Diffraction measurements with a boron-based GEM neutron detector

Gabriele Croci, Giorgia Albani, Carlo Cazzaniga, Enrico Perelli Cippo, Erik Schooneveld, Gerardo Claps, Anna Cremona, Giovanni Grosso, Andrea Muraro, Fabrizio Murtas, Marica Rebai, Antonella Scherillo, Marco Tardocchi and Giuseppe Gorini

EPL, 107 (2014) 12001

Please visit the website
www.epljournal.org

Note that the author(s) has the following rights:
– immediately after publication, to use all or part of the article without revision or modification, including the EPLA-formatted version, for personal compilations and use only;
– no sooner than 12 months from the date of first publication, to include the accepted manuscript (all or part), but not the EPLA-formatted version, on institute repositories or third-party websites provided a link to the online EPL abstract or EPL homepage is included.
For complete copyright details see: https://authors.epletters.net/documents/copyright.pdf.
The Editorial Board invites you to submit your letters to EPL

EPL is a leading international journal publishing original, high-quality Letters in all areas of physics, ranging from condensed matter topics and interdisciplinary research to astrophysics, geophysics, plasma and fusion sciences, including those with application potential.

The high profile of the journal combined with the excellent scientific quality of the articles continue to ensure EPL is an essential resource for its worldwide audience. EPL offers authors global visibility and a great opportunity to share their work with others across the whole of the physics community.

Run by active scientists, for scientists

EPL is reviewed by scientists for scientists, to serve and support the international scientific community. The Editorial Board is a team of active research scientists with an expert understanding of the needs of both authors and researchers.
Six good reasons to publish with EPL

We want to work with you to help gain recognition for your high-quality work through worldwide visibility and high citations.

1. **Quality** – The 40+ Co-Editors, who are experts in their fields, oversee the entire peer-review process, from selection of the referees to making all final acceptance decisions.

2. **Impact Factor** – The 2010 Impact Factor is 2.753; your work will be in the right place to be cited by your peers.

3. **Speed of processing** – We aim to provide you with a quick and efficient service; the median time from acceptance to online publication is 30 days.

4. **High visibility** – All articles are free to read for 30 days from online publication date.

5. **International reach** – Over 2,000 institutions have access to EPL, enabling your work to be read by your peers in 100 countries.

6. **Open Access** – Articles are offered open access for a one-off author payment.

Details on preparing, submitting and tracking the progress of your manuscript from submission to acceptance are available on the EPL submission website www.epletters.net.

If you would like further information about our author service or EPL in general, please visit www.epljournal.org or e-mail us at info@epljournal.org.

“We’ve had a very positive experience with EPL, and not only on this occasion. The fact that one can identify an appropriate editor, and the editor is an active scientist in the field, makes a huge difference.”

Dr. Ivar Martinv
Los Alamos National Laboratory, USA
Visit the EPL website to read the latest articles published in cutting-edge fields of research from across the whole of physics.

Each compilation is led by its own Co-Editor, who is a leading scientist in that field, and who is responsible for overseeing the review process, selecting referees and making publication decisions for every manuscript.

- Graphene
- Liquid Crystals
- High Transition Temperature Superconductors
- Quantum Information Processing & Communication
- Biological & Soft Matter Physics
- Atomic, Molecular & Optical Physics
- Bose–Einstein Condensates & Ultracold Gases
- Metamaterials, Nanostructures & Magnetic Materials
- Mathematical Methods
- Physics of Gases, Plasmas & Electric Fields
- High Energy Nuclear Physics

If you are working on research in any of these areas, the Co-Editors would be delighted to receive your submission. Articles should be submitted via the automated manuscript system at www.epletters.net.

If you would like further information about our author service or EPL in general, please visit www.epljournal.org or e-mail us at info@epljournal.org.
Diffraction measurements with a boron-based GEM neutron detector

Gabriele Croci1,5(a), Giorgia Albani2, Carlo Cazzaniga2, Enrico Perelli Cippo1, Erik Schooneveld3, Gerardo Claps4, Anna Cremona1, Giovanni Grosso1, Andrea Muraro1, Fabrizio Murtas4, Marica Rebai2, Antonella Scherillo3, Marco Tardocchi1 and Giuseppe Gorini2,5

1 Istituto di Fisica del Plasma (IFP-CNR) - Via Cozzi 53, 20125 Milano, Italy
2 Dipartimento di Fisica, Università degli studi di Milano Bicocca - Piazza della Scienza 3, 20126 Milano, Italy
3 STFC-ISIS Facility, RAL - OX11 0Q, Didcot, UK
4 INFN - Laboratori Nazionali di Frascati - Via Fermi 40, 00044 Frascati, Italy
5 INFN - Sezione di Milano-Bicocca - Piazza della Scienza 3, 20126 Milano, Italy

received 24 April 2014; accepted in final form 13 June 2014
published online 7 July 2014

PACS 28.20.Cz – Neutron scattering
PACS 29.40.–n – Radiation detectors
PACS 29.40.Cs – Gas-filled counters: ionization chambers, proportional, and avalanche counters

Abstract – The research of reliable substitutes of 3He detectors is an important task for the affordability of new neutron scattering instrumentation for future spallation sources like the European Spallation Source. GEM (Gas Electron Multiplier)-based detectors represent a valid alternative since they can combine high-rate capability, coverage of up to 1 m2 area and good intrinsic spatial resolution (for this detector class it can be better than 0.5 mm). The first neutron diffraction measurements performed using a borated GEM detector are reported. The detector has an active area of 10×5 cm2 and is equipped with a borated cathode. The GEM detector was read out using the standard ISIS Data Acquisition System. The comparison with measurements performed with standard 3He detectors shows that the broadening of the peaks measured on the diffractogram obtained with the GEM is 20–30\% wider than the one obtained by 3He tubes but the active area of the GEM is twice that of 3He tubes. The GEM resolution is improved if half of its active area is considered. The signal-to-background ratio of the GEM is about 1.5 to 2 times lower than that of 3He. This measurement proves that GEM detectors can be used for neutron diffraction measurements and paves the way for their use at future neutron spallation sources.

Copyright © EPLA, 2014

Introduction. – Due to the present 3He worldwide shortage [1], an intense R&D phase [2] has been started in order to realize 3He-free detectors that can represent valid candidates for detection systems for future spallation neutron sources such as the European Spallation Source (ESS [3]). In the case of ESS, besides the need for replacing 3He, it is essential to develop high-rate neutron detectors that can fully exploit the increase of neutron flux of ESS relative to present neutron sources. Among the possible candidates, Gas Electron Multiplier (GEM [4]) based detectors offer good spatial resolution (from 80 µm up to few mm) and timing properties (few ns), excellent rate capability (MHz/mm2), radiation hardness and the possibility to cover large areas [5,6]. GEM detectors properly modified to detect neutral particles [7–13] have been already used for neutron beam measurements. This paper describes the first neutron diffraction measurement recorded by the GEM-based detector described in ref. [12] and compares its performances with the standard 3He-based detection system. This measurement took place on the INES instrument at the ISIS neutron spallation source.

Experimental set-up. –

The GEM detector. Figure 1(a) shows the detector installed inside the INES blockhouse.

The detector used in this measurement is a triple GEM equipped with an aluminium cathode coated by 1 µm of natural boron carbide (B\textsubscript{4}C). The detector gaps (Drift, Transfer 1, Transfer 2 and Induction) —i.e. the spaces between the three GEM foils, the cathode and the
anode—were, respectively, 13 mm, 2 mm, 3 mm and 1 mm wide. The following electrical configuration was applied to the GEM: E_d (drift field) = 0.69 kV/cm, ET_1 (Transfer 1 field) = 1.5 kV/cm, ET_2 (Transfer 2 field) = 2 kV/cm, E_{ind} (induction field) = 5 kV/cm and V_{GEM} (sum of the voltages on the three GEMs) = 870 V. This configuration corresponds to an effective gas gain of 100. This device is equipped with a padded anode (whose substrate is made of fiberglass which is few mm thick) composed by 132 $8 \times 8 \text{mm}^2$ pads (made of gold-plated few microns thick copper) plus 4 L-shaped angular pads with an area of 192 mm2. The signal of each L-shaped pad is shortened with the signal coming from 2 adjacent pads in such a way that the resulting total number of channels is 128. Only half of the anode (64 channels corresponding to 68 pads —shaded area in fig. 1(b)) was read out and measurements were performed either considering the 64 channels all together or only 36 pads (dashed rectangle in fig. 1(b) - Col1). The GEM was positioned at 90° with respect to the beam and it was flushed with an Ar/CO$_2$ 70%/30% gas mixture.

The electronic set-up. The front-end chips used to read out the pads are of the CARIOCA [14] type. The CARIOCAS were positioned on the back of the anode and are digital, self-triggered chips. The LVDS signals generated by four CARIOCAS were routed to a user-designed FPGA board that formed the interface between the front-end electronics and the standard ISIS Data Acquisition Electronics (DAE), known as DAE2. Data from the CARIOCAS were first buffered inside the FPGA, using an individual buffer per GEM pad, so that the interface electronics did not introduce any additional dead time. When the FPGA found data in one of the buffers, the position of the corresponding GEM pad that generated the signal was sent to the DAE for histogramming. The DAE performed the time stamping of these events and incremented the corresponding bin in the ToF histogram associated with this GEM pad, thereby creating the diffractograms that were recorded.

The INES beamline. INES [15] is a neutron Time-of-Flight (ToF) diffractometer at the ISIS neutron source. The pulsed nature of the ISIS source makes it ideal to exploit the possibility offered by the ToF technique. INES exploits thermal neutrons with wavelength between 0.17 Å and 3.24 Å with a $\Delta d/d$ up to 0.002. INES is equipped with 144 high-pressure (20 bar), squashed 3He tubes (frontal width of 12.5 mm) as neutron detectors, each spanning an angle of about 1° in the horizontal plane. Such detectors are credited with an efficiency of about 60% to 70% for neutrons in the thermal energy range. Two of such 3He detectors (positioned at 90° with respect to the neutron beam, symmetrically to the GEM) were taken as a reference for the present tests. As a scattering sample we used a 5 mm deep, 20 mm \times 50 mm surface bronze slab.

Results and discussion. – In fig. 2, top panel, a diffractogram obtained by the GEM detector is shown. The lower panel shows the result of the same measurement recorded with two standard INES 3He detectors. A number of Bragg peaks from the bronze (copper) phase are visible. In table 1 a comparison of the performances of the two detector systems relatively to the current measurement is presented. All features of the data are correctly reproduced by the GEM detector. For sake of simplicity, we summarize the following three facts:

a) The total count rate of the 68 GEM pads used in the measurement is about 7% the count rate of the two 3He
Table 1: Comparison between GEM and 3He tubes in terms of FWHM and S/B for the peaks labelled in fig. 2 (top panel). The errors associated to the fitting procedure are reported.

<table>
<thead>
<tr>
<th>Peak number</th>
<th>ToF - GEM (μs)</th>
<th>FWHM - GEM (μs)</th>
<th>S/B - GEM</th>
<th>ToF - 3He (μs)</th>
<th>FWHM - 3He (μs)</th>
<th>S/B - 3He</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7076 ± 6</td>
<td>459 ± 114</td>
<td>1.1 ± 0.1</td>
<td>6690 ± 20</td>
<td>325 ± 20</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>2</td>
<td>9404 ± 3</td>
<td>240 ± 12</td>
<td>1.6 ± 0.2</td>
<td>9277 ± 1</td>
<td>195 ± 4</td>
<td>2.3 ± 0.4</td>
</tr>
<tr>
<td>3</td>
<td>11039 ± 4</td>
<td>322 ± 18</td>
<td>2.3 ± 0.4</td>
<td>10877 ± 1</td>
<td>231 ± 5</td>
<td>2.8 ± 0.1</td>
</tr>
</tbody>
</table>

Conclusions and hints for future developments.

- The results obtained in this paper show the possibility for GEM detectors equipped with borated cathodes to obtain good neutron diffraction data with the ToF technique. The detector proved to be fully compatible with the standard ToF DAE in use at ISIS. These results have a comparable quality with standard 3He detectors, but GEMs need further optimisation to be really competitive with other detection systems in such an application. The present authors envisage three areas of optimisation:

a) Efficiency. The overall efficiency to thermal neutrons of the present GEM is of the order of 1% for thermal neutrons, i.e. 60 to 70 times lower than common high-pressure 3He tubes in the same energy range. The proposed way to improve the efficiency are the 3-D cathodes, i.e. borated cathodes characterised by a three-dimensional configuration made to optimise the mean free path of both neutrons and reaction products into the converter material. Examples of 3-D cathodes are, for instance, presented in refs. [16,17]. Integration of 3-D cathodes with the present GEM set-up will be the subject of a future publication.

b) S/B ratio. In the present experiment, the S/B ratio for the GEM was lower than for the 3He tubes by approximately a factor 2. A likely source of background is the (H-atoms-rich) plastic structure of the GEM itself. A quick measurement performed with the same detector covered with a rough mask cut in boron-enriched plastic showed a sensible reduction of the background, especially at lower ToF, following a typical trend of neutron-induced background (fig. 3). We expect that proper design of boron carbide or cadmium masks will greatly improve the S/B ratio.

c) Resolution. As mentioned in the previous section, in order to optimise the count rate in fig. 2 all the 68 pads connected to the ISIS DAE were summed together, with consequent loss of angular resolution compared to the INES detectors. This effect can be reduced envisaging the possibility of summing single columns of pads, thus lowering the angular extension of the sensible area associated to a ToF channel. Padding makes the GEMs to be intrinsically position-sensitive detectors: this allows a better focusing of ToF data for larger-aren detectors. As an example, when summing the signals from 36 pads only, arranged in three columns (thus reducing the angular span of the sensitive area —see fig. 1 - Col1), the FWHM of peak No. 4 and 5 is reduced by about 10%. For other, less intense peaks, due to the relatively low count rate, the resolution of single peaks is limited by the effect of counting statistics, as it occurs while summing a single column of pads with the present setup. A study in depth of the dependence of resolution on the shape and span of the detector requires further tests with a suitable collimation (for instance obtained with gadolinium-coated slits), and will be the subject of future work. An increased detector efficiency will also give the possibility of summing single-pad columns, thus improving the spatial resolution.

This test proves that GEM detectors can be used for neutron diffraction measurement and paves the way for their use at future neutron spallation sources.
This work was supported within the CNR-STFC agreement concerning the collaboration in scientific research at the spallation neutron source ISIS. The financial support of Consiglio Nazionale delle Ricerche (CNR-Italy) is hereby acknowledged. The authors warmly thank A. BALLA, G. CORRADI and D. TAGNANI from the electronic group of Istituto Nazionale di Fisica Nucleare (Laboratori Nazionali di Frascati) that provided the necessary information in order to interface the GEM detector with the ISIS DAE.

Published under license from EURATOM.

REFERENCES

