muon intensity is of the order of 1.5×106 /s
for surface muons while it is 4×105 /s and 7×104 /s for positive and negative
decay muons respectively. The expected intensity as a function of the beam
energy is shown in fig. 3.4 [81].

During the beam test the last collimator stage was removed, obtaining a
beam with a dimension of about 4×4cm2.

3.2 D E S C R I P T I O N O F T H E E X P E R I M E N T A L S E T- U P

The final design of the experiment presented in the previous chapter requires
an intense work of development and tuning of its many parts, from the target
to the detection system. The 2014 beam test at RAL was the first step in this
direction.

Since there was no clear idea of the expected background, the test was quite
a leap in the unknown. The main goal of the 2014 beam test was indeed to
perform an exploratory measurement to evaluate the feasibility of the final ex-
periment.

The used gas target, described in sec. 3.2.1, was indeed quite far from the
imagined design for the experiment, without the cryogenic system and the op-
tical cavity. The muon beam was monitored by a scintillating fiber hodoscope
(sec. 3.2.2) readout by Silicon PhotoMultipliers (SiPM). The X-ray detection sys-
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Figure 3.4: Calculated muon intensity as a function of the muon momentum on an
area of 4×4cm2 (from [81]).

tem consisted in five LaBr3(Ce) scintillating detectors (depicted in sec. 3.2.3)
and a HPGe detector optimized for low energy X-rays that is described in sec. 3.2.4.

3.2.1 The gas target

The gas target is a fundamental element in the performed measurement. The
gas target used in the 2014 beam test consisted of an aluminium cylindrical
vessel filled with high pressure gas. The vessel, produced by Criotec Impianti
S.r.l.3, was built in the form of a ∅125mm× 260mm cylinder with an inner
volume of 2.8 dm3 using the aluminium compound Al6061. The vessel walls
are 7 mm thick except for a 4.4 cm diameter 4 mm thick entrance window. This
choice was made to reduce the deterioration of the muon beam due to multiple
scattering and the number of stopped muons in the target wall maintaining
sufficient mechanical resistance to be certified for a pressure of tens of bars.

The cell itself is provided with a safety valve, a pressure gauge and a con-
nection flange; this whole system was protected by a metal shield in order to
prevent it from damages during the transportation and handling.

The filling gas consisted in high-purity gases provided by CK Products L.t.d.;
in particular pure hydrogen (99.999%) and a special mixture of 4% (±0.08%)
carbon dioxide (CO2) in hydrogen and of 2% (±0.04%) argon (Ar) in hydrogen.
All the gas mixtures are to be intended by weight.

The filling procedure foresaw evacuating the gas target to a pressure of 10−5 bar,
cleaning it using nitrogen and then filling with the desired high purity gas. To
avoid waste of time with this procedure, two identical targets were used.

3 Web site: http://www.criotec.it/

http://www.criotec.it/
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Figure 3.5: PhotoDetection Efficiency of the ASD-RGB3S-P SiPM (blue, solid) super-
imposed to the light output spectrum of the BCF-12 scintillating fiber (red,
dashed) [82, 83].

3.2.2 The hodoscope

A scintillating fiber hodoscope was built in order to obtain information about
the beam size, position and timing. The detector was built by the INFN sections
of Milano-Bicocca and Pavia, using 64 squared shape Bicron BCF-12 scintillat-
ing fibers [82] (32 for each side, in a x-y 10×10cm2 configuration) with a 3 mm
pitch, readout at one end by ASD-RGB3S-P Silicon PhotoMultipliers (SiPMs)
manufactured by AdvanSiD [83].

A Silicon PhotoMultiplier [84] consists of a matrix of silicon photodiodes (pix-
els) operating in the limited Geiger–Muller avalanche mode; each pixel has a
dimension in the range 20×20 – 50×50 µm2. Even if each pixel acts as a binary
device, the SiPM is able to provide an analog information given its output signal
is the sum of the signals of all the pixels and thus proportional to the light inten-
sity. This particular model has an area of 3×3mm2, a cell-size of 40×40µm2 and
a typical gain in the range 1–2.5×106. The probability for an impinging photon
to trigger a Geiger discharge in the SiPM (PhotoDetection Efficiency, PDE) is
about 20% at the emission peak of the scintillating fiber which is about 435 nm
(fig. 3.5). The typical dark count rate is of the order of 1–5×107 counts/s.

The SiPMs were both readout and powered by means of a custom made sys-
tem developed in the TPS project [85, 86] framework by the INFN section of
Roma 3. Each module (8 channels) provides a fine regulation of the individual
SiPM bias (the breakdown voltage is ∼ 29V), the signal amplification, shaping
and discrimination. The output signal of each SiPM was then delivered to a
CAEN V792 QDC, after being attenuated of a factor 10 with a custom made at-
tenuator, for the measurement of the charge integrated signal.

Before being used with the very intense muon beam at the RIKEN-RAL muon
facility, the hodoscope was tested with a low multiplicity electron beam at the
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Beam Test Facility (BTF [87]) of the INFN National Laboratories in Frascati [88].
Unfortunately, the higher intensity (∼ 70muons/spill for each fiber) of the muon
beam of the RIKEN-RAL facility caused the SiPMs saturation. A new hodoscope
with an electronic with larger dynamic range is currently being developed.

3.2.3 LaBr3(Ce) scintillating detectors

The nature of the observation of the characteristic X-ray spectrum of muonic
atoms to measure the muon transfer rate puts stringent requirements on the
detection system. On one hand, the detector must have a good energy resolution
in order to separate different lines also in the relatively low 60–500 keV energy
range. On the other hand, the detection system has to be fast enough to reduce
pile-up events down to a reasonable rate and to make the precise measurement
of the photon interaction time possible. Of course the pile-up rate can be re-
duced placing the detector at a larger distance from the target, but this would
imply the need of a larger detection area and the consequent increase of the
number of readout channels and the cost.

The requirements on the cost and timing performance identify HPGe (High
Purity Germanium) detectors as not ideal, although they present the best per-
formance in terms of energy resolution. This brought the attention of the col-
laboration on what is considered the most dramatic new alternative to NaI(Tl)
in scintillator-based γ ray spectroscopy: Lanthanum Halides. Lanthanum chlo-
ride (LaCl3(Ce)) and lanthanum bromide (LaBr3(Ce)) [89, 90] have been dis-
covered in recent years, and feature outstanding scintillator characteristics, in-
cluding a high effective Z and density, a fast decay time of 30 ns (obtained with
a 0.5% Ce3+ concentration, even faster increasing the concentration of the ac-
tivator), an emission wavelength well matched to common photocathodes and
an excellent energy resolution. LaBr3(Ce), in particular, has raised great in-
terest for a wide range of applications primarily because of its superior energy
resolution. As a result of these features, compared with the ones of the other
inorganic scintillators in tab. 3.1, LaBr3(Ce) was chosen as the heart of the
detection system although it is quite expensive.

One of the main drawbacks of LaBr3(Ce), apart from the large cost, is the
presence of a radioactive background mainly due to the presence of 138La, a
naturally occurring radioisotope of La with a 0.09% abundance and a half life
of 1.05×1011 y. In 66.4% of its decays, 138La undergoes electronic capture (EC)
to produce excited 138Ba, whose de-excitation causes the emission of a 1436 keV
γ ray. As a result of the EC, the subsequent refill of the electronic shell causes
the emission of a X-ray in the 35 keV region. The remaining 33.6% of the 138La
decays proceed via β emission (endpoint of 255 keV) to an excited state of 138Ce
which in turn decays emitting a 789 keV γ ray [94]. A α particle background is
also present at higher energy (1750–2750 keV) due to 227Ac contamination, but
the increasing knowledge on the crystal growth allows manufacturers to keep
the presence of this unwanted guest under control.
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An accurate background estimation has been performed in [94, 95], showing
a self-counting rate of (0.077±0.004) cps/g. The number of spurious events due
to the crystal activity is therefore very small.

Two kinds of lanthanum halides scintillating detectors were available at the
time of the beam test. The first one was a commercially available Brillance
380 detector by Saint-Gobain Crystals (provided with an embedded PMT) based
on a ∅1′′×1 ′′ LaBr3(5 %Ce) cylindrical crystal, while the second consisted in
a mosaic of four LaBr3(5 %Ce) crystals (Brillance 380 type) with a diameter of
0.5” and a height of 0.5”.

Figure 3.6: Picture of the so-called “mosaic” detection module, which is based on a 2×2
matrix of ∅0.5′′×0.5′′ LaBr3 scintillating crystals.

The four smaller detectors were inserted in a 80× 80× 200mm3 iron box
coated on its side with a 2 mm thick lead sheet, forming a 2×2 matrix shown
in fig. 3.6. Each ∅0.5′′×0.5′′ crystal was coupled to a Hamamatsu R11265-200
photomultiplier tube [96] using the Dow Corning4 optical glue.

The R11265-200 PMT window consists in borosilicate glass (pirex) on which
a semitransparent layer of alkali metal (ultra bialkali) is deposited. The Use
of ultra bialkali photocathodes boosts the PMT quantum efficiency (QE), i.e. the
probability for an impinging photon to produce a photoelectron, from typical
values of ∼ 25% up to 43%. This is a great improvement in the performance of
scintillator counters because the main limit in the energy resolution is given by
the relatively small number of photoelectrons due to the typical small efficiency
of traditional photocathodes: an increase of the 20% in QE is then fundamental
to improve the energy resolution.

The four smaller crystals and their corresponding PMT were assembled by
prof. Baldazzi of the Bologna INFN section; for this reason in the following they
are referred to as the BO 1–4 detector, while the Brillance 380 ∅1′′×1′′, property
of the INFN section of Milan, is indicated as LaBr3 MI.

The absorption efficiency of the Brillance 380 crystal as a function of the
photon energy for different crystal thicknesses is shown in fig. 3.7; in the 60–

4 Web site: http://www.dowcorning.com/

http://www.dowcorning.com/
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Figure 3.7: Plot of the intrinsic total efficiency of lanthanum bromide scintillators of
different thickness. Photons are assumed to be normally incident on the
crystal surface [97].

200 keV energy range, the detector efficiency is fully satisfactory even for a
0.5′′ thick crystal, while it is smaller than 50% for photon energies larger than
500 keV.

3.2.4 HPGe detectors

The gold standard for X- and γ- ray spectrometry is given by High Purity
Germanium solid state detectors. The scintillation counters limit on the energy
resolution is caused by the inefficient conversion of the deposited energy into
photoelectrons; typically each photon interaction produces only a few thousands
of photoelectrons and the statistical fluctuations in such a small number place
a limit on the achievable energy resolution [91].

The only way to reduce the statistical limit on the energy resolution is to
increase the number of information carriers generated by the radiation inter-
action. In semiconductors the energy needed to excite an electron from the
valence to the conduction band is of the order of the eV, to be compared with
the 100 eV required for the production of a single photoelectron. This explains
the wide use of semiconductors in the field of radiation detection.

The main problem in the production of semiconductor γ ray detectors is to
obtain a large enough depletion region (∼ 1cm), impossible to achieve at normal
semiconductor purity. Techniques to reduce the impurity concentration to the
level of 10×1010 atoms/cm3 (1 part in 1012) have been developed for germanium,
but not for silicon. Detectors manufactured from this ultra-pure germanium are
usually called high-purity germanium detectors.
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The detection of low energy X-rays does not require a huge depleted volume,
but a thin entrance window is needed. ORTEC provides a detector series specif-
ically designed for low energy spectroscopy (ORTEC GLP series Planar HPGe
Low-Energy Detector [98]) consisting of planar germanium detectors of various
dimensions. The planar configuration is well suited for this purpose because the
p+ electric contact on the high-purity p-type germanium bulk may be obtained
by ion implantation, a technique which allows to produce a very thin contact
layer (∼ 300nm) so that it can serve as entrance layer for weakly penetrating
radiation [91], such as low energy X-rays.

The detector used at the beam test in RAL was a ORTEC GLP-12195/10-P from
the INFN section of Milano Bicocca. This detector is based on a ∅10mm×7mm
high-purity crystal cooled at 77 K and isolated from the environment through a
127 µm thick beryllium window. The detector presents the outstanding energy
resolution typical of HPGe detectors (∼ 1keV) obtained using a 6 µs amplifier
(ORTEC 672) time constant.

Another HPGe detector from the RIKEN-RAL scientific staff was installed at
the beam test. This detector belongs to the ORTEC GMX series, a n-type coax-
ial HPGe detector with a thin entrance window made by a beryllium layer of
500 µm and a 0.3 µm p-contact on the entrance window [99].

3.3 D A T A A C Q U I S I T I O N

The scheme of the Data Acquisition (DAQ) system used at the RAL beam test
is shown in fig. 3.8. The facility provides a trigger signal which is fed into
the FAMU control board that provides the trigger with a controllable delay to
the other components of the DAQ, as sketched in fig. 3.9. The signals of the
LaBr3(Ce) scintillating detectors were digitized by a 8-channel CAEN DT5730
500 MHz digitizer, sent to the DAQ PC and stored. The digitizer, triggered by
the FAMU control board, sampled the output signal every 2 ns in a time window
of 5 µs. The signal of the GLP HPGe had to go through a stage of amplification
before it was amplified and shaped by a ORTEC 672 [100] amplifier with a time
constant of 6 µs. Both the shaped signal and the one at the output of the pre-
amplifier stage were digitized.

The signals from the 64 scintillating fibers of the hodoscope, readout by
SiPMs, were amplified and shaped by 8 TPS boards, resulting in ∼ 200ns long
signals. They are then integrated by two 32-channel CAEN V792 QDCs (Charge
to Amplitude Conversion) [101] and acquired in a gate set by the FAMU control
board (fig. 3.9).

The VME bus is connected to the PC responsible for the DAQ by means of a
SBS Bit3 bridge with an optical link.
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and the gate for the hodoscope (hodo) set by a NIM signal.
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3.4 WAV E F O R M A N A LY S I S S T R A T E G Y

As mentioned earlier, the output of the five LaBr3 scintillating detectors was
recorded by a 500 MHz digitizer for about 5 µs after the trigger given by the
FAMU control board described in the previous section. This choice came from
the specific requirements of the measurement: on one side, not only the energy
spectrum of the detected X-rays is interesting but also their time distribution,
that can be easily obtained from the digitizer output once a proper analysis
method is implemented. On the other hand, the background and, in particular,
the event rate in the detectors were unknown; from the analysis of the full
waveform of the signal one can discriminate single-pulse from pile-up events,
and (may eventually) recover information from pile-up events that otherwise
would be excluded.

The output of the digitizer consists of a short-int array of 2560 components.
Two typical examples of the digitizer output coming from the LaBr3 scintil-
lating detectors (after the inversion of the signal and the subtraction of the
baseline) are shown in fig. 3.10. Fig. 3.10b underlines the need of a method
to identify and analyse the single- and multi-pulse events recorded by the digi-
tizer.

The first step in the analysis process is the identification of the pulses in
the waveform. This can be done by using (in a slightly improper way) the
TSpectrum class of the ROOT data analysis framework [102]. This class is based
on the code originally developed by Miroslav Morhac [103–105] to analyse γ

and X ray spectra and includes a method called Search aimed at identifying
and localizing the peaks in the energy spectra; thus it can be used to identify
pulses in the waveform.

The Search method output consists of the number N of found peaks and
two arrays: one with the position of the pulses and one with their height. From
these “pulses”, events with a pulse height (PH) smaller than a certain threshold
are discarded in order to exclude fake low energy events that are actually due
to baseline fluctuations.

At this point, another kind of filter is needed. In fig. 3.11 the signal output
from the four ∅0.5′′×0.5 ′′ (BO 1–4) LaBr3 detectors is shown. It is clear that
when one of the detectors records a high energy event (that may even saturate
the output), a spike appears in all the other detectors. This sort of pick-up
noise was probably due to some interference in the power supply chain and is
larger than any reasonable pulse-height threshold. Anyway, given the spikes
are much more faster than the true pulses coming from the scintillating detec-
tor, a filter based on the signal recovery time was implemented. This is done
computing the time needed for the baseline restoration starting from the pulse
position previously obtained by the TSpectrum Search method. A threshold
of 40 ns in the recovery time is set. In this way, these events are completely
rejected.

After these preliminary “data-cleaning” operations, some of the N pulses ini-
tially identified by the Search method have been excluded from the analysis.
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Figure 3.10: Two examples of the digitizer output of the LaBr3 detector in case of (a)
low and (b) high event rate.

Starting from the first of the survived pulses in the digitizer output, the pulse
starting time and the time for the baseline restoration are evaluated. In this
time region there can be just one pulse or more (fig. 3.12). The signal between
the pulse start and the baseline restoration, together with the number of pulses
in this region, are used to define a custom Peak object.

To solve the problem of pile-up, a fit of the whole time-window is performed
with the ScanPeak method implemented in the Peak class. The fit uses Landau
functions5 to model pulses because of their simple form (three free parameters)
that ensure a high convergence rate nevertheless providing good results. The
result of this procedure applied to the pulses in fig. 3.12 is shown in fig. 3.13.

In this way, every pulse is associated to a Landau function, described by a
TF1 object in the ROOT framework, from which it is straightforward to obtain
the properties of the single pulse, such as its height (PH), its integral (PI), its
starting time and its FWHM.

5 CERN-Root package reference internet page:
http://root.cern.ch/root/html/TMath.html#TMath:Landau

http://root.cern.ch/root/html/TMath.html# TMath:Landau
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Figure 3.11: Signal output from the four ∅0.5′′×0.5 ′′ (BO 1–4) LaBr3 detectors. When
one of the detectors records a high energy event, a spike appears in all
the other detectors.

3.4.1 Calibration and performance of the LaBr3 scintillating detectors

All the five LaBr3 scintillating detectors were carefully calibrated and re-
tested in the Insulab laboratory in Como after the beam test in RAL using the
same conditions of the beam test. The calibration was performed with radioac-
tive sources of 241Am, 226Ra, 137Cs and 60Co and was useful to test the off-line
analysis procedure described in the previous section.

As mentioned earlier, the analysis procedure associates a Landau function
to each pulse, allowing an easy access to the pulse features. In order to obtain
the energy deposited in the detector, the height and the integral of any single
pulse were evaluated. In particular, the pulse integral was computed in the
range between the time t1 and t2 corresponding to the 80% of the maximum
of the signal, as shown in fig. 3.14a. The variation in the integral range did
not influence the results in terms of energy resolution and linearity of the de-
tector response. From fig. 3.14b one can observe the not surprising correlation
between the height and the integral of the pulses, that allows to perform a
parallel analysis of both the PH and PI distribution.

Fig. 3.15 shows a part of the 226Ra γ ray spectrum in both the cases of the
pulse integral (PI) and the pulse height (PH) distribution.
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Figure 3.12: Example of single- and multi-pulse events in the digitized output of the
LaBr3 scintillating detector.
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Figure 3.13: Example of single- and multi-pulse events processed by the ScanPeak
method.
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Figure 3.14: (a) Example of the pulse integration domain. (b) Correlation between
the pulse height and its integral for γ rays from 226Ra.
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Figure 3.15: A fraction of the 226Ra spectrum obtained by the distribution of the pulse
integral (left, red) and of the pulse height (right, blue) using one of the
∅0.5′′×0.5′′ detectors.
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∅∅∅0.5′′′′′′×××0.5′′′′′′ LaBr3 scintillator - BO 1
linear fit in the range 50–700 keV

P H A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 17.7466 -0.212093
242 6.83959 1.41281
295 6.29775 1.32312
352 6.5827 1.05737
609 5.02451 -0.798024

661.5 4.86031 -0.167168
1173 3.46223 -4.50921
1333 3.02198 -6.20488

P I A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 14.6443 -0.117123
242 5.99789 1.24597
295 5.20349 1.23898
352 5.1982 0.900197
609 3.83352 -0.655977

661.5 3.9364 -0.244861
1173 2.66325 -3.73608
1333 2.70729 -4.94441

∅∅∅0.5′′′′′′×××0.5′′′′′′ LaBr3 scintillator - BO 2
linear fit in the range 50–400 keV

P H A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 16.0448 -0.0615576
242 5.65531 0.935781
295 5.66562 0.321958
352 5.6423 -0.26034
609 4.21209 -3.71544

661.5 3.98937 -5.15925

P I A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 13.2688 -0.036986
242 5.28758 0.557981
295 4.94498 0.225936
352 4.71787 -0.143653
609 3.52247 -2.22217

661.5 3.58988 -3.379

Table 3.2: Performance of two (BO 1 and BO 2) of the four ∅0.5′′×0.5 ′′ LaBr3 scintil-
lating detectors.

The performance of the five scintillating detectors in terms of energy resolu-
tion and deviation from linearity are summarized in tab. 3.2, 3.3 and 3.4.

From the parallel analysis of the pulse height and pulse integral spectra it
can be noticed that the energy resolution (FWHM/mean) obtained from the dis-
tribution of the PI is always better than the one measured with the PH distri-
bution. The energy resolution obtained with the integration of the signal is in
good agreement with the values reported in literature obtained with standard
spectroscopic techniques, while the one coming from the pulse height distribu-
tion is slightly worse.

The calibration results show a surprisingly large deviation from linearity in
the detector response. This cannot be ascribed to a non-proportionality in the
crystal light yield, because several works have shown that this is of the order of
2–5% in the energy range of interest [106]. This non linearity is thus probably
originated in the PhotoMultiplier Tubes for one of the following reasons [107,
108].

The PMTs were operated at high voltage (−880 V) to obtain a clear pulse sig-
nal over the baseline in the 50–700 keV region of the energy spectrum, but a too
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∅∅∅0.5′′′′′′×××0.5′′′′′′ LaBr3 scintillator - BO 3
linear fit in the range 50–700 keV

P H A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 15.325 -0.260401
242 6.37454 1.5179
295 5.84293 1.28021
352 5.74092 1.13457
609 4.37709 -0.099341

661.5 4.25826 -0.560351
1173 2.76356 -4.98205
1333 2.14976 -6.73531

P I A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 13.179 -0.0994175
242 5.70411 1.25772
295 4.94353 0.975065
352 4.8812 0.663718
609 3.62766 -0.173637

661.5 3.67066 -0.373145
1173 2.57176 -3.39593
1333 2.30206 -4.3976

∅∅∅0.5′′′′′′×××0.5′′′′′′ LaBr3 scintillator - BO 4
linear fit in the range 50–400 keV

P H A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 15.5849 -0.0104021
242 6.02417 0.289699
295 5.59872 0.295485
352 5.58041 -0.174339
609 4.28484 -2.14126

661.5 4.07377 -3.39046

P I A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 13.467 -0.00946371
242 5.47546 0.308248
295 4.92591 0.322088
352 4.52501 -0.167537
609 3.56504 -1.65222

661.5 3.44921 -2.73596

Table 3.3: Performance of two (BO 3 and BO 4) of the four ∅0.5′′×0.5′′ LaBr3 scintil-
lating detectors.

∅∅∅1′′′′′′×××1′′′′′′ LaBr3 scintillator - MI-1
linear fit in the 50–400 keV range

P H A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 14.6036 -0.137984
242 4.95399 2.93871
295 4.65226 1.7591
352 4.20262 -0.787512
609 2.51576 -15.5447

661.5 2.38556 -18.1084

P I A N A LY S I S

Energy FWHM/mean Data-Fit
(keV) (%) (lin, %)

59.5 12.7544 -0.0549587
242 4.48343 1.42519
295 4.11013 0.793082
352 4.08191 -0.483652
609 2.89033 -8.23391

661.5 2.7273 -9.69205

Table 3.4: Performance of the ∅1′′×1′′ LaBr3 scintillating detector.
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Figure 3.16: Energy resolution (a) and deviation from the calibration values (b) for
the BO 1 detector obtained using the different methods described in the
text.

large current may cause the potentials of the voltage divider to be redistributed
and, as a result, the voltage between the dynodes and between the final dynode
and the anode change.

In addition, when a large amplitude pulse current, such as the one generated
by the intense and fast light output of a LaBr3(Ce) crystal (∼ 25 times larger
than the one generated by NaI(Tl)), flows through the PMT, space charges are
formed between the last dynodes, as well as between the final dynode and the
anode. This change in the spatial charge distribution opposes the acceleration
of electrons reducing the secondary emission ratio and the efficiency of electron
collection in the anode, and thus the pulse amplitude.

While one expects that the energy resolution measured using the PI distri-
bution could be better than the one obtained from the PH spectrum, it is inter-
esting to note that using the pulse integral distribution seems to reduce these
non-linearity effects. This is particularly evident in the performance of the MI-
1 detector (tab. 3.4) that exhibits the strongest non-proportional behaviour; in
this case the deviation from linearity at 662 keV measured with the PI analysis
is about half of the one obtained from the PH distribution.

In order to correct the effect of non-proportionality in the detector response,
a second-order polynomial fit was used to calibrate the detectors. The energy
resolution measured with both the PI and PH analysis and the value

∆= (data−fit)
Etrue

for the BO 1 detector are shown in fig. 3.16. As can be noticed, a quadratic
calibration curve reduces the effect of non-linearity keeping the deviation from
the calibration value below 1%.
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D E S C R I P T I O N O F T H E R E S U LT S

The beam test of June 2014 at RAL provided a large amount of data. In
this chapter, after a brief description of the set-up geometry (sec. 4.1) and of
the procedure used for the choice of the optimal beam energy (sec. 4.2), the
preliminary results of the analysis will be shown.

As mentioned earlier in chapter 3, four different targets were tested: a gra-
phite block and three gaseous target consisting of pure hydrogen, a hydrogen–
argon mixture and a hydrogen–carbon dioxide mixture. The main goal of the
beam test at RAL was to prove that a X-ray detection system based on LaBr3
scintillating crystals fits the requirement of the proposed experiment both in
terms of energy and time resolution. From the preliminary results of the anal-
ysis presented in sec. 4.3, one can see that the LaBr3 scintillating detectors
were able to measure all the expected peaks due to the various muonic atoms
transitions, hence the performance of the LaBr3 counters completely meets the
expectations in this sense. On the other hand, a relevant background was also
found in the scintillating counters spectra and its origin is not completely un-
derstood yet.

Also for what concerns the time spectra the situation is not so clear. Indeed,
dedicated Monte Carlo simulations require to be implemented in order to un-
derstand the obtained time spectra.

4.1 G E O M E T R I C A L D E S C R I P T I O N O F T H E E X P E R I M E N T A L S E T-
U P

The experimental set-up, whose parts have been described in the previous
chapter, was installed in the experimental Port 4 (fig. 3.2) where the measure-
ments were performed. Figure 4.1 shows the installation of the detector system
at RAL without the gas target. The last collimator stage was removed from the
beam pipe in order to make room for the experimental set-up; the hodoscope
was placed right in front of the pipe window and the four LaBr3 BO 1–4 mosaic
detectors were situated at about 17 cm from the beam axis, while the LaBr3 MI
detector was placed ∼ 1cm under the gas target, in front of a dedicated window
in the vessel support.

Given the larger solid angle covered by the ∅1′′×1′′ LaBr3 MI detector, about
a half of the events recorded by the LaBr3 scintillating counters was obtained by

69
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Figure 4.1: Picture of the experimental set-up installed at the experimental port-4 at
the RIKEN-RAL muon facility.

this detector. The proximity of the LaBr3 MI detector to the target results in a
much higher rate with respect to the four LaBr3 BO detectors that, in addition
to their smaller area (∅0.5′′), are placed at a larger distance from the target.
The high count rate is such that about 25% of the recorded events are labelled
as multi–pulse events (see sec. 3.4).

In contrast, the HPGe detectors were placed far from the target because,
given their large shaping time (6 µs), a high-rate environment would have in-
duced a constant pile-up in the detector, causing the output saturation. The en-
ergy spectra acquired with the GLP-HPGe detector shown in this chapter have
been obtained from the distribution of the pulse-height of the shaped signal
acquired by the digitizer.

4.2 B E A M E N E R G Y C A L I B R A T I O N

The momentum of the muon beam of the RIKEN–RAL facility described in
the previous chapter can vary in the 20–120 MeV/c range. To obtain the largest
achievable number of muonic hydrogen atoms, a tuning of the beam energy
was needed. The simulations of the muon interaction in the target (fig. 4.2)
indicate that the best energy is the 60–64 MeV/c range. The fine tuning was
performed by counting with the HPGe detector the oxygen characteristic X-rays
for different beam energies when the gas target filled with the H2–CO2 mixture
(sec. 4.3.4) was exposed to the muon beam. The maximum number of X-rays
with an energy corresponding to the 2P → 1S transition in muonic oxygen oc-
curred at 61 MeV/c, hence this was considered the optimal energy for the data
acquisition.
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Figure 4.2: Fraction of muons stopped in the entrance window, in the target and in
the rear wall as a function of the muon beam momentum obtained with a
Monte Carlo simulation [109].

4.3 D A T A A N LY S I S

The first aim of the 2014 beam test was to determine the suitability of the
detectors described in the previous chapter for the proposed measurement. As
already outlined in chapter 3, at the time of the beam test there was no idea of
the background induced by the intense muon flux provided by the RAL accelera-
tor complex, hence also the complete saturation of the detectors was considered
as a possible scenario.

In an environment with a large background, also the detection of character-
istic X-rays was not taken for granted: for this reason different elements were
tested using a graphite target (pure carbon) and an aluminium vessel filled
with several mixtures of hydrogen and other gases. The first task of the analy-
sis is thus to identify the peaks due to the characteristic X-rays of the muonic
atoms in the energy spectrum obtained by the HPGe and the LaBr3 detectors.

However, as was pointed out in chapter 2, the X-ray spectrum is not the only
object of interest in the proposed measurement; the event time distribution in
fact has a very important role. The time spectrum is particularly important
for the gas target, especially for the H2–CO2 mixture, since oxygen is the main
candidate for a muon-transfer experiment given the energy dependence of the
transfer rate at epithermal energies.

4.3.1 Graphite target

The first and simplest target that was considered was a small high-purity
∼ 1cm thick graphite block. From a block of such a pure material, only the
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Transition
Transition energy for various elements (keV)

C N O Al Ar

Kα 75.258 102.556 133.535 346.828 644.004
Kβ 89.212 121.547 158.422 412.877 770.6
Kγ 94.095 128.194 167.125 435.981 815.0
Lα 24.830 65.756 126.237
Lβ 33.521 88.771 170.420
Lγ 99.423 190.870

Table 4.1: Relevant transition energies for the muonic atoms formed by the selected
elements [72, 110–112].

Energy (keV)
65 70 75 80 85 90 95 100 105 110

C
ou

nt
s/

33
3 

eV

0
20
40
60
80

100
120
140
160
180
200
220

Figure 4.3: The three lines at 75.26, 89.21 and 94.1 keV of muonic carbon in the energy
spectrum of the HPGe detector.

characteristic X-rays of carbon are expected. The relevant transitions in the
muonic carbon atom (µC) are [72] the Kα (75.2588 keV), Kβ (89.212 ) and Kγ

(94.095 keV) lines (see tab. 4.1).
The purity of the target was confirmed by the X-ray spectrum measured by

the HPGe detector (fig. 4.3), where all the lines can be ascribed to muonic car-
bon.

The X-ray spectrum recorded by the LaBr3 detectors is shown in fig. 4.4. The
better energy resolution of the spectrum obtained with the pulse-integral dis-
tribution with respect to the one obtained with the PH is evident from the sepa-
ration between the main peak at 75.26 keV and the ones at 89.21 and 94.1 keV,
that cannot be individually resolved. Given the better performance in terms
of energy resolution, all the spectra presented in the rest of the chapter are
obtained with the PI method.

The time distribution of the X-rays detected by the four BO-1–4 and the LaBr3
MI scintillating detectors is reported in fig. 4.5. Observing the time spectrum
one can notice two intense peaks with FWHM ≈ 70ns separated by 320 ns cor-
responding to the two beam spills (fig. 3.3). A large number of X-rays are then
emitted immediately after the muon interaction with the target, and in the
following these events are referred to as prompt events. After the two pulses,
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Figure 4.4: X-ray spectrum of the graphite target measured with the LaBr3 scintillat-
ing detectors and obtained from (a) the PH and (b) the PI distributions.

the number of recorded events decreases exponentially with a time constant
τBo = 1977± 5ns for the BO detectors and τMi = 1989± 7ns for the MI detec-
tor. This exponential tail is actually the sum of two exponentials: one with the
slope set by the free muon decay rate λ−1

0 = τ0 = 2196.98ns and the other with
the slope given by the lifetime of the µC atom, which is ≈ 2020ns ([113] and
references therein) and dominates in this situation.

Selecting the events recorded during the beam spill (i.e. the ones under the
two pulses in fig. 4.5), and considering their energy spectrum, it can be noticed
(fig. 4.6) that most of the carbon characteristic X-rays are emitted promptly af-
ter the muon interaction, while events occurring outside the two pulses (here
generically labelled as delayed) may be ascribed to electrons with the muon
decay or γ- and X-rays following the muon capture process, which generate
a diffuse background with a peak at 511 keV. The origin of this peak is not
completely understood yet: contributions from the internal radioactivity of the
LaBr3 detectors and from the environment should not be so relevant; the main
suspects for this peak are the electrons from muons decay. The electrons gen-
erated by the decay of the muons in fact may have an energy of the order of
50 MeV, thus it is possible that small electromagnetic showers may develop in
the lead shield of the LaBr3 mosaic or in the aluminium coating of the crystals.

In general, the origin of this background is somehow unclear, and it will be
a constant presence also for the various gas targets described in the following
sections.

4.3.2 Pure hydrogen target

Among the different gaseous targets, the simplest one is a pure hydrogen
target. While muonic hydrogen transitions are not expected to give any contri-
bution in the X-ray spectrum, the aluminium of the vessel must be considered.
Fig. 4.2 shows that a large number of muons is stopped in the walls of the alu-
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Figure 4.5: Time spectrum of the events recorded by the LaBr3 scintillating detectors
for the graphite target. The exponential decay is characterized by a time
constant of τBo = 1977±5ns for the BO detectors and τMi = 1989±7ns for
the MI one.
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prompt events spectrum.
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Figure 4.7: Energy spectrum recorded by the HPGe detector for the pure H2 target.
The three lines are due to the Lα (65.756 keV), Lβ (88.771 keV) and Lγ

(99.423 keV) transition of the muonic aluminium atoms.

minium vessel where they form µAl atoms. A study of a pure H2 target is thus
needed in order to understand the background due to aluminium characteristic
X-rays.

In the X-ray spectrum obtained by the HPGe detector (fig. 4.7) only the char-
acteristic X-rays of aluminium are present. This is an evidence that there are
no contaminations in the gas target.

The X-ray spectrum obtained using the LaBr3 scintillating detectors (fig. 4.8)
confirms the observation of the characteristic lines of aluminium, including the
K-lines (346.828, 412.877 and 435.981 keV) that were not recorded by the HPGe
detector because they were out of its energy range. When considering the de-
layed events detected by the LaBr3 scintillation counters, the peak at 511 keV
is still present. Considering gaseous targets, an additional contribution to this
peak may come from the development of small electromagnetic showers in the
vessel walls. However, a dedicated Monte Carlo simulation has to be imple-
mented in order to confirm this hypothesis.

The time spectrum of the recorded events is not as simple as the one of the
graphite case. The time distribution is the sum of the free-µ decay distribu-
tion, the µp decay distribution and the time distributions of the decays of other
muonic atoms. In particular, the µp lifetime varies with the hydrogen pressure
(here 35 bar), and its contribution in this case is difficult to estimate because
there is no experimental indication of the number of µp formed inside the tar-
get nor of the exact effect of such a high pressure on the µp lifetime. As shown
above, muonic aluminium is the only muonic atom formed apart from µp and
has a lifetime of ≈ 880ns [113]. None of these processes involve directly the
emission of a X-ray, but the electrons emitted in the muons decays can generate
photons interacting with the target walls or deposit part of their energy directly
in the LaBr3 crystals. The contribution to the background of electrons interact-
ing with the scintillating crystals must be studied with a dedicated simulation,
but it can also be removed by means of an anti-coincidence veto based on plastic
scintillators.
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Figure 4.8: X-ray spectrum obtained with the LaBr3 scintillating detectors for the H2
target.
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Figure 4.9: Time spectrum of the recorded events for the H2 target. The solid red
line is the fitted function. The dashed green line describes the exponential
decay in the far delayed range with the τ1 characteristic time, while the
orange dashed line corresponds to the function in eq. (4.1) (the τ2 charac-
teristic time). Finally, the dashed blue line represents a gaussian function
that models the prompt peak. The same color convention is adopted for all
the figures of this kind in the rest of the chapter.

The sum of all these different terms results in a time distribution which is
far from being described by a single exponential. As a first approximation, the
distribution of the delayed events has a double-exponential shape (fig. 4.9). The
fit in fig. 4.9 has been performed fixing the τ1 characteristic time of the expo-
nential in the far delayed range (3500–4900 ns) and using a function of the type

C ·
(
e−x/τ2 −e−x/τr

)
(4.1)

to take into account the correction of the single exponential for times closer to
the prompt peak, which is modelled using a gaussian function. The exponen-
tial with the smaller decay time describes events which can be ascribed to the
decay of the muonic atom with the shortest lifetime. The τ1 and τ2 charac-
teristic times obtained from the fits in fig. 4.8 are τ1 = 1401.28±19.49ns and
τ2 = 573.15±6.56ns for the data collected by the four BO detectors, while for
the MI detector the values are τ1 = 1328.02±15.59ns and τ2 = 727.11±11ns.
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Figure 4.10: Energy spectrum obtained with the GLP HPGe detector for the H2–Ar
target.

4.3.3 Argon target

The muon transfer rate to argon, as to many other elements, has been stud-
ied in the past in the framework of muon-cathalized fusion and showed a slight
energy dependence in the epithermal range. For this reason a mixture of hydro-
gen and argon at a pressure of 40 bar was chosen to be tested. The argon mass
concentration was 2%, which resulted in an atomic concentration cAr of about
1.03‰.

In the energy spectrum recorded by the GLP HPGe detector, shown in fig. 4.10,
only the aluminium lines together with the argon Lα peak are present, confirm-
ing the purity of the gas mixture.

The spectrum obtained from the LaBr3 scintillating detector allows to detect
also the argon Kα transition at 673 keV (fig. 4.11). As in the case of the pure-
hydrogen target, a peak at 511 keV appears in the delayed spectrum, but this
time there is also a peak at 400 keV which has not been explained yet.

Also in this case, the time distribution (fig. 4.12) of the delayed events cannot
be described by a single exponential. With respect to the pure-hydrogen target,
an additional contribution from the decay of µAr atoms (which have a lifetime1

of 550 ns [113]) is present. Performing the same kind of fit used in the previous
section, values of τ1 = 875.77±7.19ns and τ2 = 580.30±9.72ns are obtained for
the data collected by the LaBr3 MI detector, while for the events recorded by the
LaBr3 BO 1–4 mosaic one finds τ1 = 892.78±9.14ns and τ2 = 468.94±5.56ns.

A detailed study of the different components contributing to the time spec-
trum has not been performed yet, thus only a qualitative comparison between
the results of the BO 1–4 mosaic and the MI detector is possible. However, in the
case of the H2–Ar target, the τ1 and τ2 characteristic times are smaller than
the ones obtained with the pure-H2 target for both the LaBr3 detectors modules,
and this difference may be ascribed to the presence of µAr atoms, which have

1 The tabulated value of the lifetime of muonic argon may be actually overestimated because it
does not take into account the effect of the high-pressure environment on the µAr lifetime.
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Figure 4.11: Energy spectra of the prompt and delayed events recorded by the LaBr3
scintillating counters for the H2–Ar target.
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Figure 4.12: Time distribution of the events recorded by the LaBr3 detectors for the
H2–Ar target. The characteristic times τ1 and τ2 are referred to the slow-
and fast- component of the delayed events distribution respectively.
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Figure 4.13: Energy spectrum as measured by the GLP HPGe detector for the H2–CO2
gas target.

a lifetime much shorter than the one of muonic aluminium, thus reducing the
time scale of the exponential decay of the events time distribution.

4.3.4 Carbon dioxide target

As mentioned earlier in chapter 2, the most promising candidate for the gas
mixture is oxygen. Oxygen is indeed one of the few elements that showed a
clear energy dependence of the muon-transfer rate in the epithermal range,
and for this reason a discrete number of experimental studies have already
been performed in the nineties.

The natural choice for testing the detectors sensitivity to oxygen and the pres-
ence of an anomalous muon-transfer rate at epithermal energies would have
been to use a H2–O2 mixture with the largest possible oxygen concentration.
However, such a high concentration of oxygen in a mixture with hydrogen at
high pressure is a problem from the safety point of view, given the possibility
of explosion. This problem can be solved using carbon dioxide (CO2) instead of
molecular oxygen in the gas mixture; thus the target was filled with a mixture
of 96% H2 and 4% (mass) CO2 at a pressure of 38 bar, which, in terms of atomic
concentration of oxygen, results in cO ' 3.8‰.

The choice of this concentration clashes with the optimal concentration de-
picted in chapter 2 (fig. 2.9), where the value of the oxygen density that would
have guaranteed the largest number of muon-transfer events to oxygen was es-
timated in cO ' 0.2‰. This happened because the results of the simulation [63]
presented in sec. 2.3.3 were not available at the time of the beam test, and thus
the number of delayed oxygen X-rays due to the higher muon-transfer rate from
µp to oxygen at epithermal energies is not expected to be particularly relevant.

Once again, the energy spectrum measured by the GLP HPGe detector (fig. 4.13
was used to guarantee that there were no contamination in the gas target and
the observation of the lines corresponding to the µAl, µC and µO transitions
confirms the composition of the gas mixture.



4.3 D A T A A N LY S I S 83

Energy (keV)
50 100 150 200 250 300

C
ou

nt
s/

50
0 

eV

0

5000

10000

15000

20000

25000

30000

35000 Prompt events

Delayed events
Al Lα
Al Lβ
Al Lγ O Kα O Kβ

O Kγ

C Kα

Energy (keV)
300 350 400 450 500 550 600 650 700

C
ou

nt
s/

50
0 

eV

210

310

Al Kα

Al Kβ

Al Kγ

511 keV

(a) LaBr3 BO 1–4 mosaic

Energy (keV)
50 100 150 200 250 300

C
ou

nt
s/

50
0 

eV

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000
Prompt events
Delayed events

Al Lα
Al Lβ
Al Lγ

O KαO Kβ

O Kγ

C Kα

Energy (keV)
300 350 400 450 500 550 600 650 700

C
ou

nt
s/

0.
5 

ke
V

310

410

Al Kα

Al Kβ

Al Kγ

511 keV

(b) LaBr3 MI

Figure 4.14: Energy spectrum measured by the LaBr3 detectors with the H2–CO2 gas
target. The oxygen Kα, Kβ and Kγ lines are clearly visible.

The energy spectrum as recorded by the LaBr3 detectors is shown in fig. 4.14.
The presence of oxygen is evident from the appearance of the Kα, Kβ and Kγ

transition lines of µO. In the high energy region of the spectrum, only the peaks
due to µAl and the line at 511 keV are present, while the mysterious peak at
≈ 400keV observed in the delayed events obtained with the H2–Ar gas target
(sec. 4.3.3) vanishes, leaving this puzzle confined to the argon mixture only.

The time distribution of the events recorded by the LaBr3 scintillating de-
tectors can be approximated with a double-exponential decay also in this case
(fig. 4.15). The characteristic times obtained from the fit are τ1 = 1369.43±
7.59ns and τ2 = 609.81±3.02ns for the LaBr BO mosaic, while for the MI de-
tector the values are τ1 = 1271.51±6.91ns and τ2 = 681.52±5.83ns. The dif-
ficulties in treating these distributions without a solid theoretical background
are the same encountered in the case of the argon target, but still some qualita-
tive considerations are feasible. In this situation the contributions to the time
spectrum come from the decay of the free muons and of the various muonic
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Figure 4.15: Time spectrum of the events obtained with the H2–CO2 gas target and
recorded by the four LaBr3 BO 1–4 detectors and by the ∅1′′×1′′ LaBr3
scintillator. The τ1 and τ2 characteristic times are referred to the slow
(far delayed) component and to the faster component respectively.

atoms generated in the target (µAl, µO, µC, µp) and, last but not least, from
the various atomic transitions of the muonic atoms.

Assuming that the main difference in the events time distribution for the
pure hydrogen and the H2–Ar/CO2 mixtures is due to the different decay rate
of the muonic atoms formed with the elements present in the target, one can
compare the values of τ1 obtained for the different mixtures and find that (at
least) their hierarchy is consistent. A comparison of the τ2 parameter is much
more delicate, given the strong dependence on τ1. Indeed, the lifetime of the
µO atoms is ≈ 1800ns [113], thus one can expect the τ1 time scale to be slightly
smaller than the one obtained from the pure hydrogen target (sec. 4.3.2). On the
contrary, given the much shorter lifetime of muonic argon (≈ 537ns), the value
of τ1 for the H2–CO2 target is expected to be larger than the one of the H2–Ar
mixture (sec. 4.3.3). As one can see from the values of τ1 obtained from the
different gaseous targets summarized in tab. 4.2, these predictions are verified.

Despite the fact that the oxygen concentration was not the ideal one, one can
always look for an anomalous distribution of the muonic oxygen characteristic
X-rays due to the spin-flip of some residual µp(1S)F=1 atoms that can profit
from the higher muon-transfer rate to oxygen at epithermal energies. This can
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Detector
τ1 (ns) for target

H2 H2 + (4%)CO2 H2 + (2%)Ar

BO 1–4
1401.28±19.49 1369.43±7.59 892.78±9.14

mosaic

MI 1328.02±15.59 1271.51±6.91 875.77±7.19

Table 4.2: τ1 characteristic times describing the far delayed events distribution for the
three different gaseous targets.
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Figure 4.16: Muonic oxygen transition lines measured with the LaBr3 BO mosaic de-
tectors. The relative intensity of the µO K lines is roughly in agreement
with the values measured in [76].

be done considering the time distribution of the events under the Kα peak of
oxygen. This peak corresponds to an energy of 133.53 keV and does not overlap
with any other characteristic X-ray but background. The excellent energy res-
olution of the LaBr3 detectors (8.59% for the BO mosaic and 8.44% for the MI
detector at 133 keV) allows to separate this peak from the Kβ and Kγ lines of
muonic oxygen (fig. 4.16).

The events under the oxygen 133 keV peak have been selected and fitted fol-
lowing the procedure already used in the previous analysis of the time spectra,
and the result has been compared to the ones obtained selecting other portions
of the energy spectrum, namely a test window between 200 and 290 keV where
no particular structure was supposed to play any role, and the 511 keV peak
(fig. 4.17).

While the time distribution of the events in the 511 keV region has a single-
exponential shape with τ511 = 1091.50±38.11ns, the temporal distributions of
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Figure 4.17: Temporal distribution of the events corresponding to different regions of
the energy spectrum obtained with the LaBr3 MI detector.
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Figure 4.18: Energy and time spectrum of the events recorded after t = 680ns with the
H2–CO2 mixture (blue) and the graphite (red) target. The energy spectra
(a) have been rescaled differently for the two targets in order to allow a
better comparison.

the events under the Kα µO peak and in the test energy window are essentially
identical and no evidence of an abundance of delayed oxygen X-rays is found.

This is probably due to the high concentration of atomic oxygen which re-
duces the population of µp atoms in the triplet state in a time too small to let
them play a significant role in the time region outside the two pulses corre-
sponding to the beam spills.

4.4 F I N A L R E M A R K S

In conclusion, the LaBr3 detectors completely met the requirements of the
experiment for what concerns their performance in terms of energy resolution,
while the events time spectra are not well understood yet and require some
additional simulations and theoretical work.

Another unclear aspect in the data acquired during the June 2014 test beam
is the background which afflicts the LaBr3 detectors. The intrinsic radioactivity
of lanthanum is too small to play a significant role, while the presence of acti-
vated materials in the experimental area has been ruled out analysing the data
of some runs acquired when the muon beam was down. As explained earlier,
the main suspects for the origin of this background are electrons generated in
muons decays interacting with matter around the crystals or with the crystals
themselves.

This hypothesis can also explain the fact that the energy spectrum of the
events occurring after 680 ns from the trigger for the graphite and the H2–CO2
target is essentially the same for the two cases, though it shows a substan-
tially different time distribution (fig. 4.18). As already discussed, to verify this
possibility a Monte Carlo simulation of the target and the detection system is
needed.





C H A P T E R 5
C O N C L U S I O N S A N D O U T L O O K S

The proton radius puzzle is one of the many intriguing problems in modern
physics. Four years after the publication of the results of the Lamb shift ex-
periment at PSI that provided a measurement of the RMS proton charge radius
inconsistent with the ones obtained in previous experiments, a solution of the
problem is still far.

In this framework, many hypotheses are still on the table: from unconsid-
ered methodology uncertainties in the measurements to effects of new physics
beyond the Standard Model. The FAMU experiment aims at shading new light
on the electromagnetic structure of the proton by measuring the hyperfine split-
ting (HFS) of the ground state of muonic hydrogen. The value of this transition
is indeed sensitive to the proton Zemach radius, that is the first moment of the
convolution of the proton charge and magnetic moment density. A comparison
with the values extracted from previous experiments performed with electrons,
may delimit or strengthen the proton radius puzzle.

In this experiment the techniques of particle physics and atomic spectroscopy
are combined to obtain the first direct measurement of the ground state HFS of
muonic hydrogen. The experimental strategy relies on the transfer of a nega-
tive muon from muonic hydrogen to some specific higher-Z gas. Singlet-state
muonic hydrogen atoms in thermal equilibrium are excited in the triplet state
by a ∼6.8 µm wavelength laser pulse; these atoms are de-excited back to the
singlet configuration in collision with H2 molecules and the transition energy
(≈ 180meV) is converted into kinetic energy of the H2–µp system; thus the
muonic hydrogen atom results accelerated of about 120 meV (∼ 2/3 of the avail-
able energy). These “kicked” atoms can be recognized since the transfer of their
muon to some other element (e.g. oxygen) occurs at higher rate with respect to
thermalized muonic hydrogen; indeed, the muonic atom formed after the muon
passage is in an excited state and promptly de-excites to its ground state emit-
ting a characteristic X-ray that can be detected. Hence, counting the number
of characteristic X-rays emitted after the laser pulse for different laser frequen-
cies one can obtain a resonance-like plot from which the hyperfine transition
energy can be extracted.

In this thesis the results of a preliminary detection system tested in June
2014 at the Rutherford-Appleton Laboratories are described. A hodoscope was
built for the beam monitoring and a HPGe detector specifically suited for low-
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energy X-rays was used to obtain a benchmark of the X-ray spectrum, while the
heart of the X-spectrometric system consisted in scintillating detectors based
on LaBr3(Ce) crystals. In order to obtain the largest achievable amount of in-
formation from the data of the LaBr3 scintillating detectors, the full waveform
was recorded by a 500 MHz digitizer for a time of 5 µs after the trigger provided
by the muon beam. This required the development of an algorithm for the off-
line analysis of the waveforms; this program is able to automatically identify
the pulses in the signal and to extract all the desired information (pulse height,
integral, starting time, etc.) with a fit of every single pulse with a Landau func-
tion. In this way, pile-up events (typically ∼ 26% of the data set) are recovered
for the analysis.

During the beam test a graphite block and three different gaseous targets
were exposed to a muon beam. In all the cases, the detection system was capa-
ble of identifying all the expected muonic atoms transitions, despite the pres-
ence of a quite relevant diffused background whose origin is still unclear. The
obtained events time distributions roughly agree with reasonable expectations,
but require some additional theoretical work and dedicated Monte Carlo simu-
lations to be really understood. The explanation of the background is of great
importance for a correct interpretation of the data, and a Monte Carlo simula-
tion of the detector system may have a primary role in performing this task.
Even if the background spectrum is quite “smooth” in the region of the muonic
oxygen characteristic peaks and this could allow to recognise quite easily a peak
of events occurring after the laser pulse, a reduction of the background would
be welcome.

A new beam test will be performed at RAL in the summer 2015 treasuring
the experience of 2014. In particular, some changes are foreseen in the experi-
mental set-up:

G A S T A R G E T A cryogenic gas target is being currently developed for the 2015
beam test. While a lower temperature would allow a faster thermaliza-
tion of the muonic hydrogen atoms, the impact of the larger material bud-
get on the detection of ∼ 100keV X-rays might be a problem. This effect
will be studied with dedicated Monte Carlo simulations.

The result of the simulation which has determined the optimal oxygen
concentration (sec. 2.3.3) has given a value much smaller than what ex-
pected. This opens the door for the H2–O2 gas mixture, since with this
level of oxygen concentration the target might fulfill the safety require-
ments also at high pressure.

H O D O S C O P E The readout electronics of the hodoscope used in the 2014 beam
test was not fit for the high intensity muon beam of the RIKEN-RAL facil-
ity and the output signals were saturated. A new hodoscope is currently
under construction using ∅1mm scintillating fibers. Also the electronics
will be replaced in order to achieve a larger dynamic range that would
allow to manage signals corresponding to about 70 muons/spill for each
fiber.
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S C I N T I L L A T I N G C R Y S T A L S For the 2015 beam test four new ∅1.5′′ × 1.5′′

Brillance LaBr3(Ce) crystals, in addition to the ones already used in the
2014 beam test, will be present. To avoid the non-linearity observed at
high energies (sec. 3.2.3), a specific PMT voltage divider has been devel-
oped.

As mentioned earlier in chapter 4, the main suspects for the background
observed by the LaBr3 counters are electrons from muon decays; the en-
ergy deposit of such electrons in the scintillating crystals may be identi-
fied by means of an anti-coincidence veto able to discriminate the passage
of photons from charged particles. The most natural choice is the use of
plastic scintillator tiles or fibers rolled around the crystals themselves.

The FAMU experiment combines many different aspects of physics, and for all
of them there is work to do: together with the detectors, also the laser system
is currently being developed [114], while the theoretical work on atomic dynam-
ics and on the muon transfer process is still going on. The conjoint efforts of
different parts of the physics community are indeed needed to shed some light
on such a fascinating problem.
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