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The Sagnac effect is usually deemed to be a special-relativistic effect produced in an
interferometer when the device is rotating. Two light beams traveling around the interferometer in
opposite directions require different times of flight to complete their closed path, giving rise to a
phase shift proportional to the angular velocity of the apparatus. Here, we show that the same result
can be obtained in the absence of rotation, when there is relative motion (be it inertial or not)
between the source/receiver of light and the interferometer. Our argument will use both a simple
algebraic analysis and a plain geometric approach in flat spacetime. We present an explicit
example to illustrate our point and briefly discuss other apparently correct interpretations of the
Sagnac effect, including an analogy to the Aharonov-Bohm effect. Finally, we sketch a possible
application of the non-rotational Sagnac effect. © 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4904319]

I. INTRODUCTION

The Sagnac effect takes its name from Georges Marc
Marie Sagnac, a French physicist who, in 1913, partially
interpreting previous experimental evidence, showed that
the time of flight of light emitted by a source on a rotating
platform and sent back by means of mirrors along a closed
path was asymmetric, depending on the direction that the
light travels around the apparatus. A simplified diagram of
Sagnac’s experiment is shown in Fig. 1. The difference in
time of flight between the forward (in the sense of rotation)
and backward beams is proportional to the angular velocity
of the platform and appears as a phase difference measured
by an interferometer. Sagnac interpreted this result as
evidence against Einstein’s relativity and in favor of a
static luminiferous ether.'? It was, however, immediately
and easily shown that the Sagnac effect is a fully relativis-
tic effect.

Today, the Sagnac effect is relevant for various applica-
tions, all related to the measurement of rotation rates. On the
commercial side we have gyrolasers,® developed since the
1970s, used on planes, ships, submarines, and missile guid-
ance systems. The name “gyrolaser” is motivated by the fact
that the devices replace old mechanical gyroscopes and use a
laser to produce the counter-rotating light beams. Instead of
exploiting the interference between the two opposed light
rays, they measure the beat frequency of the standing wave
resulting from the superposition of two waves propagating in
opposite directions; that frequency is again proportional to
the absolute angular velocity of the apparatus.

The most sensitive gyrolasers, or ring lasers, are used for
high-accuracy geophysical measurements.* They sense the
diurnal rotation of the Earth, the wobbles of the terrestrial
axis, and tiny rotations of the laboratory hosting the instru-
ment, due to elastic deformations of the ground caused by
liquid and solid tides and also by various surface
phenomena.

The extremely high sensitivity obtained in recent ring
lasers is such that the Sagnac effect is now also becoming
important for fundamental physics. The possibility has been
suggested of using large ring lasers to detect the Lense-
Thirring effect of general relativity on Earth,” and an experi-
ment, which goes by the acronym GINGER, is now in the
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development and preliminary testing phase at the National
Laboratories of the Italian INEN at the Gran Sasso site.®’

The Sagnac effect also plays a role in the use of Global
Positioning System (GPS) signals to determine the position
of a receiver. A Sagnac correction is required because a
rotating clock (onboard a satellite or on the surface of the
Earth) loses synchronization with itself at each turn. The
relevance of the relativistic effects on clocks carried around
the Earth, either in the same or in the opposite sense with
respect to Earth’s rotation, was experimentally verified by
Hafele and Keating.®'°

The Sagnac effect has been deeply investigated, ever
since Sagnac’s experiments, as a probe of the theory of rela-
tivity and, more recently, in connection with the issue of
synchronization in rotating reference frames.'""'* All of this
work is well known, but it is often accompanied by a feeling
that the Sagnac effect is essentially due to the presence of a
rotating observer or rotating device: in short, to non-inertial
motion.

Half silvered

mirror

Light source [ _'/l =4

== Detector

Fig. 1. Basic scheme of the Sagnac interferometric experiment. There is a
turntable rotating at angular speed w. The table carries a light source, a half-
silvered mirror, three more mirrors, and a detector where the interference
pattern is visible. The total length of the square path is £. The arrows show
the directions of the light beams.
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In reality, however, non-inertial motion is not necessary,
and examples of papers elaborating on various aspects of the
Sagnac effect, without discussing the necessity of rotation,
are Refs. 13—15. Indeed, a few years ago some experimental
papers were published that claim that even if no rotation is
present, a “generalized Sagnac effect” arises in a uniformly
moving fiber.'®!” In the present paper, we aim at addressing
this issue. That is, we show that the real ingredients of the
Sagnac effect are: (1) a closed circuit followed by light in
opposite directions; and (2) a relative (even inertial) motion
of the emitter/receiver with respect to the physical apparatus
supporting the closed light path. We believe that this
approach could be useful in teaching the foundations of rela-
tivity because the calculations involved are simple and
because they allow a deep insight into the physics of the
problem (which ultimately is connected with the relativity of
simultaneity).

II. THE SAGNAC EFFECT

The physical principles of the Sagnac effect are explained
in full detail in the well-known paper by Post;'® they can be
summarized as follows.

The Sagnac effect can easily be described in classical
terms if one assumes that the speed of light is ¢ with respect
to a static ether. For the rotating platform described in the
Introduction, one can see that if the light is going around the
device in the same direction as the rotation, then it will take
longer for it to reach the emission point because, meanwhile,
the receiver will have moved forward by a distance
Al =wvt,, where t, is the total time of flight and v is the
velocity of the emitter with respect to the ether; the geomet-
ric length of the path is /. Hence, the time of flight is read
from the following relation (/ + A¢,)/c=A ¢, /v. For light
going around in the opposite sense, the receiver will move
towards the returning beam so that the path will be shorter
by Al_ = vt_, whence (¢ — Al_)/c = Al_/v. Solving for 7,
and 7_ gives the time of flight difference:

20v

At=ty —t- =———.
- 2 — 2

ey

An equivalent deduction can be made adopting the view-
point of the rotating observer. In the observer’s reference
frame, light will be expected to have speed ¢ — v in one direc-
tion (forward) and ¢ 4 v in the other; now the path length is
the same ¢ for both (see Fig. 1). The times of flight are again
different and a trivial calculation reproduces Eq. (1).

It is useful to rewrite Eq. (1) in terms of the angular veloc-
ity o of the platform. If R is the distance of the emitter/detec-
tor from the rotation axis, then we have v = wR. We simplify
the geometry by assuming that the light path is a circle'® at
radius R, so that £=2nR. Considering that in all practical
cases v < ¢, Eq. (1) can be written as

Ao

At ~ 4 T ()

Here A is a vector whose magnitude is equal to the area
enclosed by the path of the light beams (7R?) and is oriented
perpendicular to the plane of the trajectory,”® while @ is the
(vector) angular velocity; the dot product projects the area
into the plane of rotation. Equation (2) is the famous Sagnac
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formula, where the =~ symbol is usually replaced by an
equals sign, although the approximation is still present.

As mentioned above, however, the Sagnac effect does not
depend on the existence of the ether. Special (or general)
relativity is essentially geometry, so we can use a geometric
approach to work out what happens. In the simplified config-
uration of a circular light trajectory, the situation can be
represented in the spacetime graph shown in Fig. 2.

Everything is drawn on the surface of a cylinder and the
viewpoint is that of an inertial observer at rest with respect
to the axis of the rotating platform.?' The vertical axis of the
figure is not the rotation axis of the turntable; it is the coordi-
nate time axis. The worldline of the rotating observer is a
helix and the two light beams are represented by two oppo-
site helices as well, which, after one turn, intersect the world-
line of the observer at two different events, labeled A and B.
The interval between A and B is the proper time difference
measured by the observer between the arrival times of the
two light rays.

A cylinder is a flat surface, so we can obtain a simpler
view by cutting the cylinder along one generatrix and open-
ing it into a flat spacetime strip as shown in Fig. 3. In this
figure, the helices become straight lines and the geometry is
clear; the only trick is to remember that the right border
of the strip is identified with the left border, so that lines
reaching one border reappear at the corresponding point on
the other.

The properties of straight lines and triangles in Fig. 3 are
the usual ones, except that this is not Euclidean space, but
Minkowski spacetime, with coordinate time on the y-axis
and position on the x-axis. Thus, the squared length of a hy-
potenuse in this geometry is a squared proper time multiplied
by ¢ and is given by the difference between the squared

Fig. 2. Spacetime diagram of the Sagnac effect. Line OAB is the world line
of the rotating observer. The line is a helix drawn on a three-dimensional
cylinder. Inertial time is measured along the vertical axis. The other two
lines (helices) represent two light rays. Events A and B are where the
observer is reached by the counter- and co-rotating beams, respectively.
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Fig. 3. Another depiction of the events of Fig. 2. The cylinder has been cut
along a generatrix passing through the rotating observer at time O and
opened. For convenience, two replicas of the opened cylinder are shown
side by side: one unrolled to the right, the other to the left, with each light
ray shown only where needed for the geometric construction. Points O and
0" coincide with O. The vertical straight line is the world line of an inertial
observer at rest with respect to the axis of the disk. Segment AB indicates
the Sagnac effect as measured by the rotating observer.

coordinate time span (times c2) and the sqzuare of the traveled
distance. A purely geometrical argument,”' applied to Fig. 3,
leads again, to lowest order in v/c, to Eq. (2).

If one prefers to proceed analytically, the starting point
can be the line element of Minkowski spacetime written
using cylindrical coordinates in space: ds®=c’dr’ —dr’
— r?d$?* — dz*. Introducing the constraints r= R = constant
and z = constant, corresponding to all physics taking place
on the rim of a disk perpendicular to the z-axis, the problem
is reduced to two effective dimensions and the line element
becomes

ds® = 2di3 — R*d¢y. 3)

The subscript 0 here means that the coordinates are those of
the inertial observer.

To account for the rotation of the platform, it is convenient
to introduce axes rotating together with the platform so that
the angular coordinate becomes ¢ = ¢g— wty. Then, we
need a Lorentz transformation between the inertial observer
at rest with the axis of the platform and the inertial frame
instantaneously comoving with the observer on the rim of
the turntable. Lorentz transformations leave the line element
unchanged, so that in the rotating reference frame it becomes

ds* = (¢* — o’R?)df* — R*d¢* — 2R*wdép dt. )
On writing the previous expression in the form
ds® = goo dr* + ¢y dp” + 2g0g di d¢p, (5)

and considering that for light we have ds =0, we can solve
for dt:

 8opdx \/&2)(]5 ddp® — gpg800 AP’

800

dt

(6)

We are interested in solutions located in the future, so we
choose dt >0, i.e., the + sign in Eq. (6). Under the simplified
assumption that light moves along a circumference, if we
integrate in the two opposite directions (counterclockwise

429 Am. J. Phys., Vol. 83, No. 5, May 2015

with d¢ >0 and clockwise with d¢ <0) from the emission
to the absorption events, we get the expression for the co-
rotating (¢, ) and counter-rotating (z_) times of flight, and the
difference between them turns out to be

At=t, —t_ = —21; 800 p do, @)
¢ 800

where ¢ is the circumference of a circle of radius R.?
Moreover, the observer measures the proper-time difference

At = —2, /—goojﬂ 800 R 4. @)
¢ 800

On substituting the explicit expressions in Eq. (4) for the
metric coefficients, we obtain the following formulas for the
coordinate and proper time-of-flight differences:

R w
ANt=4———
! (1 — w?R%/c?)’ ©)
2
At :47rR—w (10)

c2\/1 — szz/czl

At the lowest approximation order in wR /¢ these two expres-
sions coincide, and they are in agreement with Eq. (2), with
A = mR*li., where the unit vector G, points along the z
direction.

III. SAGNAC WITHOUT ROTATION

Despite the widespread tendency to ascribe the Sagnac
effect to rotating systems, it is easy to show that rotation is
not essential. Consider a source/receiver of light in inertial
motion at speed v with respect to a set of mirrors rigidly fas-
tened to one another or to an optical fiber so that they guide
the light beams emitted by the moving source along a closed
path in space. The situation is schematically illustrated in
Fig. 4, where an optical fiber is envisaged.

Repeating the simple reasoning made at the beginning of
Sec. II, we again arrive at the same result as in Eq. (1). The
only additional clarification is that Eq. (1) is expressed from
the viewpoint of an observer at rest with respect to the fiber
(or array of mirrors); for the proper time measured by the

b

Fig. 4. Object O (®) represents a source/receiver of light moving with
velocity v. Light is sent both forward and backward (dashed lines). The
irregular line joining F with R represents an optical fiber of length ¢;, along
which the light travels. Observer O is moving with velocity v with respect to
the fiber. The total length of the path is £ = ¢ + /5.
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moving emitter/receiver we would instead have (with

B=vlc)

RSP (11)

21— p? c?

No rotation, acceleration, or enclosed area appears in this
expression. What matters is just the existence of relative
(even inertial) motion and of a closed path in space. Of
course, with reference to Fig. 4, the velocity v is parallel to
the light rays along the path RF.

The effect we have just described and the related formula
(11) have been experimentally verified by Wang, Zheng,
Yao, and Langley (WZYL).'®"

Using the geometrical approach, this result is rather
obvious. In spacetime, the world lines are drawn again on a
(non-circular) cylinder. The only difference is that in Fig. 2
the cylinder had a circular cross section, while now the cross
section is irregular. In either case, the cylinder is a flat
bidimensional Minkowski surface and, when opening it into
a plane, the graph is exactly as in Fig. 3.

It is worth noting that formula (1) also appears in Ref. 24,
where it is related to the relativity of simultaneity typical of
special relativity.

Another aspect to clarify is related to the form of Eq. (2).
The accidental presence of the area A suggested to some
people (for instance, Refs. 25 and 26) an interpretation of the
Sagnac effect (at least for matter waves) as a sort of
Aharonov-Bohm effect. However, this is just an analogy,
which holds only at lowest relativistic order (see, e.g.,
Ref. 23).

At =2

IV. A SIMPLE EXAMPLE

In order to obtain deeper insight into the Sagnac effect, let
us consider a simple example where the calculation can be
carried out in full detail.

Our interferometer is at rest in the laboratory and is made
of four mirrors (M, M5, M5, and M,) at the corners of a rec-
tangle of width 2a and height 2b. Using Cartesian coordi-
nates, the mirror positions are given in Fig. 5, and the
interferometer path length is ¢ =4a + 4b. An observer, mov-
ing at speed v to the right in the laboratory frame, sends two
counter-propagating light signals when he/she is at the ori-
gin. The paths of the counterclockwise (CCW) and clock-
wise (CW) rays are depicted in Figs. 6 and 7, respectively, as
seen in the laboratory frame. Note that in the laboratory
frame, the CW path is not closed, while the CCW path
overlaps with itself. What we want to show, by the following

Ay
(-a,2b) (a,2b)

V.. h
A

(-a,0)

M1I

(0’0) (aao) X

Fig. 5. The four mirrors M, M,, M3, M, that form the interferometer are at
rest in the laboratory frame.

430 Am. J. Phys., Vol. 83, No. 5, May 2015

(a,2b)

Ms M=
O V
My ‘ Milg 3 ™

(0,0)

(-a,0) (a,0)

Fig. 6. The path of the CCW light ray, as seen in the laboratory. The symbol
@ marks the positions of the observer when the signal is sent (left) and
received (right). The parameters used are =20/101 (giving y=101/99)
and b =a/4.

calculation, is that in the frame moving with the observer
both paths are closed.

In terms of Cartesian spacetime coordinates (ct, x, y) in
the laboratory frame, the event sequence along the CCW
path is:

eo: (0, 0, 0) (emission)

e: (a,a,0) (reflection by M1)

es: (a + 2b,a,2b) (reflection by M2)

es: (3a + 2b, —a, 2b) (reflection by M3)

e4: (3a+4b,—a,0) (reflection by M4)

es: (ct1,u11,0) = (4a+b)/(1 - B),4{a -+ b)B/(1— B),0)

(reception)

In particular, the total propagation time is obtained from
cty = vty +4a+4b.
For the CW path, we have the following events:

* ¢o: (0,0, 0) (emission)

E:: (a,—a,0) (reflection by M4)

E,: (a+ 2b,—a,2b) (reflection by M3)

E;: (3a + 2b,a,2b) (reflection by M2)

E4: (3a +4b,a,0) (reflection by M1)

Es: (ctr,v0,0) = (4(a+b)/(1 + B),4(a+ b)B/(1+ B),0)
(reception)

Again, the total propagation time is obtained from
cty =4a + 4b — vt,. As expected, the CCW time is longer
than the CW time, since #; > f,, so the two signals reach the
observer at different times.

To obtain the coordinates of these events in the frame
co-moving with the observer, we use the Lorentz
transformations:

cf =y(ct— Px), X' =ypx—Pet), ¥y =y, (12)
where y = (1 — [32)_1/ 2 As a consequence, the Cartesian
coordinates (ct’,x’',y") of the events for the CCW path are

(-a,2b) (a,2b)
Ms M2
C v
—
My ‘ M
('CZ,O) (O’O) (a’O)

Fig. 7. The path of the CW light ray, as seen in the laboratory. The symbol
@ marks the positions of the observer when the signal is sent (left) and
received (right). The parameters used are =20/101 (giving y=101/99)
and b = a/4.
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* ¢p: (0,0, 0) (emission)

er: (p(1 = Ba,y(1 — B)a,0) (reflection by M1)

es: (p(1 = P)a+2yb,y(1 — B)a — 2yfb,2b) (reflection by

M2)

o e3: (Y(3+ Pla+ 2yb, —y(1 4+ 3f)a — 2yb,2b) (reflection
by M3)

e ey (Y34 Pla+4yb, —y(1 4 3B)a — 4ypb,0) (reflection

by M4)

es: (4y(1 + B)(a+b),0,0) (reception)

For the CW path, we have the following coordinates:

eo: (0, 0, 0) (emission)

Ei: (y(1 + B)a, —y(1 + f)a,0) (reflection by M4)

Ey: (y(1 4 Ba+ 2yb, —y(1 + p)a — 2yfb,2b) (reflection

by M3)

o E3: (y(3=P)a+2yb,y(1 —3f)a — 2yb,2b) (reflection
by M2)

* Ey: (y(3 = p)a+4yb,y(1 —3p)a — 4ypb,0)

by M1)

Es: (4y(1 — B)(a+b),0,0) (reception)

(reflection

These collections of event coordinates show that in the mov-
ing frame the two paths are closed. In particular, the CCW
path is a polygon whose vertices have the following (', y")
coordinates: (0,0), (y(1—p)a,0), (y(1 — p)a—2ypb,2b),
(—y(1 +3B)a —2ypb,2b), (—y(1 +3B)a — 4ypb,0).  The
shape of this polygon is depicted in Fig. 8, and its perimeter is
given by ¢; = 4y(1 + f)(a + b). Since the traversal time is
given from event es as #; = 4y(1 + ff)(a + b)/c, we see that
the average traversal speed is ¢, /1] = c.

On the other hand, the CW path is a polygon whose verti-
ces have the following coordinates: (0,0), (—y(1+ f)a,0),
(—”/(1 +ﬁ)a—2”/ﬁb,2b)7 (“/(1 —3ﬂ)a—2'})ﬁb72b), (V(l —‘B)Cl
—4y[b,0). The shape of this polygon is depicted in Fig. 9,
and its perimeter is given by £, =4y(1 — f)(a+b). Again, by
reading the traversal time #, =4y(1—f)(a+b)/c from Es,
we see that the average traversal speed is ¢,/15 =c.

We remark that we can easily explain the tilt of the lateral
edges in Figs. 8 and 9 in terms of the motion of the observer.
Indeed, when the light ray moves upward at right angles to
the x-axis in the laboratory frame, it has to move upward and
left in the observer’s frame. Similarly, when it moves down-
ward, it has to move downward and /left in the observer’s
frame.

The moving observer measures a proper time difference
between the propagation of the CCW and CW rays given by

At=1t, -1, =8y

b 0
<“JCF >/3%2C—§- (13)

This result is in agreement with the general formula (11).
Moreover, this calculation helps us understand the origin of

Mg M2

@

4

My (0,0) M

Fig. 8. The path of the CCW light ray, as seen in the observer’s frame. Both
emission and reception take place at the origin (0, 0). The parameters used
are # =20/101 (giving y =101/99) and b = a/4.
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¢

My (0,00 M

Fig. 9. The path of the CW light ray, as seen in the observer’s frame. Both
emission and reception take place at the origin (0, 0). The parameters used
are f=20/101 (giving y = 101/99) and b = a/4.

the time difference arising in the moving frame: the two light
paths, which are congruent except for their end pieces in the
laboratory frame, are no longer congruent in the observer’s
moving frame. Consequently, because these paths have dif-
ferent lengths, light must take different amounts of time to
propagate around the paths.

This example shows how to explain the Sagnac effect in
the case of an inertial observer, but a similar approach
can be used to do the same thing for an accelerated one.
However, while in our case, the observer’s space is
Euclidean and everything is unambiguous, care is needed in
defining the spatial geometry for an arbitrary accelerated ob-
server. Spatial geometry can be defined in terms of congru-
ence of world lines (see, e.g., Ref. 27), so it is not simply
related to one observer but rather depends on a collection of
observers.

Things are simple in the case of the uniformly rotating
disk, where the ordinary Sagnac effect is usually explained.
A natural choice of observers that allows us to define the spa-
tial geometry is given by the observers sitting at fixed points
on the disk (see, again, Refs. 27 and 28). In this case, both
the co-rotating and the counter-rotating rays propagate along
the same curve, and the Sagnac effect can be explained in
terms of different speeds of light in the co-rotating and
counter-rotating directions, if clocks along the rim of the
disk are Einstein-synchronized, or in terms of a time gap, if
a different synchronization procedure is used (see, e.g.,
Refs. 15 and 29).

V. POSSIBLE APPLICATIONS

Aside from the conceptual aspects, the phenomenon we
have interpreted and WZYL have measured prompts some
possible interesting applications, as suggested in Ref. 17.

As we see from Eq. (11), the time-of-flight difference for
light is proportional to the relative velocity of the source
with respect to the fiber or the mirrors. Now, consider a ring
laser where the active segment is not rigidly connected to the
rest of the annular cavity; imagine, for instance, that the
active cavity is attached to the rest via an elastic support
allowing for relative vibrations. What is usually measured in
a ring laser is a beat frequency of two counter-propagating
beams. The beat frequency is easily obtained from Eq. (11)
and is given by

v

Vo= (14)

where 4 is the wavelength of the laser. Here, we have a sim-
ple speedometer for instantaneous velocities, where 1m/s

A. Tartaglia and M. L. Ruggiero 431



corresponds roughly to beat frequencies on the order of
MHz. In the obvious case that the active element is subject
to an acceleration, a simple differentiation of the output con-
verts the device into an accelerometer. Of course practical
analyses on the stability of the laser modes should be made,
but the idea is appealing.

VI. CONCLUSION

We have shown that the Sagnac effect is due to the closure
of the path followed by light and to the relative motion of
the observer with respect to the physical system that causes
the beam to bend and come back to the observer. After intro-
ducing the foundations of the effect, we have studied in full
detail a simple example to focus on the origin of the time
delay in the inertial frame of the moving observer, and we
have made a comparison with the case of the rotating ob-
server. We have proved that the Sagnac effect is not peculiar
to rotations and accelerated motion; rather, it originates from
the closure of the two space paths as seen in the frame co-
moving with the emitter/receiver and from relative motion
between the emitter/receiver and the mirrors (or physical de-
vice). Indeed, its foundations are related to the relativity of
simultaneity. On the practical side, one can imagine interest-
ing applications based on the use of ring lasers as linear
accelerometers.
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