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A B S T R A C T

The aim of this work is to present recent developments in the study of
an innovative experiment to measure the hadronic contributions to the
running of the QED coupling αem in the space-like region, exploiting
the scattering of high-energy muons on atomic electrons of a graphite
target. The differential cross section of this process, measured as
a function of the squared momentum transfer t = −q2<0 (space-
like region), provides direct sensitivity to the leading-order hadronic
contribution to the muon anomaly (aHLO

µ ). This work mainly presents
the results of the analysis of the 2017 test beam data, as well as the
design of a dedicated GEANT4 simulation of the experimental set-up.
The main goal of the test beam was to have a first proof-of-concept of
the final experiment and to study the effect of multiple scattering on
O(10 GeV) electrons in graphite targets. The ratio Monte Carlo/Data
of the distributions of the difference (θout− θin) for traversing electrons,
shows a ∼ 1% agreement between the two samples, in particular in
the gaussian core region. We also studied an analytical model based
on the convolution of a gaussian distribution and a Student’s, which
takes into account both the multiple scattering and resolution effects
and describes the experimental distribution with good accuracy in
the entire range. We used a tracking algorithm based on multiple
scattering covariance error matrix and on chi-square minimization, to
study the effect of the multiple scattering in thin silicon trackers. The
entire analysis did not return any showstopper for the final experiment
and allowed us to understand several details which must be taken
into account to achieve the final desired precision of 0.3% on aHLO

µ .
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1
I N T R O D U C T I O N

The aim of this work is to present the study and development of an
innovative experiment to measure the hadronic contributions to the
running of the electromagnetic coupling αem in the space-like region,
exploiting the scattering of high-energy muons on atomic electrons of
low-Z target. The differential cross section of this process, provides
direct sensitivity to the leading-order hadronic contribution to the
muon anomaly (aµ = g−2

2 ), aHLO
µ .

At present aµ is not only one of the most precisely measured
quantities in particle physics, but theory and experiment lie apart by
(3− 4)σ, ∆aµ(Exp− SM) ' (28± 8)× 10−10. This discrepancy has
been considered during the last years as one of the most intriguing
indications of physics beyond the Standard Model (SM). This direct
measurement of aHLO

µ will provide an independent determination and
consolidate the theoretical prediction for the muon g− 2 in the SM.

This chapter gives an overall introduction to the theory of magnetic
moments, from the classical interpretation to the Dirac relativistic
theory and the discovery of the so called anomaly. In section 1.2 is
presented the theory of the electromagnetic coupling (αem) running.
In chapter 2, after a brief recap on the history of the muon, I give
an overview of the aµ value in the Standard Model, as well as the
current status of aµ from an experimental point of view. Chapter
3 contains the core of this work: here is presented the proposal of
this new experiment, after a brief theoretical framework. After a
description of the proposed experimental set-up and considerations
on the achievable statistical precision, I discuss more in detail the data
analysis of the test beam we had in October 2017 using 12, 20 GeV e−

beams and a 160GeV µ beam, available at CERN North-Area. Finally,
in chapter 5, I present the outcome of this work, the current status of
the experiment and possible future developments.

1.1 magnetic moments

The study of magnetic moments of subatomic particles grew up with
the development of quantum mechanics. For fermions the magnetic
dipole moment is related to the spin by

−→µ = g
Qe
2m
−→s

Where Q = ±1, e > 0 is the particle charge and m, −→s are the mass
and the spin of the fermion respectively. The gyromagnetic ratio g is the

1



2 introduction

ratio of the magnetic moment of a system to the value obtained by mul-
tiplying its angular momentum by the Larmor ratio (e/2mc). For an
orbiting electron g = 1. When Goudschmit and Uhlenbeck postulated
the spinning electron with angular momentum (h/4π) to explain the
anomalous Zeeman effect, it was surprising that its magnetic moment,
one Bohr magneton, was twice the expected value: the gyromagnetic
ratio for the electron was apparently 2. Later Dirac found that this
value came out as a natural consequence of his relativistic equation
for the electron (

iδµ − eAµ

)
γµψ = mψ

This was one of the great successes of Dirac’s relativistic theory and,
for some years, experimental data confirmed his prediction. The
electron had g = 2, and his equation seemed to describe nature.

A surprising and unexpected result was obtained in 1933 when
Stern and his collaborators measured the g-factor of the proton to
be ∼5.5 instead of the expected value of 2. This discrepancy from
the theoretical value was observed also for the electron and could
be explained by a term in Dirac equation, proposed by Pauli, which
would give a deviation

a
e

2m
σµνFµνψ → g = 2(1 + a)

In 1947, motivated by measurements of the hyperfine structure in
hydrogen that obtained splittings larger than expected from the Dirac
theory, Schwinger showed that from a theoretical viewpoint these
"discrepancies can be accounted for by a small additional electron
spin magnetic moment" that arises from the lowest-order radiative
correction to the Dirac moment

δµ

µ
=

1
2π

e2

h̄c
=

α

2π
= 0.001162.

Hence, the magnetic moment for a fermion can be written into two
terms:

µ = (1 + a)
eh̄
2m

, where a =
(g− 2)

2
.

The first term is the Dirac moment, 1 in units of the appropriate
magneton eh̄/2m. The second term is the anomalous (Pauli) moment,
where the dimensionless quantity a (Schwinger’s δµ/µ) is sometimes
referred to as the g− 2 anomaly [1], [2].

Both the electron and muon anomalies have been measured very
precisely:

aexp
e = 1159652180.73(28)× 10−12 ± 0.24 ppb

aexp
µ = 116592089(63)× 10−11 ± 0.54 ppm

While the electron anomaly has been measured very precisely, it is
significantly less sensitive to heavier physics, because the relative
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contribution of heavier virtual particles to the muon anomaly goes as
(mµ/me)2 ' 43000. Thus the lowest-order hadronic contribution to
electron anomaly is 1.5 ppb of ae, while for the muon is ∼ 60 ppm.
So with much less precision, when compared with the electron, the
measured muon anomaly is sensitive to mass scales in the several
hundred GeV region. This not only includes the contribution of
the W and Z bosons, but perhaps contributions from new, as yet
undiscovered, particles such as the supersymmetric partners of the
electroweak gauge bosons.

1.2 the running of α em

In QED the lepton g-factor can be expressed as a perturbation series
in powers of α/π:

aQED = A(α/π) + B(α/π)2 + C(α/π)3 + . . .

In the following we will see that also the leading-order hadronic
contributions to a can be expressed in terms of αem. Hence, the
precision on the electromagnetic coupling directly reflects on aµ.

In the electroweak Standard Model, the running of the electromag-
netic coupling α is determined by the theory as

α(t) =
α(0)

1− ∆α(t)
=

α(0)
1− ∆αlep(t)− ∆αhad(t)

Where t = −q2 < 0 and α(0) = α0 is the Sommerfeld fine structure
constant, which has been measured to a precision of 1.7×10

−9. Precise
knowledge of α(q2) is fundamental for any electroweak observable
prediction at q2 6= 0. From here it comes the necessity of evolving α

from q2 = 0 up to the Z-mass scale q2 = m2
Z. The evolution expressed

by the quantity ∆α receives contributions from leptons, hadrons and
the gauge bosons. The largest uncertainty on any evolved value of
α(q2), especially for | q2 |> 4m2

π, comes from the hadronic contribu-
tions. More precisely, the contribution to the vacuum polarization
(hVP) can not be calculated directly but has to be estimated with the
help of a dispersion integral and evaluated by using total cross section
measurements of e+e− →had. at low energies. Moreover, not only
hVP limits the precision on any evolved value α(q2) but also on aµ,
especially in the hadronic sector, as we will see in more detail in the
next section.

From an experimental point of view, attempts have been made
to measure the running of α directly, using e+e− data at various
energies, such as measuring the ratio of e+e−γ/e+e−, or more directly
the angular distribution of Bhabha scattering [3]. In this work we
are going to present an alternative approach to measure the running
of the fine-structure constant in the space-like region by scattering
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(a) ∆α versus
√
−t in units of GeV in

the space-like region.
(b) Contributions to ∆α from leptons
and hadrons versus

√
−t in units of

GeV.

Figure 1: The running of α(t).

high energy muons on atomic electrons of a low-Z target through the
process µe→ µe. For any scattering process, the space-like momentum
transfer t = − | q2 | is

t = −1
2

s(1− cos θ)

It is related to the total invariant energy
√

s and to the scattering angle
θ of the final-state lepton. Figure 1a presents the t-dependence of the
overall running ∆α(t), while in figure 1b depicts the two contributions
from leptons and hadrons. As one can see, the running of the elec-
tromagnetic coupling is dominated by the contribution from leptons,
while the contribution involving hadrons gets relevant only for high
| t | values.

1.2.1 Theory of the α running

To measure the running of α from a scattering process between two
leptons l1l2 → l1l2, one exploits the fact that the cross section can be
decomposed into three factors:

dσ

dt
=

dσ0

dt

(
α(t)
α(0)

)2

(1 + ∆r(t))

Where the first factor on the right-hand side refers to the effective
Born cross section for the considered process, including soft and
virtual photons, and accounts the strongest dependence on t. The
vacuum-polarization effect in the leading photon t channel exchange
is incorporated in the running of α and gives rise to the squared factor.
The third factor, ∆r(t), collects all the remaining real and virtual
radiative effects not incorporated in the running of α.
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• The differential cross section dσ0

dt is defined as

dσ0

dt
=

dσB

dt

(
α(0)
α(t)

)2

The factor dσB/dt is the µ− e cross section in the improved Born
approximation and includes, by definition, the running of α.
This physical observable within the electroweak Standard Model
is precisely known. For convenience dσB/dt can be decomposed
into the contributions arising from the t channel (Bt), the s
channel (Bs) and their interference (Bi):

dσB

dt
=

πα2
0

2s2 Re {Bt + Bs + Bi}

where

Bt =
( s

t

)2
{

5 + 2c + c2

(1−Π(t))2 + ξ
2(g2

v + g2
a)(5 + 2c + c2)

(1−Π(t))
+

+ξ2
(

4(g2
v + g2

a)
2 + (1 + c)2(g4

v + g4
a + 6g2

vg2
a)
)}

Bs =
2(1 + c2)

| 1−Π(s) |2 + 2χ
(1− c)2(g2

v − g2
a) + (1 + c)2(g2

v + g2
a)

1−Π(s)
+

+ χ2
[
(1− c)2(g2

v − g2
a)

2 + (1 + c)2(g4
v + g4

a + 6g2
vg2

a)
]

Bi = 1
s
t
(1 + c)2

{
1

(1−Π(t))(1−Π(s))
+

+ (g2
v + g2

a)

(
ξ

1−Π(s)
+

χ

1−Π(t)

)
+

+ (g2
v + 6g2

vg2
a + g4

a)ξχ
}

Where
χ =

s
s−m2

z + imzΓ
· 1

sin 2θw

ξ =
t

t−m2
z

1
sin 2θw

ga = −
1
2

, gv = −1
2
+ 2 sin2 θw

t = (p1 − q1)
2 = −1

2
s(1− c)

c = cos θ, θ = ˆp1q1

Where s is the total squared invariant mass, θw the Weinberg
mixing angle and θ the scattering angle between the initial and
final lepton with momenta p1 and q1 respectively.
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• The running of α in the space-like and time-like regions is
represented by the two functions Π(s) = ∆α(s) and Π(t) =

∆α(t). More precisely one can write, in terms of the fermion-
loop insertions into the virtual photon lines [3]:

Π(t) =
α0

t

(
δt +

1
3

L− 5
9

)
+

+
(α0

π

)2
(

1
4

L + ζ(3)− 5
24

)
+

+
(α0

π

)3
Π(3)(t) +O

(
m2

e
t

)
where

L = ln
Q2

m2
e

, Q2 = −t, ζ(3) = 1.202

The term Π(3)(t) represents the third-order (three-loop) leptonic
contributions to the vacuum polarization.

• For what concerns our measurement of the α running using
µ− e scattering, the radiative factor 1+∆r(t) has been proved to
be negligible [3], [4] as well as the following contributions:

– Any electroweak effect beyond tree level, for instance ap-
pearing in boxes or vertices with Z0 and W bosons, running
weak coupling, etc.;

– Box diagrams at order α2 and larger;

– Contributions of order α2 without large logarithms, leading
from order α4 and subleading higher order;

– Contributions from pair-produced hadrons, muons, taus
and the corresponding virtual corrections to the vertices.
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M U O N g − 2

2.1 the muon

The muon was observed for the first time in a Wilson cloud chamber
by Kunze in 1933, but it was reported to be "a particle of uncertain
nature". In 1936 Anderson and Neddermeyer discovered the presence
of "particles less massive than protons but more penetrating than
electrons" in cosmic rays. In 1943 Rossi and Nereson measured the
lifetime of these particles to be τ ' 2.15± 0.1µs, assuming it was
the carrier of the nuclear force predicted by the Yukawa’s theory.
Eventually it was understood that cosmic rays consist of two different
particles: the pion π, which actually it Yukawa’s particle, and the
muon µ. The latter is obtained from the former by weak decay π− →
µ−νµ. The muon is a second generation lepton, with a mass about 207

times the electron’s. Like the electron, the muon obeys QED, and can
interact with other particles through the electromagnetic and weak
forces. Unlike the electron, the muon decays through the weak force
predominantly by µ− → e−νµν̄e. The muon’s long lifetime of ∼2.2 µs
permits precision measurements of its mass, lifetime, and magnetic
moment.

Table 1: Principal properties of the muon as quoted in the Particle Data
Group (PDG) [6].

µ Properties (PDG 18)
J 1/2
mµ 105.6583745 ± 0.0000024 MeV
τ 2.1969811 ± 0.0000022 µs
aµ (×10−10) 11659208 ± 54 ± 3.3

2.2 the g− 2 anomaly in the standard model

In the Standard Model, the muon anomaly aµ gets measurable contri-
butions from QED, the strong interaction and from the electroweak
interaction:

aµ = aQED + aHad + aWeak (1)

The uncertainty on this observable is dominated by the contribution of
virtual hadrons in loops. In the following we present the current state
of art of theoretical calculations for each one of the terms in eq.(1).

7



8 muon g − 2

Figure 2: Weak contributions to the muon anomalous magnetic moment
from [9]. Single loop contributions from: (a) virtual W and (b) virtual Z
gauge bosons. These two contributions enter with opposite sign, and there is
a partial cancellation. The two-loop contributions fall into three categories:
(c) fermionic loops which involve the coupling of the gauge bosons to quarks,
(d) bosonic loops which appear as corrections to the one-loop diagrams, and
(e) a new class of diagrams involving the Higgs where G is the longitudinal
component of the gauge bosons.

2.2.1 QED contributions

The QED contribution to aµ is well understood. The present QED
value, calculated for the full five-loop contribution, is

aQED
µ = 116584718.951(0.009)(0.019)(0.007)(0.077)× 10−11

where the uncertainties are from the lepton mass ratios, the eight-order
term, the tenth order term, and the value of α taken from the 87Rb
atom [5] α−1(Rb) = 137.035999049(90) (0.66 ppb).

2.2.2 Weak contributions

The electroweak contribution has been completely calculated up to
two-loops contributions [7], while the leading logs for the next-order
term have been shown to be small [8]. Fig. 2 shows Feynman diagrams
for the weak contributions to the muon anomalous magnetic moment.
The one loop result, calculated shortly after G. ’t Hooft showed the
Glashow-Salam-Wienberg theory to be renormalizable, is

aEW(1)
µ =

GF√
2

m2
µ

8π2

{
10
3

+
1
3
(1− 4 sin2 θW)2 − 5

3

O
(

m2
µ

M2
Z

log
M2

Z
m2

µ

)
+

m2
µ

M2
H

∫ 1

0
dx

2x2(2− x)

1− x +
m2

µ

M2
H

x2

 =

= 19.8× 10−11

Only the W and Z bosons contribute at a measurable level in the
lowest order electroweak term, as shown in Fig. 2. The two-loop
contribution (Fig. 2(c-e)), has been re-evaluated recently using the
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Figure 3: The hadronic contribution to the muon anomaly from [9], where
the dominant contribution comes from the lowest-order diagram (a). The
hadronic light-by-light is shown in (e).

LHC value of the Higgs mass [8]. The total electroweak contribution
is

aEW
µ = (153.6± 1.9)× 10−11

where the error comes from hadronic effects in the second-order
electroweak diagrams with quark triangle loops, along with unknown
three-loop contributions. The weak contribution is about 1.3 ppm of
the muon g-2, so the experimental uncertainty on aµ (BNL E821) of
±0.54 ppm now probes the weak scale of the Standard Model.

2.2.3 Hadronic contribution

The hadronic contribution to aµ is about 60 ppm of the total value
and dominates the theoretical uncertainty on the muon anomalous
magnetic moment. This category of contribution contains two phe-
nomenologies: the hadronic vacuum polarization and the light-by-
light effect. While the former dominates this contribution and its error,
the latter is also important. Fig. 3 shows the Feynman diagrams of
these processes. The energy scale for the virtual hadrons is of order
mµc2, well below the perturbative region of QCD (pQCD). However
the lowest order hadronic contribution can be calculated from the
dispersion relation

ahad;LO
µ =

(αmµ

3π

)2 ∫ ∞

m2
π

ds
s2 K(s)Rhad(s) (2)

where:

Rhad ≡
σtot(e+e− → had.)
σ(e+e− → µ+µ−)

using the measured cross sections for e+e− → had. as input, where
K(s) is a kinematic factor ranging from 0.4 at s = m2

π to 0 at s = ∞.
The dispersive integral above is usually calculated the experimental
value of Rhad(s) up to a certain value of s, and by using pQCD in the
high-energy tails. The problem is that due to resonances (especially
the ρ resonance) and threshold effects at low energies, Rhad(s) in
the integrand is highly fluctuating. Fig. 4 depicts pictorially this
calculation. The determination of ahad;LO

µ is dominated by the values
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Figure 4: Pictorial display of the dispersion integral from [9]. (a) The
"cut" hadronic vacuum polarization diagram; (b) The e+e− annihilation into
hadrons; (c) Initial state radiation accompanied by the production of hadrons.

of Rhad at low energies, as shown in Figure 5. The contribution is

Figure 5: Contributions to the dispersion integral for different energy regions,
and to the associated error squared on the dispersion integral in that energy
region. Taken from Hagiwara et al. [10].

dominated by the 2π final state, but other low-energy multi-hadron
cross sections are also important.

Recently two analyses [10] [11], using the newest compilation of
experimental cross sections for e+e− → had., obtained:

ahad;LO
µ = (6923± 42)× 10−11

ahad;LO
µ = (6949± 43)× 10−11

respectively. The latest evaluation of the next-to-leading order hadronic
contributions [10] shown in Fig. 3 is:

ahad;NLO
µ = (−98.4± 0.6exp ± 0.4rad)× 10−11

2.2.4 Hadronic light-by-light contribution

The hadronic light-by-light contribution is depicted in Fig. 3(e). This
term can not be determined from data, but rather must be extracted
using hadronic models that correctly reproduce properties of QCD.
Due to asymptotic QCD constraints, a full model independent eval-
uation is not possible at present. It should be stressed here that the
difficulty in the evaluation of the HLbL effect does not come from
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theory but from the technical difficulty in the implementation of the
model itself. The physics of the HLbL scattering contribution is well
understood: theoretical predictions of aHLbL

µ have been relatively stable
for more than ten years now. The current value [12] for this contribu-
tion, obtained from a synthesis of different models, which was agreed
to by authors from each of the leading groups that have been working
in this field, is

aHLbL
µ = (105± 26)× 10−11

2.2.5 The SM value of g− 2

The current state of art of the theoretical prediction on aµ highly
depend on the reference used to calculate the lowest-order hadronic
contribution. The two most accurate calculations present in literature
at the moment are from Davier, et al. [11] and from Hagiwara et
al., [10]. The higher-orders hadronic contribution is currently taken
from [11]. Table 2 presents a summary of the different contributions
which sum up to aµ as defined in eq. (1).

Contribution Value (×10
−11)

QED (γ + l) 116584718.951 ± 0.009 ± 0.019 ± 0.007 ± 0.077

HVP (lo) [10] 6923 ± 42

HVP (lo) [11] 6949 ± 43

HVP (ho) [11] -98.4 ± 0.7
HLbL 105±26

EW 154±1

Total SM [10] 116591802 ± 42H-LO± 26H-HLO± 2other (± 49tot)
Total SM [11] 116591828± 43H-LO± 26H-HLO± 2other (± 49tot)

Table 2: Standard Model value of the muon anomalous magnetic moment.
The two different values depend on the two most precise calculations of the
lowest-order hadronic vacuum polarization contribution from [10], [11].

Where the QED calculation is from Aoyama [13]; the electroweak
contribution from Miller, et al. [14] and the hadronic light-by-light
effect is from the model currently agreed on, known as "Glasow
Consensus" [15].

2.3 measuring the muon anomaly

The muon anomalous magnetic moment was measured with three
experiments at CERN and by the E821 collaboration at the Brookhaven
National Laboratory. In this section we present a brief overview of
these experiments with a more detailed description of E821, which
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Figure 6: Blackboard interpretations of the g-2 experiment of the SC at CERN.
Muller and Farley at blackboard, J.C. Sens and A. Zichichi on the extreme
left and right and G. Charpack in far background.
Image from CERN c© archives , all rights reserved.

measured the muon g-2 with a precision of 0.54 ppm: currently the
most precise experimental value for this observable.

2.3.1 CERN-I

Acting on an idea of Leon Lederman, CERN launched the g-2 experi-
ment in 1959, aimed at measuring the muon magnetic moment. Six
physicists joined forces in the same year to measure this value on
CERN’s first accelerator, the Synchrocyclotron. The first experiment at
CERN to measure the muon anomalous magnetic moment was per-
formed in 1961. In this case muons were injected into a 6 meters long
straight magnet where they followed a drift spiral path, traversing the
magnet because of a small gradient introduced in the field. Using a
polarimeter to stop the muons outside the magnet and measuring their
net spin precession, aµ was determined with an uncertainty of 4300

ppm. The result agreed with the prediction of QED for structureless
particles. This experiment opened a new field of research and the
muon g-2 began to raise high interest for its properties and for the
possibility to be used for precision tests of QED. In particular, the
CERN-I experiment tested with a 95% confidence level that conven-
tional quantum electrodynamics is applicable to distances as small as
7× 10

−14 cm and that the "radius" of the muon is less than 4.5×10
−14

cm.

2.3.2 CERN-II

In the second experiment at CERN (1962-1968) was used a magnetic
ring to extend the muon storage time. Muons were obtained using a
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Figure 7: General plan of the 6-m magnet from the CERN-I experiment.
Q, M are quadrupoles and bending magnet respectively. On the right Be-
moderator and counters for injected protons. On the left T: methylene-iodide
target and counters for "backward" and "forward" electrons. Image from [16].

primary proton beam which was injected directly onto a target inside
the storage ring where produced pions decayed. Only a small fraction
of the muons produced in this manner fell onto stable orbits. The
result to 270 ppm agreed with QED.

2.3.3 CERN-III

The last experiment conducted at CERN could count on the experience
gained with the second one and on the recent theoretical improve-
ments. In fact it was clear, from the calculations by Gourdin and
de Rafael, that the muon anomaly had contributions also from the
strong interaction and the previous experiment was just on the verge
of seeing this effect. Moved by all these motivations a collaboration
started to work on the new storage ring which started its operations
in the 70’s.
The CERN-III (1974-1976) experiment used a uniform-field storage
ring and electric quadrupoles to provide vertical containment for
muons. This focusing was specific for muons with momentum of 3.1
GeV/c, defined as magic momentum: in fact, at this value the muon spin
precession is not affected by the electric field from the quadrupoles.
Instead of protons, pions were injected directly into the storage ring to
reduce background and to increase the fraction of stored muons. The
CERN-III experiment achieved a precision of 10 ppm for each muon
polarity. The results were combined to give a 7.3 ppm measurement,
in agreement with theory. Moreover, this result served as the first
confirmation of the predicted 60 ppm contribution to aµ from hadronic
vacuum polarization.
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Figure 8: Plan view of the 14m diameter magnet which formed the second
muon storage ring at CERN. On the right cross sections of magnet and
quadrupoles are shown. Image from [17].

2.3.4 BNL E821

The complete standard model value of the muon anomalous magnetic
moment, currently known to a precision of 0.54 ppm, was measured by
the E821 experiment at Brookhaven National Laboratory (BNL). E821

followed the same general technique as CERN-III, but with consistent
improvements. It used a continuous superconducting magnet, instead
of a lattice of discrete resistive magnets. A direct current inflector
magnet permitted the ring to be filled at 33 ms intervals, matching the
bunch extraction from the AGS. Muons were injected directly in the
storage ring, increasing the storage efficiency and reducing the intense
hadron background. Muons were placed and centred on stable orbits
by a pulsed kicker. Combining the results of four positive muon runs
taken from 1997 to 2000 and a final run using negative muons, aµ was
determined to a precision of 0.54 ppm. In the following we give an
overview of the experimental technique used at E821, as the recent
"g-2" experiment in program at Fermilab for the next years plans to
use the same apparatus as well as an analogous technique.

2.3.4.1 Experimental method

The muon g-2 can be extracted measuring the anomalous precession
frequency ωa, id est the rate at which the polarization turns relative
to the momentum. For a muon moving in the horizontal plane of
a magnetic storage ring, the cyclotron ωc and spin precession ωs

frequencies are given by:

−→ω c = −
Qe
−→
B

mγ
, −→ω s = −

gQe
−→
B

2m
− (1− γ)

Qe
−→
B

mγ
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The quantity ωa is determined from the difference

−→ω a =
−→ω s −−→ω c = −

(
g− 2

2

)
Qe
−→
B

m
= −aµ

Qe
−→
B

m
(3)

Equation (3) describes the anomalous precession frequency in case of
no electric field applied. In reality muons in the rest frame see the
electric field of quadrupoles used to provide vertical focusing in the
storage ring and this can affect the spin precession frequency. Hence
in presence of an electromagnetic field, in case that

−→
β is perpendicular

to both the fields, eq. (3) becomes

−→ω a = −
Qe
m

[
aµ
−→
B −

(
aµ −

1
γ2 − 1

) −→
β ×−→E

c

]
(4)

E821 as well as CERN-III operates at the specific µ momentum of
3.094 GeV/c, the so called magic. At this value the coefficient of the
term

−→
β ×−→E vanishes and the anomalous precession frequency only

depends on the magnetic field applied, which was uniform in the
case of E821 experiment. The magnetic field

−→
B used in eq. (4) is the

average over muon trajectories during the course of the experiment,
weighted with magnetic field distribution. Thus, aµ can be extracted
by measuring ωa and the value of the field normalized to the Larmor
frequency of a free proton ωp:

aµ =
ωa/ωp

λ+ −ωa/ωp
=

R
λ+ −R

The quantity λ+ is the muon-to-proton magnetic moment ratio

λ+ =
µµ+

µp
= 3.183345137(85)

determined from muonium hyperfine level structure measurements
assuming CPT invariance.
The E821 experiment was commissioned in 1997 using the same pion

injection technique employed by the CERN-III experiment. Data were
obtained in typical 3/4 months annual runs through 2001. The final
experimental result obtained from the BNL experiment is

aµ(E821) = 11659208.0(6.3)× 10−10 (0.54 ppm)

At present this is the most accurate measurement of the muon anoma-
lous magnetic moment and it ultimately is limited by statistics. New
experiments at Fermilab and J-PARC, aiming at measuring the muon
g-2 to a precision of 1.6×10

−10 (0.14 ppm), are underway [1], [19]. In
the final report of the BNL E821 experiment the collaboration stated
that
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Figure 9: Plan view of the pion/muon beamline. The pion decay channel is
80 m and the ring diameter is 14.1 m. Image from [18].

The precision on the SM value will be improved, enabling a more
sensitive comparison with experiment.

SM theoretical development has progressed, with QED loops evaluated
through fourth order and estimated through fifth, weak loops through
second order and hadronic loops through second order as well. The
current status of the SM prediction has been presented in section 2.2.5
and the final comparison with experiment gives

∆aµ(E821− SM) =
(287± 80)× 10−11 [10]

(261± 78)× 10−11 [11]

depending on which evaluation of the lowest-order hadronic contribu-
tion that is used. This comparison between the experimental values
and the present SM value is shown graphically in Fig. 10. The discrep-
ancy between the SM expectation from [10], [11] and experimental
value corresponds to a 3.3-3.6σ deviation. While, at a level of 3σ, one
can not speak of a firmly established deviation from the SM prediction,
all different contributions have been checked thoroughly. As pointed
out many times so far, the SM value is expected to be improved in the
hadronic data and it seems increasingly difficult to explain the dis-
crepancy by a change in this sector alone. In the following section we
present in more detail the state of art of the aHLO

µ evaluation explaining
how data required as input in eq. (2) are obtained and how more
recent calculations from [23] improved this value, leading to a 3.7σ

discrepancy between the SM expectation and the E821 measurement.
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Figure 10: Comparison between aSM
µ and aExp

µ . DHMZ10 is Ref. [11], JS11

is Ref. [20], HLMNT11 is Ref. [10], FJ17 [21] and DHMZ17 [22]. KNT18

from Ref. [23] is the same central value with a reduced error obtained by
recent improvement on the hadronic cross section measurement; "BNL" is
the current experimental value of aµ; "BNL (x4 accuracy)" is the same central
value with a fourfold improved precision as planned by the future (g− 2)
experiments at Fermilab and J-PARC [19].

2.4 leading-order hadronic contribution to the muon

g− 2

The hadronic contribution to the muon anomalous magnetic moment
can be divided into the lowest order (LO) and higher orders (HO)
vacuum polarization (VP) terms and the hadronic light-by-light effect

aHad
µ = aLOVP−Had

µ + aHVP−Had
µ + aHLbL

µ

The first term accounts for 60 ppm to aµ, while the higher orders
term and the hadronic light-by-light effect have relatively less impact
on the final value of the muon g-2, being of an order O(α3). The
lowest-order contribution can be evaluated exploiting the dispersion
relation given in eq. (2). However in the SM, none of the contributions
which define ahad

µ can be calculated reliably using perturbative QCD
(pQCD), as virtual photons with low q2 dominate the loop integrals.
Figure 5 pictorially depicts this situation. At present a precision of
1% is required on aHLO

µ to substantially improve the SM prediction on
the muon anomalous magnetic moment. To achieve this precision it is
mandatory to exploit and combine the best measurements available
for e+e− → γ? → had. We recall the dispersion relation (2)

ahad;LO
µ =

(αmµ

3π

)2 ∫ ∞

m2
π

ds
s2 K(s)Rhad(s)

which depends on the kernel function K(s)

K(s) =
m2

µ

(3π)2 (0.4 . . . 1) =
∫ 1

0
dx

x2(1− x)
x + (1− x) s

m2
µ
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which increases monotonically from s = 0.4 to s = 1. Hence, low en-
ergy region weights more in the evaluation of the integral (2), making
the ρ → 2π channel the most dominant (∼70%) in the evaluation of
aHLO

µ . This effect reflects directly on the Rhad(s)-dependence of the
integral, as it is necessary to have extremely precise measurements of
undressed total hadronic cross sections as input for the calculation.
Experimentally two methods are used to measure the hadronic cross
sections: the energy scan (Fig. 5(b)), and the radiative return method,
which uses initial state radiation with a fixed beam energy to measure
the cross section for energies below the total center-of-mass energy of
the colliding beams (Fig. 5(c)). Several experiments around the world
employ these two techniques to provide precision measurements of
σ(e+e− → had.). The CMD2, and the more recent CMD3, detector
at Novosibirsk and the BESIII experiment at the Beijing tau-charm
factory BEPC-II us the energy scan method, while the KLOE collab-
oration, BaBar and BELLE ectract bare hadronic cross sections from
radiative return analysis. Combining the two approaches precision
measurement in the ρ region have been recently provided as input to
SM calculations for aHLO

µ . As pointed out above, the ρ→ 2π channel
dominates the lowest-order contribution, hence a precise agreement
between different experimental values is fundamental to improve the
current theoretical prediction. The most recent results from KLOE [24]
agreed fairly well with the measurements from CMD-2 and SND
(Novosibirslk) [25], but they present slight disagreement with data
obtained from radiative return analysis from BaBar [26]. This tension
has prevented a grater improvement of the error in the ρ region. In
addition to this region many other exclusive channels have been mea-
sured from these experiments and an extensive compilation of R(s)
values [10] has been used for calculations over the past years. Results
presented in section 2.2.3 for the two aHLO

µ values from [10], [11] for the
SM calculation of aµ led to a 3.3-3.6σ deviation from the experimental
value which did not undergo to substantial improvements. The pie
diagram in Fig. 5 shows that the dominant contribution to the LO
hadronic vacuum-polarisation correction to g-2 comes from the e+e−

energy region up to 0.9 GeV, whereas the major part of the error comes
from the region up to 2 GeV. A more recent work from Keshavarzi et
al. [23] has used a new data combination method which led to a new
evaluation of aHLO

µ . Figure 11a shows the new compilation of the total
hadronic R(s) ratio from different final states. These values have been
recalculated by [23] using more recent measurements of bare hadronic
cross sections. The authors could exploit new data from the KLOE
collaboration [27], [28] and from the BESIII [29] which combined with
the BaBar results [26] permitted an improvement on the calculation of
the total contribution of aHLO

µ

aHLO
µ = (693.27± 2.46tot)× 10−10
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(a) Contributions to the total hadronic R ratio from different final states. Yellow
histogram is the final state of 2π.

(b) Hadronic R-ratio shown in the range mπ ≤
√

s ≤ 11.1985 GeV distinguishing
exclusive data from inclusive ones. Prominent resonances are labelled.

Figure 11: The total hadronic R ratio from [23]. At present this is the best
compilation in literature.
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Figure 12: New values of the contributions to the dispersion integral shown in
Fig. 5. Pie diagram from [23] obtained using new data from KLOE [27], [28]
and BESIII [29].

This recent improvement in aHLO
µ calculation sets more precise values

on the fractional contributions to the total mean value of eq.(2) as
shown in Fig. 12. Combining this result with the contributions from
QED and the electro-weak sector, high order hadronic contributions
and light-by-light effect the SM prediction of the anomalous magnetic
moment of the muon was found to be

aSM
µ = (11659182.05± 3.56)× 10−10

When compared to the current experimental measurement it results in
a deviation of ∆aµ = (27.05± 7.26)× 10−10, corresponding to a 3.7σ

discrepancy.

2.4.1 The running of αem from R(s)

In section 1.2 we have seen the theory behind the scale dependence
of the QED coupling constant. In particular, we have shown its
dependence both from leptonic and hadronic vacuum polarisation
effects that screen the electric charge

α(q2) =
α

1− ∆αlep(q2)− ∆αhad(q2)

We have also underlined the importance of knowing the value of
αem at the scale of the mass of the Z boson, α(M2

Z). In fact, it is
needed for predictions of high-energy processes and it is fundamental
for precision tests of the EW sector in the SM. Due to the hadronic
uncertainties (∆αhad(q2)), it is the least well known of the EW SM
parameters. In section 1.2 we mentioned the possibility to evaluate
the hadronic contributions of the QED coupling exploiting dispersion
integral. More precisely, using the same compilation of hadronic
data needed to evaluate aHLO

µ , combined with pQCD, it is possible to
calculate with the best possible precision ∆αhad(q2) via the following
dispersion integral

∆αhad(q2) = −αq2

3π
P
(∫ ∞

sth

Rhad(s′)ds′

s′(s′ − q2)

)
(5)
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where P denotes the principal value of the integral. Hence, a precise
evaluation of the lowest order hadronic contributions to the muon
anomalous magnetic moment directly lead to the possibility of evalu-
ating also the hadronic vacuum polarisation effects on αem. The recent
work from Keshavarzi also re-evaluated this quantity, previously sta-
ble at the values calculated in [10], [11], using the new compilation
of total hadronic R(s) ratio (Fig. 11b). The total value of the QED
coupling at the Z boson mass is found to be

α−1(M2
Z) = 128.946± 0.015 [23] (6)
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T H E M U - O N - E E X P E R I M E N T

The MUonE experiment aims to measure the leading-order hadronic
contributions to the muon anomalous magnetic moment with a statis-
tical precision of 0.3%. In section 2.2.3 and more in details in section
2.4 we have outlined the usual way of calculating this term using a
time-like dispersion integral. We pointed out that the most critical
aspect of using eq.(2) to evaluate aHLO

µ is the knowledge of the bare
hadronic cross sections, especially in the low energy range where one
cannot rely on pQCD. The present compilation of R(s) allows a de-
termination of the leading hadronic contribution with an uncertainty
of the order of 0.4-0.5%. However since the estimate of systematic
uncertainties coming from this method is extremely delicate, a cross-
check based on independent techniques is needed. In section 2.4.1
it has been observed the strict link between the QED coupling and
the muon anomalous magnetic moment, as there is the possibility to
compute both of them in a time-like approach using a compilation of
e+e− annihilation data (eg. Fig. 11b). The MUonE idea is competitive
and complementary with this one, aiming to determine aHLO

µ from a
measurement of the effective electromagnetic coupling constant in the
space-like region using a µ− e scattering process. In the following
is detailed the project of this innovative experiment, as well as the
theoretical framework on which it relies.

3.1 theoretical framework

The time-like dispersion integral presented in section 2.2.3 has been
commonly used during the past years to evaluate the leading order
hadronic contributions to the muon g-2. However eq.(2) presents
limitations:

• The integrand function R(s) is highly fluctuating, especially
at low energies, due to resonance and threshold effects (see
Fig.11a);

• The integral has to be calculated using experimental values of
Rhad(s) in the low energy tails and perturbative QCD in its high
energy component

Alternatively aHLO
µ can be calculated exploiting an alternative formula

in the space-like region [30], namely

aHLO
µ =

α

π

∫ 1

0
dx(1− x)∆αhad[t(x)] (7)

23
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Figure 13: Integrand (1− x)∆αhad[t(x)]× 105 as a function of x and t from
[31]. The peaks are xpeak ' 0.914 and tpeak ' −0.108 GeV2.

where

t(x) =
x2m2

µ

x− 1
< 0

is a space-like squared four-momentum and ∆αhad(t) is the hadronic
contribution to the running of the QED coupling, as already discussed
in sections 1.2, 2.4.1. The main advantage of this expression with
respect to the dispersion integral (2) is that the integrand function
used here is smooth and free of resonances and can be extracted
from data. Fig. 13 graphically shows the t and x dependence of the
integrand in eq.(7).

In section 2.4.1 we have outlined how to extract the value of
∆αhad(t) from bare hadronic cross section measurements, stressing the
intrinsic difficulty and limitation of this method. An innovative tech-
nique which aims to extract this observable from small angle Bhabha
scattering has been recently proposed in [30], similarly to what was
done at LEP and documented in [3]. With this technique it would
be possible to extract a measurement of aHLO

µ from space-like data
competitive with the current time-like evaluations. However, the use
of Bhabha scattering data has some intrinsic limitations:

• Inevitable mixing of s and t channels leads to a non-trivial
numerical procedure to extract ∆αhad(t) from data;

• It follows that the precision on ∆αhad(s > 0) can limit theoretical
accuracy of the aHLO

µ prediction;
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• There is the need of another process, independent from ∆αhad(t)
and known with high-accuracy, to normalize for systematic
errors cancellation. Two possible processes could be:

– The e+e− → γγ at least up to next-to-next-leading order,
but it is difficult to control with needed accuracy;

– The Bhabha scattering itself at t ∼ 10−3 GeV2 (x ∼ 0.3),
where the dependence of ∆αhad is of O(10−5) and can be
safely neglected. The main difficulty using this process
is the impossibility to adapt current experiments with a
suitable luminometer to achieve the needed precision and
to avoid acceptance problems.

The MUonE project is an innovative technique to determine aHLO
µ from

the measurement of ∆αhad(t) in the space-like region, without having
to deal with these problems.

3.2 experimental proposal

The innovative technique proposed by the MUonE experiment consist
of using a muon beam with Eµ ' 150 GeV scattering on a atomic
electrons of a low-Z target. Thus, we intend to determine aHLO

µ from
eq.(7) using experimental measurement of ∆αhad(t). The use of the
µe→ µe process is extremely appealing for the following reasons:

• It is a pure t-channel process and the t-dependence of the differ-
ential cross section is proportional to | α(t)/α(0) |2:

dσ

dt
=

dσ0

dt

∣∣∣∣ α(t)
α(0)

∣∣∣∣2
• The closed kinematics of the two bodies scattering allows to

write the Mandelstam’s variables s and t as

t = (pi
µ − p f

µ)
2 = (pi

e − p f
e )

2 = 2m2
e − 2meE f

e ,

s = (p f
µ + p f

e )
2 = (pi

µ + pi
e)

2 = m2
µ + m2

e + 2meEi
µ

where

E f
e = me

1 + r2 cos2 θe

1− r2 cos2 θe
, r2 ≡

(Ei
µ)

2 −m2
µ

(Ei
µ + me)2

• It follows that for Ei
µ = 150 GeV, s ' 0.164 GeV2 and −0.143

GeV2≤ t < 0GeV or, equivalently, 0 < x ≤ 0.93: meaning that t
spans the peak region (see Fig. 13), corresponding to an electron
scattering angle of θ

f
e ' 1.5 mrad;
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Figure 14: Elastic scattering theoretical curve: muon and electron scattering
angles for 150 GeV incoming muons.

• The electron scattering angle θ
f
e spans the range (0-31.85) mrad

for the energy E f
e in the range (1-139.8) GeV. The boosted kine-

maticks of the collision guarantees that the scattering angles are
completely contained in the acceptance of a single detector ele-
ment in the laboratory system. This implies that many systematic
errors will cancel out in the relative ratios of event counts in the
high and low q2 regions (signal and normalization regions);

• There is a kinematical correlation between the angle of the final
scattered electron and muon, as shown in Fig. 14 from [31].
This constraint turns out to be extremely useful when selecting
elastic events, rejecting background from radiative or inelastic
processes.

We expect to achieve a ∼0.3% statistical precision on aHLO
µ after two

years of data taking, using ∼ 30 experimental points in x and a
muon beam of 150 GeV with an average intensity of ∼1.3×10

7 µ/s.
The choice of a 150 GeV muon beam has several advantages. First
of all allows to design an apparatus which consists of series of a
simple module, each one working as a standalone detector. The use
of low-Z targets reduces the rate of multiple scattering of the final
particles and other possible µ interactions, such as pair production and
bremsstrahlung. Moreover there is the great advantage of using the
µe→ µe process itself for the final normalization. More precisely we
intend to use the region x . 0.3 for the normalization since here the
hadronic corrections to α are negligible. By exploiting the same process
we expect that the theoretical uncertainties will be reduced to the level
of O(10−5). Using 150 GeV muons we cover a region which accounts
for ∼ 87% of the integral and fully contains the peak of the integrand
in eq.(2) (see Fig. 13), which is at xPeak = 0.914 (tPeak ' −0.108 GeV2)
corresponding to ∆αhad(tPeak) ' 7.86 × 10−4. The missing region
(0.932 . x ≤ 1) can be covered with pQCD calculations, by the use of
time-like data and with lattice QCD calculations.



3.2 experimental proposal 27

Figure 15: Scatter θe − θµ plot for 150 GeV muons. Scatter plot of Fig.
14 produced with theoretical NLO generator. Plot from C. C. M. Calame,
International Symposium-Advanced Dark Matter and Particle Physics

3.2.1 Detector set-up

The boosted kinematics constrains the scattering within the forward
direction, so that the transversal dimensions of the detector can be
limited, e.g. of the order of ∼ 10× 10 cm2. The strategy to extract the
final measurement of aHLO

µ from eq.(7) can be summarized as follows:

• Measure the differential cross section of the µ− e scattering in
the allowed kinematic range;

• Extract large values of | t | from perturbative QCD (pQCD) and
time-like data;

• Obtain a measured value of ∆αhad(t) from a fit of the experimen-
tal points at the measured | t | values;

• Use this value of ∆αhad(t) to derive the leading hadronic correc-
tions to aµ from eq.(7).

Fig. 16 gives an example with pseudo-data of the strategy described
above. Collecting ∼ 30 value of ∆αhad(t) we intend to extract the
value of the integrand in eq. (7) from a fit and to use it to retrieve a
measurement of aHLO

µ . We intend to perform this measurement with a
dedicated detector which will measure:

• The direction and momentum of the incident beam;



28 the mu-on-e experiment

Figure 16: Pictorial representation of the distribution of the integrand in eq.
(7). Final measurement of aHLO

µ is intended to be extracted from a theoretical
fit of this distribution. Image by Carlo C.M. Calame.

(a) Schematic view of the final apparatus set-up.

(b) Detailed view of a single module.

Figure 17: 17a schematic view of the final detector. Eventually we plan to
use 20 modules, as the one shown in 17b.

• Outgoing particle directions.

As stated above, we plan to use a 150 GeV muon beam with an inten-
sity rate of ∼ 1.3×10

7µ/s. Such a beam is available at CERN and has
the characteristics needed for such a measurement. In fact it provides
both positive and negative muons and has a very small electrons
contamination.
We plan to use a modular apparatus consisting of a low-Z target and
two silicon tracking stations located at a distance of one meter. The
detector should consist of 60 modules and possibly two downstream
particle identifiers: an electromagnetic calorimeter and a muon de-
tection system. These are fundamental to avoid ambiguities in the
reconstruction of tracks with small scattering angles (θe, θµ below 5

mrad). Fig. 17 shows a scheme of the planned detector layout. As
previously mentioned, the advantages of such a detector are several: it
allows to cover almost entirely the acceptance of the elastic interaction.
It can achieve extremely precise angular resolution (∼0.02 mrad) and
it covers both the signal and the normalization regions.



4
T E S T B E A M A N A LY S I S

In order to prove the feasibility of the final experiment we had two
test beams in the past year. The first test beam was performed in
October 2017 and a second one has started in April 2018 and will run
continuously until October 2018. The aim of these tests is to have a
first proof of concept of the final apparatus as well as to study the
effect of the multiple scattering on the angular distributions, from
which we intend to extract our measurement. This chapter presents
the data analysis of these test beams.

4.1 beam energy knowledge

One of the most crucial aspects of the MUonE experiment is to control
systematics at the same level of statistical uncertainty. The statistical
precision expected is 0.3% and a similar systematic uncertainty is
necessary for the final measurement. One of the possible sources of
systematic in the determination of dσ

dθe
is the measurement of the beam

momentum. We expect to use the M2 beam at CERN, which has the
following properties:

• Energy spread: 3%;

• Spectrometer precision on single muon energy: 0.8%

The spectrometer resolution is acceptable to maintain under control
systematics related to energy determination. The final measurement
is going to be extracted from a fit over several values of ∆αhad(t) at
different t and the knowledge of the single muon energy at 0.8%
level would allow an estimate of differential cross section at 10 ppm.
However one has to deal with the energy loss effect in the apparatus.
For the configuration described in this section we expect

Eloss(20× 1 cm Be)/E0 ' 10−3

Assuming this energy variation to be the largest in our set-up, we
can try to understand how it will affect the precision on the value of
cross-section. Once understood this point it will be useful to evaluate
the effect of the energy error on the differential cross-section dσ

dθe
. These

two studies allow us to understand whether the beam available from
M2 satisfies our requirements or not. The leading-order µe→ µe cross
section with full mass dependence can be expressed as:

dσ

dθe
=

dσ

dt
× 8m2

e r2 | cos θe sin θe |
(1− r2 cos2 θe)2 (8)

29
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Figure 18: Relative effect of an energy miscalibration of 10−3 on the differen-
tial cross section dσ/dθe.

Where:
dσ

dt
=

C
4
√
(p1 p2)2 −m2

e m2
µ

1√
λ
× | M(s, t) |2

Fig. 18 shows the relative effect of a 10−3 mis-calibration in the beam
energy on the leading-order differential cross section assuming a
beam with energy resolution σE/E = 0.8% as the one provided by
M2 (see Fig. 19). Hence a possible mis-calibration at a 10−3 level
due to energy loss induces a maximum relative variation effect on the
differential cross-section with respect to the case of the nominal energy
of ∼ 2.5× 10−4. It is interesting to note that this effect is maximum
in the signal region, while effects are smaller in the normalization
region. Having at disposal the nominal resolutions on mean energy
and single muon energy determination from M2 one can try to exploit
these informations to reconstruct the kinematics of the two body event.
This would be extremely useful to exploit the very precise angular
resolution of the apparatus to determine the muon energy a posteriori.
The energy reconstructed in such a way can be used to keep under
control systematic uncertainties and to estimate the differential cross
section at a 10 ppm level.
For the µ− e process the relation between the final momenta and the
scattering angles is given by:

p′µ sin θµ = p′e sin θe (9)

An interesting case is the equal angles scattering for which holds√
(E′µ)2 −m2

µ =
√
(E′e)2 −m2

e

Using the energy conservation and solving for E′e one gets

E′µ = Eµ + me − Ee (10)

E′e =
(Eµ + me)2 −m2

µ + m2
e

2(Eµ + me)
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Figure 19: Incoming muons energy distribution of 5× 104 events. Nominal
resolution of 0.8%.

From which can be derived the muon final energy

E′µ =
(Eµ + me)2 + m2

µ −m2
e

2(Eµ + me)

Since the electron energy and the electron angle are correlated by

E′e = me
1 + r2 cos2 θe

1− r2 cos2 θe
, r2 ≡

E2
µ −m2

µ

(Eµ + me)2

Requiring the identity of the two expressions for E′e we get

cos2 θe =
x− 1
x + 1

× 1
r2 , (11)

x ≡
(Eµ + me)−m2

µ + m2
e

2me(Eµ + me)
(12)

Hence one can calculate the scattering angle and energies starting
from the initial muon energy Eµ.
With a simple Monte Carlo we can simulate a run to study the problem
of energy determination starting with a nominal muon energy. We
assume σEµ /Eµ = 0.8% and we simulate 5× 105 events and for each
one we reconstruct the scattering angles and final energies using the
kinematic constraints (11), (12). Fig. 19 shows the initial energy
distribution of the muons assuming a 0.8% resolution. In the equal
angles condition, from eq. (11) we obtain for the scattering angles
θµ, θe distributions shown in Fig. 20. The kinematics of the µ − e
scattering gives θe,µ ' 2.5 mrad, which correspond to an energy of
E f in

e,µ ' 75 GeV. Results are shown in Fig. 21. The region selected by
the equal angle condition corresponds to the angular region where the
differential cross-section is most sensible to possible effects of energy
mis-calibration. However we know that the differential cross section is
sensible to a level of 2.5× 10−4 to a 10−3 energy discrepancy from the
nominal value, as shown in Fig. 18. Eventually we can reconstruct the
initial muon beam energy using these quantities and the kinematic
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Figure 20: The angular distributions of scattered electrons and muons in
the equal angle condition. Distributions obtained from eq. 11 taking into
account the smearing for multiple scattering and detector angular resolution.

Figure 21: Final reconstructed energies for outgoing µ and e− in the equal
scattering assumption. Fit of the distributions in the gaussian hypothesis
returns Eµ = (75.0014± 0.0008) GeV.
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Figure 22: Reconstructed muons incoming distributions for 5× 105 events.
Fit in the gaussian hypothesis returns a value of Eµ = 150.003± 0.006 GeV.

relations derived at the beginning of this section. Fig. 22 shows the
result of the reconstruction, assuming the energy mean value is known
with 3% resolution. Hence, assuming the angular distribution to be
gaussian with σθ = 0.03 mrad, a sample of the order of 105 scattering
events allows to control the precision on the mean value to a 10−5 level
also in the signal region, where a possible energy mis-calibration can
introduce non negligible systematics on dσ

dθ . In order to corroborate
this result we explicitly determine the effect of Eµ and θe on the final
error on dσθe . To do so we write the leading-order differential cross
section explicitly in terms of the muon beam energy and we compute
the partial derivative within respect this variable. In the assumption
that θe and Eµ can be considered as statistically independent we have
that

(σd(CS))
2 ∝

(
∂dCS
∂Eµ

)2

σ2
Eµ

In the following we calculate also the effect of θe on the final error
on dσθe and we compute the covariance as well as the correlation
parameter for these two variables

Cov(∂Eµ dCS, ∂θe dCS) = 3.1× 10−4

ρ(∂Eµ dCS,∂θe dCS) = 0.36

We will discuss in more details these results, but on this basis we can
use the assumption for which the two contributions can be considered
as statistically independent and their effect on the final error on the
cross-section can be treated separately. Hence, we rewrite dσ

dθe
explicitly

in terms of Eµ. In the lab reference frame, the relations between useful
kinematic variables are:

s = M2
e + m2

µ + 2meEµ, t = 2m2
e − 2meEe (13)
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Where Ee depends on Eµ as:

Ee = me
1 + r2 cos2 θe

1− r2 cos2 θe
, r =

√
E2

µ −m2
µ

Eµ + me
(14)

We also express p1 p2 in terms of Eµ using the above definition of s:

p1 p2 =
s−m2

e −m2
µ

2
= meEµ

For what concerns | M(s, t) |2 we have:

| M(s, t) |2= 4πα2

t2 (t2 + 2st+ 2s2 + 2m4
µ− 4m2

µs+ 2m4
e − 4m2

e s+ 4m2
e m2

µ)

Using (13) we have:

| M(s, t) |2= 4πα2

t2 (8m4
e − 12m3

e + 4m2
e E2

e − 4m2
µmeEe + 8m3

e Eµ+

+ 8m2
e E2

µ + 4m2
e m2

µ − 8m2
e EeEµ)

Hence, we rewrite dσ
dθe

explicitly in terms of Eµ. Eventually, dσ
dθe

can be
expressed as:

dσ

dθe
=
C2me√
λ(Eµ)

| M(Eµ, θe) |2
√

E2
µ −m2

µ | cos θe sin θe |

(Eµ + me)2
(

1− E2
µ−m2

µ

(Eµ+me)2 cos2 θe

)2

At this point it is possible to calculate the partial derivative of the
differential cross section within respect to Eµ and to evaluate the
contribution of a possible mis-calibration on the final error on dσθe .
Eventually we have:

1
K

∂(dCS)
∂Eµ

=
| M(Eµ, θe) |2 |sin (θe) cos (θe)|√

λ(s, m2
e , m2

µ)
×

×

2m2
µme −m2

µEµ cos2 θe + 2m2
µEµ + m2

e Eµ + E3
µ cos2 θe − E3

µ√
E2

µ −m2
µ

(
m2

µ cos2 θe + m2
e + 2meEµ − E2

µ cos2 θe + E2
µ

)2

+

+
1√

λ(s, m2
e , m2

µ)

∂ | M(Eµ, θe) |2

∂Eµ

√
E2

µ −m2
µ |sin (θe) cos (θe)|(

1− E2
µ−m2

µ

(Eµ+me)
2 cos2 θe

)2 (
Eµ + me

)2
+

−
4m2

e Eµ

λ(s, m2
e , m2

µ)
3/2 | M(Eµ, θe) |2 F(Eµ, θe)

Using the same Monte Carlo implemented above, we have generated
a new sample of 5× 105 events and we used the muon energy recon-
structed (Fig. 22) using the kinematical constraint of the equal angles
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Figure 23: Effect of the muon energy error on the differential cross-section
versus the final electron angle. Assuming an initial resolution of σEµ /Eµ =
1% and a final energy spread of 3%.

Figure 24: y-projection of the plot 23. Distribution of ∂Eµ dσθe for 5× 105

events. Gaussian fit returns ∂Eµ dσθe(Eµ) = 0.00452

scattering to evaluate ∂Eµ dσθe(Eµ). Assuming an initial beam of 150
GeV with the nominal resolution from M2 beamline of σEµ /Eµ = 0.8%
we find that the mean value of ∂Eµ dσθe(Eµ) correspond to

∂Eµ dσθe(Eµ) = 0.00452

Fig. 24 shows the result of the Monte Carlo run with 5× 105 events
to evaluate the effect of the energy beam uncertainty on the over-
all differential cross section error. Hence, the statistical contri-
bution to the cross-section error due to the muon energy error is
σstat = ∂Eµ dσθe(Eµ)× σEµ ∼ O(10−4). The systematic contribution is
maximum in the signal region and it is of the order of 10−4 as well. It
is important to observe that a possible mis-calibration of the energy
does not affect the ∂Eµ dσθe(Eµ) value found with this analysis, even
if we are in the region where the cross-section is most sensitive to
possible systematics. Fig. 25 shows the relative ratio of the ∂Eµ dσθe(Eµ)

value in case of an energy mis-calibration of a 10
−3 level. This result

suggests that the uncertainty on the final value of the differential cross-
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Figure 25: ∂Eµ dσθe(Eµ) ratio when evaluated at the correct Eµ value and
when a 10−3 mis-calibration is introduced.

section due to σEµ can be kept under control even if a systematics is
introduced in the energy determination. The systematic and statistical
contributions to the cross-section error due to the beam energy error
are independent, without correlation. For completeness we determine
the contribution of θe to the cross section error, following the same
strategy used for the Eµ contribution. First of all, we express dσ

dθe
in

terms of θe and we note that:

dσ

dθe
=

C
f lux
√

λ︸ ︷︷ ︸
θe-independent

| M(s, θe) |2
8m2

e r2 | cos θe sin θe |
(1− r2 cos2 θe)2︸ ︷︷ ︸

t=t(θe)

We express t in terms of θe using (14):

t = 2m2
e − 2meEe = 4m2

e
r2 cos2 θe

r2 cos2 θe − 1

From which follows that:

| M(s, t) |2=| M(s, θe) |2=
4πα2

t2

(
t2 + 2st + c

)
=

= 4πα2 +
2πα2s

m2
e
− 2πα2s

m2
e r2 cos2 θe

+
πα2c(r2 cos2 θe − 1)2

4m4
e r4 cos4 θe

Where c = 2s2 + 2m4
µ − 4m2

µs + 2m4
e − 4m2

e s + 4m2
e m2

µ.

Proceeding as above, we need to evaluate ∂|M|2
∂θe

:

∂ | M |2
∂θe

=
πα2 sin θe

m2
e r2

[
16c

10 cos θe + 5 cos(3θe) + cos 5θe
+

+
4c

3 cos θe + cos 3θe
+

16s
3 cos θe + cos 3θe

]
For completeness, we evaluate the partial derivative within respect

to θe of the second factor in dσ
dθe

:

F (θe) =
8m2

e r2 | cos θe sin θe |
(1− r2 cos2 θe)2
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Figure 26: Effect of the scattering angle error δθe on the differential cross-
section versus the final electron angle. Initial distributions smeared for
detector and multiple scattering effects. Run of 5× 105 events.

∂F (θe)

∂θe
=

32m2
e r4 cos θe sin θe | cos θe sin θe |

(r2 cos2 θe − 1)2 +

+
4m2

e r2 sin(4θe)

(1− r2 cos2 θe)2 | cos θe sin θe |
Eventually we have:

1
K

∂(dCS)
∂θe

=
∂ | M(s, θe) |2

∂θe

8m2
e r2 | cos θe sin θe |
(1− r2 cos2 θe)2 +

| M(s, θe) |2
∂F (θe)

∂θe

Using the same Monte Carlo and the same procedure adopted for
the Eµ calculation, we can derive the value of ∂θe dσθe in the region of
equal angles scattering. Fig. 27 shows the result of this calculation
and returns a value of

∂θe dσθe = 951.2 b/mrad

This contribution is found to be stable also when an energy mis-
calibration of 10−3 is introduced, suggesting that the energy and
angle error contributions to the final cross-section error are statistically
independent. Even if the two contributions depend both on Eµ and on
θe they are uncorrelated one with the other. Fig. 28 shows the scatter
plot of the two different contributions on the cross-section error: the
distribution is almost flat and this is a first hint of non correlation
between the two variables. Moreover we can extract the covariance
using the TH2::GetCovariance() method in ROOT and we get

Cov(∂Eµ dCS, ∂θe dCS) = 3.1× 10−4

Then we can use this quantity to compute the correlation parameter ρ,
which is defined for two generic variables (x, y) as

ρ(x,y) =
Cov(x, y)√

Var(x)Var(y)
, −1 ≤ ρ ≤ 1
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Figure 27: y-projection of the plot 26. Distribution of ∂θe dσθe for 5× 105.
Gaussian fit returns ∂θe dσθe(Eµ) = 951.22 b/mrad

Figure 28: Scatter plot of (∂Eµ dCS, ∂θe dCS).
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In our case we obtain

ρ(∂Eµ dCS,∂θe dCS) = 0.356

A good index of non correlation between the two sources of statistical
error on the differential cross-section uncertainty.

This study is based on a completely analytical approach and it
confirms previous results: in order to control the final error on the
differential cross section we can rely on statistics and on current
features of the apparatus. Reconstructing the muon energy for 5× 105

events with a precision on
〈

Eµ

〉
of 3%, its effect on the differential

cross section is of the order of 4.5× 10−3 b/GeV, while the effect of
δθe is equal to 9.52× 102 b/mrad. Both these effects are not affected
by the systematics introduced by a possible energy mis-calibration,
even when evaluated in the region where the differential cross-section
is most sensitive to the energy loss in the apparatus, as previously
shown in Fig.18.

4.2 test beam 2017

For the final experiment it will be crucial to have a complete and
sound understanding of the effect of multiple scattering and to have
at disposal a full simulation of the experimental apparatus. The work
of my thesis is focused on these two aspects. The data analysis is
performed on data from a dedicated test beam we had in October
2017, using the H8 line at CERN. The experimental set-up employed
for this test beam is commonly used by the UA9 collaboration [32] to
calibrate scintillating crystals with high-energy π beams.
The aim of the test beam was to collect data in order to study the
effect of multiple scattering in low-Z targets with direct comparison
to Monte Carlo simulations and to have a first appraisal of a single
module of the final detector. Since we expect each module to work
standalone in the final apparatus, this test beam also provides a
good proof-of-concept of our apparatus. The set-up used consists
of two upstream planes of Si trackers distant ∼10 m one from the
other, a target and three downstream tracking planes covering ∼ 1 m.
Each silicon tracker is composed by two layers 320 µm thick, with a
3.8× 3.8 cm2 active area, to measure both the x and y coordinates. Fig.
29 represents the test beam set-up with the distances, in mm, taken by
the UA9 collaboration. We had at disposal a total of five targets (C,
Al) of different thicknesses and all of them were tested. The week of
data taking was very efficient and we could exploit all the possible
configurations available at H8 line. Tables 3, 4 give a summary of the
acquired data. We refer as alignment runs to those acquisitions without
target, for each beam configuration. Eventually these data turned out
to be fundamental for the preliminary alignment procedure we had
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Figure 29: Test beam 2017 detector set-up. Distances in mm measured by
UA9 collaboration.

to develop to eliminate shifts in angular distributions, coming from
set-up misalignments.

Data analysis is presented in details in the next sections. This
test beam was extremely fruitful, as the large quantity and variety
of acquired data allowed us to study in details the effect of multiple
scattering: using both a detailed simulation of the apparatus and a
more analytical approach based on a fit of the angular deflection distri-
butions. Moreover we could exploit the run at 160 GeV µ+ to perform
also a first reconstruction of µ− e elastic events, defining possible cuts
to be used for the final experiment and using the simulation to study
background effects to control the signal/background ratio.

4.2.1 Fiducial cuts

Each silicon tracker registered hits as clusters: starting from hit clusters
per plane we had an iterative alignment procedure based on residuals
with the final aim of eliminating set-up misalignments present in data.
We used data without target, i.e. alignment runs (see Tab. 4), to extract
the constants for the alignment and then, with a fit on hits for the
up/down-stream planes separately, we aligned data with targets. The
analysis was performed on data collected into TTree which recorded
informations of hits per plane, chi-squared values and residuals for
the two coordinates from alignment and the reconstructed angles for
the incoming and outgoing tracks.
However events close to the edge of the active area could be affected
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Run Beam Target Type N events×10
6

5328 12GeV e− 2mm Al 7

5317,18 20GeV e+ 2mm Al 1.6
5333,34 12GeV e− 2mm C 14

5311,12,13,14,15 20GeV e+ 2mm C 5

5341 12GeV e− 4mm C 15

5344 20GeV e− 4mm C 15

5348 12GeV e− 8mm C 15

5352 20GeV e− 8mm C 12

5355+5360 20GeV e+ 8mm C 3

5330,38 12GeV e− 20mm C 15

5302,5,6,7,8,9+5358 20GeV e+ 20mm C 7(day1/2)+8(day6/7)
5367,68,70,71,72,73,74 160GeV µ+

8mm C 10/run

Table 3: Data summary: Normal Runs

Run Beam N events×10
6

5286 180GeV π+ all night day1

5298,5299 20GeV e+ 500+500 (day1, 2 runs) + 1 (day6)
5351 20GeV e− 1 (day6)
5357 20GeV e+ 1 (day6)
(5337+)5349 12GeV e− 1

5363,69 160GeV µ+
2 total

5303,10,16,56,59 180GeV π+
1/run

Table 4: Data summary: Alignment Runs (no target)
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by worse resolution, different acceptance and other effects. Therefore
some cuts have been studied to reject these particles and to keep only
events inside specific fiducial cuts. These cuts are geometrical cuts
on the first two planes active area, since from these two trackers we
retrieve the direction of the incoming particle before the scattering
inside the target. A fiducial cut on the first two planes affects overall
statistics and acceptance on the downstream planes but it is necessary
to ensure good quality events for the data analysis. Fig. 30-33 show
the profile plots for the hits distribution on the upstream planes for
20 GeV electrons beam. As one can see profiles tend to get far from
uniformity approaching Si trackers edges. To ensure uniformity in

h_e_0_pfx
Entries  207380
Mean  0.7542− 
Mean y 2.059− 
Std Dev     7.457
Std Dev y   5.718

20− 15− 10− 5− 0 5 10 15 20

8−

6−

4−

2−

0

2

4

h_e_0_pfx
Entries  207380
Mean  0.7542− 
Mean y 2.059− 
Std Dev     7.457
Std Dev y   5.718

 beams x-profiles plane 0±e

electrons

positrons

x-profile plane 0

Figure 30: x profile, first plane.

h_e_1_pfx
Entries  207425
Mean  0.7187− 
Mean y 2.242− 
Std Dev     8.503
Std Dev y   8.605

20− 15− 10− 5− 0 5 10 15 20
12−

10−

8−

6−

4−

2−

0

2

4
h_e_1_pfx

Entries  207425
Mean  0.7187− 
Mean y 2.242− 
Std Dev     8.503
Std Dev y   8.605

 beams x-profiles plane 1±e

electrons

positrons

x-profile plane 1

Figure 31: x profile, second plane.

h_e_0_pfy
Entries  207380
Mean  2.059− 
Mean y 0.7542− 
Std Dev     5.718
Std Dev y   7.457

20− 15− 10− 5− 0 5 10 15 20
15−

10−

5−

0

5

10
h_e_0_pfy

Entries  207380
Mean  2.059− 
Mean y 0.7542− 
Std Dev     5.718
Std Dev y   7.457

y-profile plane 0

Figure 32: y profile, first plane.

h_e_1_pfy
Entries  207425
Mean  2.242− 
Mean y 0.7187− 
Std Dev     8.605
Std Dev y   8.503

20− 15− 10− 5− 0 5 10 15 20

20−

15−

10−

5−

0

5

10

h_e_1_pfy
Entries  207425
Mean  2.242− 
Mean y 0.7187− 
Std Dev     8.605
Std Dev y   8.503

y-profile plane 1

Figure 33: y profile, second plane.

acceptance and resolution over the entire dataset, it has been necessary
to introduce fiducial cuts on these distributions. More precisely, this
cut was decided with a comparison of its effect on the Monte Carlo
simulation of the apparatus: the final aim is to find a compromise
between statistics reduction and uniformity in acceptance and distri-
bution. Eventually we decided to take as selection region the active area
(−10; 10) mm on both the upstream planes. Fig. 35 show the effect
of the fiducial cut on the angular distributions of a run with 12 GeV
electrons without target. The asymmetry observed in the distribution
before the application of the cut is entirely an effect of the detector,
presumably due to effects at the edge of Si trackers. The selection of
a region where the incoming beam profile is uniform (see Fig. 30-33)
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Figure 34: Angular deflections in both views without fiducial cut. Presence
of asymmetry in the x-view distribution.

Figure 35: Angular deflections in both views after the application of the
fiducial cut. Asymmetry vanishes and distributions are more regular.

removes the presence of these asymmetries in angular distributions
and regularizes data for the analysis.

The result presented here for the 12 GeV case holds for the 20

GeV data as well. This fiducial cut has to be applied both to experi-
mental and simulated data. For the final precision required by our
experiment, this cut is going to be fundamental to reduce possible
systematics coming from detector inefficiencies. Working in regions
where the beam properties are well known and where the detector
can be exploited at its nominal efficiency is a crucial point for our
measurement. To maximize these two effects we also introduced an
angular fiducial cut. This further selection criterion is justified by
Fig. 36, which shows the profile histogram of the angular deflection
(thetaOut-thetaIn) against the incoming angle thetaIn, for 12 GeV
electrons . We decided to select only those events with incoming
angular distribution in the range (−2, 2) mrad to avoid possible board
effects. The net effect of this cut is almost negligible on the overall
statistics and on the analysis results. While the previous geometrical
cut is certainly needed in the final experiment, this second selection
criterion could be unnecessary according to the detector specifics and
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Figure 36: Run of 12 GeV electrons without target. Profile histogram of the
angular deflection against the incoming angular distribution, y-view.

the precision of alignment. Hence, a study a priori of the beam profile
is required to understand whether these cuts have to be applied or
not and to decide the selection intervals.

4.2.2 Monte Carlo simulation

One of the fundamental tools needed in the analysis is the Monte
Carlo simulation of the full apparatus. A dedicated simulation of
the test beam set-up was developed using the GEANT4 software [33].
Several efforts have been made during the work of this thesis to
understand the best physics model to achieve the most accurate de-
scription of the experimental set-up. In particular a proper choice of
the PhysicsList has been fundamental: we decided to work with the
standard electromagnetic option 4 from Geant4.10.4, as it includes
a selection of most accurate physics models from Standard and Low
Energy sets of models implemented in GEANT4. The final simulation
was built on top of the GEANT4 example TestEm5, with modifications of
some user defined classes: DetectorConstruction, SteppingAction
and PrimaryGeneratorAction. For what concerns the geometry, we
constructed a silicon telescope consisting of two upstream Si trackers
and three downstream ones, with a graphite target in between. Each
silicon tracker implemented has the nominal thickness of 320 µm and
it is followed by an Al foil 30 µm thick as shown in Fig. 29. For these
components we used the standard materials from G4Element class.
The Si trackers resolution on measured hits is 6.9 µm for the second
and third planes (the first two downstream planes) and 40 µm for
the last downstream plane. The last plane has a different resolution,
since in the original configuration of the apparatus it is positioned at
∼ 10 m from the fourth plane and it is used with a different scope.
The target studied in the simulation is the C target. More precisely it
consists of a graphite and it was specifically built for the Test Beam.
It is simulated using the G4NistManager to adapt it to the nominal
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Figure 37: GEANT4 representation of the experimental apparatus used in
Test Beam 2017. The first upstream plane is not shown. Green: Si trackers,
Blue: Target, Red: Al foils.

density of the experimental target which is 1.83 g/cm3. The result of
the representation of the geometry in GEANT4 is shown in Fig. 37,
where the Si trackers are in green, the Al planes in red and the target
in blue.

The simulation runs in multi-thread and provides n .txt output
files, where n is the number of cores used. Each output file contains
the same information stored in the experimental run, i.e. hits per
plane, and some additional information needed for detailed studies,
such as energy of the incoming beam, energy deposit in the target
and type of interactions of the primary particle. The generation
of initial beam profiles, according to the specifics of the H8 line
beam optics, is implemented in the PrimaryGeneratorAction class.
To do so, we extract the cumulative distribution functions (CDF) of
each alignment run and we use them to generate particles randomly
distributed according to the original probability distribution function
(PDF) in the GeneratePrimaries() method of this class. In such a way
we explicitly take into account the smearing due to the hits resolution
and the spread of the incoming beam momentum. As an example,
Fig. 38 shows the cumulative used to simulate the µ run. The initial
beam energy is set in the simulation with a 2% resolution, as quoted
by the H8 beam experts. Eventually .txt files are processed with a
ROOT macro which creates a TTree with the same structure of the one
used for data.

Fig. 39, 40 and 41 present the results of the comparison between
data and simulation for runs of 12 GeV e−. Plots are generated with
a 0.02 mrad bin width. The overall agreement between data and
Monte Carlo is qualitatively good for all the configurations simulated.
The effect of the target is directly related to the correlation between
the multiple scattering inside the target and the description of the
apparatus in the simulation. It is clear that increasing target thickness
leads to a better agreement between data and Monte Carlo: data
without target are systematically lower than simulated ones in the
core region ( (-0.5, 0.5) mrad), while this behavior changes in tails
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Figure 38: Cumulative distribution function extracted from data and used to
simulate µ runs.

Figure 39: Data/MC comparison and ratio for run without target (only
apparatus). Bin width 0.02 mrad.

(see Fig. 39). This effect is still present but becomes more and more
negligible increasing target thickness to 8 mm or 20 mm. These
differences can be studied quantitatively exploiting the ratio of the two
histograms in order to quantify the discrepancy between simulation
and experimental data. Lower part of Fig. 39, 40 and 41 shows
the profile histograms for the ratio MC/Data. For all the cases the
two distributions are in good agreement in the core region, i.e. in
the interval (−0.5, 0.5) mrad, while the agreement worsens in tails
accounting to fluctuations up to ∼ 40%, especially because of the
poor statistics in these bins. However it is worth to underline that
core region contains ∼ 90% of the events and here we obtain a ∼
1% agreement between data and Monte Carlo, with fluctuations of
only few percents. More in detail, Fig. 42, 43, 44 show the ratio
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Figure 40: Data/MC comparison and ratio for run with 8mm thick C target.
Bin width 0.02 mrad.

Figure 41: Data/MC comparison and ratio for run with 20mm thick C target.
Bin width 0.02 mrad.
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Figure 42: Data/MC ratio for run without target (only apparatus). Core
region: -0.5, 0.5 mrad. Maximum fluctuations of ∼ 20% in the entire region.

Figure 43: Data/MC ratio for run with 8mm thick C target. Core region: -0.5,
0.5 mrad. Maximum fluctuations of ∼ 8% around peak and ∼ 15% slightly
outside peak.

Data/MC, with bin width of 0.02 mrad, in the core region and the
effect outlined above is clearly evident. The worse comparison is
obtained for the situation without target, where Data and MC are
in agreement but with fluctuations contained to a 20% level. The
effect of multiple scattering becomes predominant on an accurate
description of the apparatus when targets are introduced, leading to a
better agreement with data. Fig. 43 and 44 confirm good agreement
between Data and MC: fluctuations are limited to a few percent in
core region for these two cases. As we have observed the simulation
becomes more accurate in describing data when the target is thicker,
indicating an inaccurate description of the apparatus. Currently we are
working on a more proficient representation of the Si trackers, since
at the current state of art they are implemented as uniform silicon
blocks and we expect this to be the main issue in the description of
experimental data. This GEANT4 simulation was designed specifically
to study the 2017 Test Beam, but hopefully it is a good starting point
for the design of the final apparatus simulation. Several efforts have
been made to understand how to tune specific GEANT4 parameters
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Figure 44: Data/MC ratio for run with 20mm thick C target. Core region:
-0.5, 0.5 mrad. Maximum fluctuations of ∼ 4%.

to obtain results in agreement, in core region, at the level of ∼ 1%
and we do expect to exploit this work for future test beams and
for the final experiment. Even if the approach of a full simulation
of the apparatus has to be preferred, as it should be free from the
introduction of systematics in the analysis, it depends on many ad hoc
parameters to be tuned. Some members of the collaboration worked on
an alternative approach, based on the deconvolution of the apparatus
effect from data, obtaining more stable and precise results on the
entire angular range and not only in the core region. Current work is
ongoing to develop full apparatus simulations both for the 2018 Test
Beam and the final set-up with the intent to describe in detail silicon
trackers, their electronic read-out and the signal formation phase
to achieve a final agreement MC/Data of ∼ 1% also with the full-
simulation approach. Notwithstanding these discrepancies present
in the MC/Data comparison, this simulation was precise enough to
describe large part of the data and it was used to study the effect of
multiple scattering on angular deflection distributions, as presented
in section 4.2.3. The analysis on multiple scattering effects returned
results in good agreement with theoretical predictions and nominal
(i.e. from the experiment set-up) values, validating the simulation
developed.

4.2.3 Multiple scattering

A charged particle passing through matter is affected by random
deviations from the nominal trajectory due to multiple scattering
effects. These effects are described by the Möliere theory [34], which
shows that traversing a thickness x, the particle undergoes successive
small-angle deflections, symmetrically distributed around the incident
direction

θ0 =
13.6 MeV

pβc
zc

√
x

X0

[
1 + 0.038 ln

(
x

X0

)]
(15)
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where p, β, c and zc are the momentum, velocity and charge of the
incoming particle and X0 is the radiation length of the traversed
material. The logarithmic term was introduced by Highland to take
into account the length dependence of the deflections due to multiple
scattering. More in general eq. (15) can be expressed as (see [35])

θ0 =
S2

pβc

√
x

X0

[
1 + ε log

(
x

X0

)]
With S2 and ε parameters to be determined according to the scattering
medium properties. The improved Highland formula presented in [35]
uses S2 = 13.6 and ε = 0.088 with good agreement for all Z.

On a large number of independent scattering events, according to
the central limit theorem, the Moliere distribution of the scattering
angle can be approximated by a Gaussian. It has been shown that this
approximation is valid for the central 98% of the angular distribution
on the plane. Under this assumption, the root mean square of the scat-
tering angle eq. (15) represents the width of the gaussian. Namely, the
plane projected angles θxOz and θyOz show an approximately Gaussian
angular distribution of the form

1√
2πθ0

exp

[
−

θ2
Plane
2θ2

0

]
dθPlane (16)

Moreover deflections on the x and y planes are statistically indepen-
dent and identically distributed, and the deflection angle θ can be
expressed as

θ2 = θ2
xOz + θ2

yOz

The experimental apparatus used in the 2017 test beam provided
the trajectory measurements trough hits in the Si trackers. The preci-
sion of the track reconstructed depends on the number and position
of the detector layer elements. Statistically the hits distribution has
the same expression as eq. (16)

1√
2πσxi

exp
[
−

x2
i

2σ2
xi

]
dxi

Starting from all the hits on plane, after the alignment phase, we
studied multiple scattering effects on different configuration of energy
and target thickness. As expected these effects become more and
more appreciable increasing the target thickness, while are reduced
increasing the energy of the beam. Fig. 45, 46, 47 show an appreciable
increase of angular deflection widths. The deflection angle given in
eq. (15) can be quantified from the difference of angular distribution
widths for a specific target and for the apparatus without target
(alignment runs in Tab. 4).

θ0 =
√

σ2
target − σ2

NT
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Figure 45: Effect of multiple scattering on 12 GeV e− beam. Angular deflec-
tion distributions for different target thicknesses. Results for θyOz.
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Figure 46: Effect of multiple scattering on 20 GeV e− beam. Angular deflec-
tion distributions for different target thicknesses. Results for θyOz.
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Figure 47: Effect of multiple scattering on 20 GeV e+ beam. Angular deflec-
tion distributions for different target thicknesses. Results for θyOz.
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Figure 48: Multiple Scattering angle obtained from gaussian fit on the core

(98%) of angular distributions. θMS =
√

σ2
target − σ2

NT .

θMS(20GeV, e−) [mrad] θMS(20GeV, e+) [mrad] θMS(12GeV, e−) [mrad]
2 mm 0.0614± 0.0006 (0.0630) 0.103± 0.008 (0.1050)
4 mm 0.0879± 0.0004 (0.0891) 0.147± 0.006 (0.1485)
8 mm 0.1268± 0.0003 (0.1260) 0.124± 0.005 (0.1260) 0.212± 0.005 (0.2100)
20 mm 0.2033± 0.0006 (0.1992) 0.3205± 0.005 (0.3320)

Table 5: Multiple scattering deviations obtained from gaussian fit on angular
distributions. Results for θyOz and theoretical values from eq. (15) in brackets.

Fig. 48 shows the result of this analysis: multiple scattering effects
on two different particles with same momentum, traversing the same
scattering medium is the same; the effect is more appreciable for lower
energies and thick targets, as the case at 12 GeV e− on 20 mm of
graphite shows. Results are presented in Tab. 5 with the correspond-
ing theoretical value from eq. (15). We have evaluated the agreement
between the gaussian approximation and the theoretical expression
from Moliere (15) both on data and MC. Retrieving θMS from a gaus-
sian fit of the core for a beam of a given energy traversing several
thicknesses, the fit of these points with eq. (15) returns results in
agreement with expected values. Fig. 49 shows the fit on angular de-
flection distributions for data and Monte Carlo, obtained as described
above, with the Moliere/Highland expression eq. (15). The fit values
of energy and interaction length are:

E f it,MC = 12.2± 0.2 GeV, X f it,MC
0 = 24.2± 0.8 cm

E f it,Data = 12.2± 0.2 GeV, X f it,Data
0 = 23.4± 0.7 cm



4.2 test beam 2017 53

Figure 49: Data and MC for 12 GeV e− on 2, 4, 8, 20 mm graphite targets.
θMS obtained from gaussian fit of the core distribution. Fit with High-
land/Moliere distribution (15).

The expected value for the energy is the nominal one at E0 = 12 GeV
while for the interaction length X0 the one quoted by target producers
and used in the simulation is

Xexp
0 = 23.3 cm

Fit parameters both for Monte Carlo and Data are in statistical agree-
ment with the theoretical ones. Hence the gaussian approximation of
the core distribution describes in a good way the (θout − θin) angular
deflection. This observable can also be used to retrieve the effective
resolution of the apparatus. Namely the experimental set-up resolu-
tion depends both on the hits resolution and the effect of multiple
scattering in Si trackers. More precisely, these two effects are statis-
tically independent and so the net effect is given by the sum of their
squared values:

∆θ =
√

θ2
intr. + θ2

MS

Where θMS is the one predicted by the Moliere theory of multiple
scattering 15, while θintr. is the intrinsic angular resolution of the
apparatus given by

θintr. =
δxi
√

2
D

Where δxi is the resolution on hits measurement and D is the distance
between the interaction point and the Si tracker: in our case we had
at disposal one single module of D = 50 cm and the intrinsic angular
resolution of the TB2017 apparatus was:

θintr. = 0.02 mrad

Hence, using data we could measure the resolution of the experimen-
tal set-up. Fig. 50 shows the energy dependence of the resolution. The
UA9 apparatus used for this test beam, was not developed specifically
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Figure 50: Apparatus resolution as a function of the beam-energy.

to accomplish our requests but it was designed for single track deflec-
tion measurements of high-energy particles in crystals. However Fig.
50 shows that with 160 GeV µ+ we could obtain an overall angular
resolution compatible with 0.02 mrad, which is the resolution we ex-
pect to achieve using a ∼ 150− 180 GeV beam in the final experiment.
The fitting function used to estimate the energy dependence of the
overall resolution is

σ =
p[0]
E

+ p[1]

It is important to underline that this resolution measurement was
possible thanks to the large dataset acquired during alignment runs.
This result, based on the gaussian approximation of the multiple
scattering, not only allows to confirm that in a single module of
the final experimental set-up we can obtain an overall resolution of
0.02 mrad, but also can be used to separate multiple scattering and
intrinsic effects on resolution. More precisely, we could verify that
Eσ = const and from the limit at high (infinite) energy, given by p[1],
we could also give an estimate of the intrinsic resolution of the full
apparatus. However an accurate description of the multiple scattering
effect is mandatory to achieve the desired precision on aHLO

µ . More
precisely we have that the final resolution on the angular measurement
is given by the convolution of the intrinsic resolution of the trackers
and the effect from multiple scattering. These two contributions are
statistically independent, thus we have

σθ =
√

σ2
MS + σ2

intr.

Multiple scattering angular distribution has a gaussian core, as shown
above, and tails which need to be described with an additional compo-
nent to the normal distribution. Hence, to describe better the multiple
scattering, we studied an analytical function capable to fit the entire
shape of the angular distribution. In literature there are few works
concerning this subject, especially because of the difficulty in retriev-
ing an analytical expression to describe experimental data with good
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agreement outside core region. Works by Früwirth and Regler [36]
and Liendl [37] use complex models based on two gaussians or one
gauss distribution and a cos-like function to describe tails. These mod-
els have been implemented in our analysis but rely only on specific
use-cases and are strongly dependent on input parameters and on
target properties. A more elegant model proposed by Berger et al. [38]
exploits the convolution of a gaussian distribution and a Student’s t
distribution to parametrize both the effect of the apparatus and the
multiple scattering to describe with good accuracy experimental data.
In this work we adapted the latter model to our case with proper ad-
justments and we obtained an analytical function capable to describe
data both in core and tails.

In this model we take into account separately the effect of the
silicon telescope and the effect of the target. More precisely the
analytical function used to fit data is given by the convolution of these
two contributions:

f (θ) = ftelescope(θ)⊗ ftarget(θ)

The contribution of the experimental set-up was studied using align-
ment runs, which have a statistic lower than runs with target: this
could affect the result of the fit, especially in tails where statistics is
very poor. Hence, in order to validate the model, it was also applied
to Monte Carlo simulations and returned result in agreement with
those obtained with data. As already observed in eq. 16 the core of
the distribution is modeled with a gaussian centered at zero and with
σ depending on the multiple scattering effect and equal to eq. 15, the
large tails are taken into account using a Student’s t distribution:

ftelescope(θ) = N

(
(1− a)

1√
2πσG

e
− (θ−µ)2

2σ2
G +

+a
Γ( ν+1

2 )√
νπσΓ( ν

2 )

(
1 +

(θ − µ)2

νσ2

)− ν+1
2

 (17)

Where N is the overall normalization, σ and σG the width of the
Student’s t and gaussian distributions respectively, ν the tail parameter
of the t distribution and µ the common mean and a which is the
relative fraction of the Student’s t. Using ROOT for the analysis we have
a function with 7 parameters since we used the gaus function of the
TF1 class:

fNT = [0]*((1-[1])*gaus(2)+[1]*TMath::Gamma(([5]+1)/2)/

(sqrt([5]*TMath::Pi())*[6]*TMath::Gamma([5]/2))*
pow(1+pow(x-[3],2)/([5]*[6]*[6]), -([5]+1)/2))

Thus, in our case the overall relative fraction will be given by the
product of the parameter (1− a) with the normalization factor of the
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Figure 51: Fit with (17) of the yOz angular distribution of 12 GeV e− in the
apparatus without target.

gaus() function. Fig.51 shows the fitted yOz angular distribution for
the Monte Carlo simulation of 12 GeV electrons without target. The
result of the fit shows good agreement between the analytical model
and data, with a good value of χ2/NDF = 198.6/147. All the fitting
parameters are consistent within their uncertainties. The goodness
of fit is confirmed by the meaning of the parameters itself, especially
a: namely p[1]. We recall that the relative fraction of the gaussian is
1− a, in this case

p[1] = a = 0.069± 0.002

Which means that from the Monte Carlo simulation we can estimate
the expected fraction of the multiple scattering effect coming only from
the experimental set-up. In this case we retrieve a 7% contribution
from multiple scattering, while the gaussian approximation for the
core is valid with a relative fraction of 93%. The presence of the target
has to be taken into account using the convolution of eq. (17), which
accounts for the Si telescope and air, with a Student’s t distribution:

f (θ) = N
∫

ftelescope(θ − τ)
Γ( ν+1

2 )√
νπσΓ( ν

2 ) (
1 +

τ2

νσ2

)− ν+1
2

dτ (18)

Which depends on 3 additional parameters: the overall normalization
N, the width σ and the tail parameter ν of the Student’s t distribution.
We have implemented the convolution of the two functions using
the TF1Convolution object of the TF1 class in ROOT, which takes as
arguments two TF1 and computes their convolution. Thus, in our case
we have
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Figure 52: yOz angular distribution fit with (18). Monte Carlo simulation of
12 GeV e− on 8mm C target.

TF1Convolution *f8_conv =

new TF1Convolution("setup", "target", -10.,10., true);

In the declaration above we construct a TF1Convolution object, which
computes the convolution of the setup function and the target one,
namely those expressed in eq. (17) and eq. (18). Using this expression
we obtained good fits both on experimental data and on Monte Carlo
simulation. Fig. 52 and 53 show the results of the fit on simulated
angular distributions, while Fig. 54 and 55 present the results on ex-
perimental data for the same cases. Fit parameters from experiment
are in good agreement, within their uncertainties, with those expected
from the simulation. Even if the main purpose of our study was to
develop a full-simulation capable of describing data within 1% level,
we also worked on this analytical approach to understand the possi-
bility to retrieve a mathematical function which could describe data in
a wider range with a better agreement outside the core region. The
model proposed here fits both data and simulation in a wide range,
which covers entirely the statistics available, and returns parameters
in agreement for the two cases. It is worth to underline that a further
understanding of the problem using this approach was limited by
the precision of the GEANT4 simulation. As we have pointed out in
Sec. 4.2.2, the effect of the multiple scattering when the target is thick
hides the description of multiple scattering effects in the experimental
set-up and gives more precise results in the comparison with data.
This imprecision reflects on the results of the fit, since their agreement
improves increasing target thickness as shown in Fig. 56 for the ratio
MC/data of the gaussian normalization and width.

This observation points toward an inaccurate description of the
experimental set-up, which dominates on the multiple scattering effect
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Figure 53: yOz angular distribution fit with (18). Monte Carlo simulation of
12 GeV e− on 20mm C target.

Figure 54: yOz angular distribution fit with (18). Experimental data: 12 GeV
e− on 8mm C target.
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Figure 55: Fit with (18). Experimental data: 12 GeV e− on 8mm C target.

Figure 56: MC/Data ratio of p[2] and p[4] from eq. (18). Blue is p[4] and red
is p[2] and represent the normalization parameter of the gaussian distribution
and its width σG.
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in low thickness targets. Hence the analytical approach turns out to
be an useful tool to understand better the multiple scattering effect on
the angular distribution.

4.2.4 µ− e elastic scattering

The multiple scattering effect has to be taken into account also in
tracking. More precisely, one has to reconstruct trajectories starting
from hits recorded on Si trackers and these hits are affected by the
multiple scattering in target, but also in trackers. The result is that
errors are correlated from one layer to the other. There exist two
different approaches in tracking [39]:

• Standard fit: Takes into account only the measurement errors
and their covariance matrix for reconstruction. Eventually con-
tributions from multiple scattering are added;

• Optimal fit: Multiple scattering errors are taken into account
from the beginning using the complete n× n covariance matrix.

It is clear that the second approach, when applicable, has to be pre-
ferred to the first one as it allows to obtain more sound results and
not to underestimate multiple scattering effects on errors. In our case,
both the geometry and the physics studied were simple enough to
adopt the optimal fit approach. At this point it is worth making an
observation: the main purpose of this test beam was to investigate
multiple scattering effects on O(10 GeV) electrons and not to measure
the µ− e elastic interaction. The muon run(s) (see Tab. 3) was collected
during the last day of test beam with an apparatus built to work with
single tracks and not to perform scattering measurements. What is
presented in the following is the analysis of this µ+ run, which was
carried on to test the overall procedure and to understand whether this
first proof-of-concept of the set-up, in this test beam not specifically
developed for our purposes, confirmed the feasibility of the µ − e
scattering events reconstruction or not. In detail, given n layers with
distance li,j, the track deviation per plane is given by

δx0 = 0

δx1 = θ1l1,0

δxn = θ1ln,0 + θ2ln,1 + · · ·+ θnln,n−1 =
n

∑
j=1

θjlj,j−1

Hence the covariance matrix of errors is

Vi,j =
〈
δxiδxj

〉
=

=
∫ ( n

∑
i=1

θ2
i ln,i−1lm,i−1P(θ1, . . . , θn)dθ1 . . . dθn

)
=

= θ2
0
[
(zi − z1)(zj − z1) + · · ·+ (zi − zi−1)(zj − zi−1)

]
(19)
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Where θ0 is the multiple scattering mean angle given by eq. (15). The
error correlation matrix, which depends only on the system configura-
tion is given by

ρij =

〈
δxiδxj

〉√〈
δx2

i

〉 〈
δx2

j

〉
The tracking procedure implemented is based on the optimal fit ap-
proach and uses directly the covariance matrix Vij to reconstruct tracks
starting from hits on silicon trackers. Given a beam traveling on the
z direction, in absence of an external magnetic field the track is a
straight line. Since the two views are independent, it is possible to
obtain these coordinates from a least squares fit

x = x0 + αxz

y = y0 + αyz

Using hits measurements (xi, σxi), (yi, σyi), zi and their covariance
matrix Vij as input data, the χ2 for the two views can be written in
matrix form as

χ2 = (X− HAx)
T V−1 (X− HAx)

Where

X =


x1

x2
...

xn

 , H =


1 z1

1 z2
...

...
1 zn

 , Ax =

(
x0

αx

)

and the V matrix is the one defined in eq. (19). The X vector represents
the measured hits and the H vector the detector geometry in case of a
sequence of n layers positioned at zi along beam axis. We assume that
no error has been introduced in the measurement of the positions zi.
The least squares criterion allows to obtain an estimate of Ax. More
precisely, we have to impose

∂χ2

∂Ax
= 0⇔ HTV−1 (X− HAx) = 0

Which gives the fit results Ax as solution:

Ax =
(

HTV−1H
)−1 (

HTV−1X
)

With errors on these parameters given by definition:

EAx ≡
〈

δAxδAT
x

〉
=
(

HTV−1H
)−1

We have implemented this procedure for the two views in a ROOT

macro, using the TMath and TMatrixD classes to implement the op-
erations needed to evaluate Ax. Thus, the structure of the V matrix
is:



62 test beam analysis

V(0,0) = errY2; V(0,1) = 0; V(0,2) = 0;

V(1,0) = 0; V(1,1) = errY3; V(1,2) = errY34;

V(2,0) = 0; V(2,1) = errY34; V(2,2) = errY4;

Where

double sigma2 = 0.0069; //in mm

double errY2 = pow(sigma2,2);

double thickness_Si = 0.064; //2 views, 320um each

double X0_Si = 9.368; // in cm!

double errY3 = pow(thetaMS*Dz23,2.)+errY2;

double errY4 = pow(thetaMS*(Dz23+Dz34),2.)+pow(thetaMS*Dz34,2.)+errY2;

double errY34 = Dz23*(Dz23+Dz34)*thetaMS*thetaMS;

Where is clear the correlation introduced by multiple scattering on
planes: it is added to the measurement error on each plane. Moreover,
due to the correlation effect introduced by Vij we observe that on
the first downstream plane the error coincides with the measurement
one, while on the second and third plane is given by the sum of the
measurement error on the first plane with the contributions due to
multiple scattering. Hence, there is a difference between measurement
error and the overall one, especially for the last plane. The UA9 appa-
ratus is characterized by Si trackers with the following measurement
errors:

σ2 = 6.9 µm

σ3 = 6.9 µm

σ4 = 40 µm

We would use these uncertainties directly if we had to work with the
standard fit approach, but having at disposal a description of multiple
scattering, along with a method to deal with it in tracking, we could
work directly with the optimal fit approach, as stated above. The effect
in target here is not taken into account, as we reconstruct the incoming
track from the two upstream planes and the outgoing one from the
downstream planes.
To detect events of µ − e scattering, we decided to study all those
events with 1 hit registered by the upstream planes and 2 hits by the
downstream ones. The selection of this topology is dictated by the fact
that the apparatus does not have stereo planes to disambiguate hits. In
fact the UA9 apparatus consists of three downstream trackers which
measure x and y coordinates in the horizontal and vertical planes,
but there are no stereo planes to solve ambiguities in the association
(xi, yj). This introduces unavoidably ghost hits, which complicated the
analysis. More precisely, raw data before the alignment have x and y
views independent one from the other and only post-processing we
are able to determine the correlation (x, y). Let us assume that for a
raw event we have multiplicity 2 in the downstream planes. Then the
tracker has registered two x-coordinates x1, x2 and two y-coordinates
y1, y2. Starting from a given x, the alignment algorithm creates all
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Figure 57: Display of hits per plane pre and post alignment. Align data
present multiplicity 4 for events with two tracks.

the combinations of this x aligned with the possible yi registered
on the same plane. Hence, in our case we pass from an event with
multiplicity m = 2 in raw data to an event m = 4 in processed data.
Fig. 57 shows how these combinations are generated by the alignment
procedure. We studied the case in which one primary particle enters
the detector (i.e. m = 1 on the upstream planes) and exits the target
accompanied by a secondary particle (i.e. m = 4 on the downstream
planes). Starting from 7547926 events we are left with 251 events after
the selection 11444 on planes. These events are tracked using the
χ2 minimization presented above: for each event we reconstruct the
two particles tracks and we extract their angle with respect the z axis.
Since the apparatus records independently the two quantities, one
must apply the same tracking procedure to both x and y views. Using
the same approach, we tried two different methods to select the µ− e
tracks after the reconstruction. The first method is the most general
one, commonly used to solve tracking problems with multiple hits
and it works as follows:

• Reconstruct the incoming angle of the primary track using the
upstream planes;

• Select an hit on the last plane, x4i where i is the multiplicity of
this hit;

• Compute the χ2
x values for all the possible combinations (x2j , x3l , x4i);

• For all the 64 combinations, compute the sum χ2 = χ2
x + χ2

y;

• The two lowest χ2 values correspond to the two tracks recon-
structed;

After the identification of the two tracks, we associate the lowest χ2

value to the muon and the second lowest to the electron. We extract
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from fit the two angles θx and θy of the particle, i.e. the two angles of
flight with respect to z. More precisely, we compute θµ and θe using
the vectors in space for the incoming particle and the outgoing ones
defined as follow:

−→µ i =

x1 − x0

y1 − y0

z1 − z0

 , −→µ f =

x f it
4 − x f it

2

y f it
4 − y f it

2
z4 − z2

⇒ θµ = arccos
(

θ f × θi

‖ θ f × θi ‖

)

The second method implemented for the tracking is based on the
same procedure as the previous one, with an additional caveat which
exploits information from the alignment procedure. In fact, if we look
at the bottom part of Fig. 57 we note that the x coordinates are such
that one between x1, x2 is a ghost hit as well as one between x3, x4,
while for the y coordinates the same happens with y1, y3 and y2, y4.
This is because of lack of stereo planes for the alignment procedure:
the first two x hits are one the ghost of the other because they have
been aligned within respect the same y and the same holds for the
second two x hits. Hence, if one selects one pair (x2i , y2j) then the
hits on the second plane associated to the second track are completely
determined. The same happens for planes 3 and 4. Hence, with
this second approach we introduce an additional constraint on the
selection: we have to look to 32 combinations instead of 64 because
when we select one pair, we already have determined hits associated
to the second track. The second advantage of this method is that we
can introduce a correlation between the x and y coordinates, because
when we select one between x1 and x3 we automatically know which is
the associated y (y1 or y2). Using this information the χ2 minimization
criterion is the following: for the 32 combinations tracked, we look
for the one which has χ2

x + χ2
y lower than a certain value (χ2 ≤ 15

in our case). In all the cases studied there is only one track which
satisfies this criterion: we identify that track as the muon, while
the second track automatically determined from this one is the one
associated with the electron. Fig. 58 shows the θe − θµ plot produced
using the two different methods. Both the tracking algorithms allow
to see the correlation θe − θµ. The main difference is in the bottom-
left corner of the correlation plot, where the two procedures return
consistently different reconstructions. The kinematic curve drawn in
the plot represents the θe − θµ correlation curve for Eµ = 160 GeV and
it is worth to stress that it is drawn only for graphical purposes. Its
analytical expression can be derived from (9) and (10):

θµ = arcsin

(√
E′2e −m2

e

E′2µ −m2
µ

sin θe

)
(20)

Where E′e and E′µ refer to the electron and muon final energies respec-
tively. It is important to note that the kinematic of the event, as well as
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Figure 58: θe − θµ plot reconstructed using the tracking algorithm presented.
251 events reconstructed.

the two equations used to determine this relation, do not depend on
the uncertainty on the initial muon momentum, but experimentally
and in the data analysis this is one of the aspects which needs to be
controlled to ensure a final systematic accuracy to a 10−5 level. In the
Test Beam data, as well as in the final experiment, one has to take into
account the energy spread of the muon beam: every point in the plot
should be positioned according to the energy of the incoming muon
which undergoes the µ − e scattering process. It is also important
to stress the qualitative spirit of this plot: with it we aim to prove
that the signal region is distinguishable with an apparatus similar to
the one we intend to use. However, with such a low statistics it is
impossible to perform any quantitative study on the systematics of
the energy spread and the multiple scattering effects on resolution.
Hence, the dispersion of the points reconstructed along the kinematic
curve shown in Fig. 58 can only be explained as the natural effect
of the tracking procedure and it is dominated by the severe multiple
scattering of low-energy electrons and by the apparatus intrinsic reso-
lution (see Fig. 50). Notwithstanding the differences in tracking for
points at low angles, we observe that both the methods always return
an electron track which has a large value of χ2 associated. While in
the second method this does not affect the selection, which always has
positive results since there is always only one track with χ2 < 15, it
could generate some ambiguities when using the most general method.
In fact, for some events it happens that the lowest χ2 is associated to a
muon track, but that the second one, being the tracking of electrons
more problematic, can return worse track parameters. If there were
the possibility to eliminate ghost hits, the two procedures would have
returned exactly the same results. We have repeated this study using
GEANT4 simulation and we could validate the tracking algorithm de-
veloped: the tracks identified as muon and electron by the general
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Figure 59: θe − θµ correlation plot from Monte Carlo. 108 muons simulated,
3646 events selected and reconstructed.

method, were always confirmed to be good associations using the
simulation.
In order to validate this strategy, we also repeated the same analysis
on simulated data. 108 muons were simulated in each run and the
angles of the tracks coming out from the graphite target were regis-
tered. The application of the 11222 selection for tracking leaves us
with 3646 events, as shown in Fig. 59. Here the selection is 11222
instead of 11444 as above, because in GEANT we have no ghost hits
and the association hits-particle is unambiguous. The two tracking
methods presented above converge on the same solution, as there
are no ghost hits and the two tracks are completely determined by
their particleID, uniquely defined in GEANT4. The simulation con-
firms the validity of the tracking procedure used and gives result in
agreement with data. We see that the large number of events present
in the bottom-left corner of Fig. 58 is still present in the Monte Carlo
reconstruction. Further details are presented in the following section
and in 4.2.4.2, where we present a study of the GEANT4 simulation
to describe the different classes of µ-interactions which populate the
θe − θµ plot as well as possible kinematic cuts which allow to reject
background in favor of elastic events. We see that the maximum θe

measurable depends on the experimental set-up acceptance, given by
the sensors dimensions of 3.8× 3.8 cm2, which allow to measure up
to θe ' 40− 45 mrad. Electrons with angles equal or grater than this
value are emitted outside the acceptance of the detector. Moreover
the bottom band of the plot is highly populated due to background
effects (studied in detail in sec. 4.2.4.2) but also because of multiple
scattering: electrons emitted in the target at large angles (θe > 30− 35
mrad) could possibly re-enter the detector acceptance due to multiple
scattering. The main scope of this Test Beam was to study the effect
of multiple scattering of O(10 GeV) electrons in graphite target and
with the UA9 set-up we did not intend to perform a measurement of
dσ
dθe

. This exercise was done to prove that an apparatus with structure
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Figure 60: Coplanarity distribution of µ− e reconstructed events.

similar to the one used fo this Test Beam could be used to track the
µ− e scattering and to reconstruct the kinematic plot presented in Fig.
14, which is going to be the fundamental handle to perform the final
measurement on aHLO

µ .

4.2.4.1 Kinematic cuts

This exercise allowed us to show the possibility to see our signal (the
µ− e elastic scattering) using an experimental set-up consisting of a
proof-of-concept of one module of the final MUonE apparatus. In
order to ensure the control of systematic uncertainties to a 10−5 level
in the final measurement, it is fundamental to control the ratio sig-
nal/background to this level. Moreover we have to define a criterion
which allows to select signal events, to reject background or to deter-
mine the corrective factor to be applied for each bin to normalize dσ

dθe
to the signal fraction. Hence, we studied different cuts based on the
closed kinematic of the scattering. The first observable which could
be used for this study is the planarity of the event: the µ− e elastic
scattering is a pure two-bodies scattering and the two particles should
be co-planar. As a consequence of multiple scattering, some of the
events could become a-planar and should be discarded in the analysis.
We used the following definition for the acoplanarity:

A =
π

2
− arccos

( −→µ i ·
(−→µ o ×−→e o

)
| −→µ i | · | −→µ o ×−→e o |

)
(21)

Where −→µ and −→e are the vectors in space of the muon and electron
respectively and the subscripts o and i refer to the outgoing and
incoming tracks. Fig. 60 shows the distribution of this observable
for the 251 events reconstructed as described above. The secondary
which accompanies this primary is, for most of the cases, the electron
produced within the µ− e scattering in the target. Fig. 61 shows the
result of a cut at | A |< 0.1 mrad. First of all we observe that this cut
appears very effective to select µ− e elastic scattering events with a
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Figure 61: 251 reconstructed µ− e events (251) without cut (black) and with
| A |< 0.1 mrad cut applied (217, blue).

Figure 62: Normalized for data (red) and Monte Carlo (blue).

multiple scattered electrons. In this topology the two particles are no
longer co-planar and hence the expected angular correlation is broken
and we reconstruct these points under the elastic curve. In order to
validate this result we used the GEANT4 simulation of 108 incoming
muons of 160 GeV. With the same fiducial cuts (see 4.2.1) and the same
tracking procedure used for data we were able to reconstruct 3646
events, as shown in Fig. 59. The coplanarity of these events, calculated
using eq. 21, is shown in Fig.62 normalized and superimposed to the
A distribution from data. The Monte Carlo simulation confirms that,
with this apparatus and the selection on hits (11444) used to select
only a specific sub-set of µ− e events, the coplanarity cut allows to
reject those events under the elastic curve, but does not introduce an
effective criterion to select elastic events which present the expected
angular correlation. A more sophisticated cut based on the kinematics
of the µ− e scattering is the so called Dθ cut, which is based on the
distance of each point from the theoretical curve. The use of this
cut has several advantages, as it would also allow to define a band
along the elastic curve to reject large part of the background events.
More precisely, let (θexp

e , θ
exp
µ ) the two reconstructed angles. Using the
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Figure 63: Dθ distribution for the 251 events reconstructed from data.

analytical expression given in eq. (20) we can calculate the expected
value for the muon angle, associated with the measured electron
angle. We will use the closest distance from (θ

exp
e , θ

exp
µ ) to the tangent

line as an estimate of the closes distance between the point and the
theoretical curve. Hence, for each point we have calculated Dθ, id est
the perpendicular distance from the point to the kinematic curve:

Dθ =
| θmeas

µ − θtheo
µ (θe) |√

dθtheo2

µ (θe) + 1
(22)

Where dθtheo
µ (θe) is the derivative of eq. (20) with respect to θe. Fig. 63

shows the distribution of Dθ for the 251 µ− e events reconstructed
from data: most of the points are in the first few bins, where the dis-
tance point-curve is almost null, but a second bump at Dθ > 5× 10−4

mrad can be observed. With reference to Fig. 58 we understand that
this second bump corresponds to the points in the bottom-left part
of the plot: these points have large distance from the curve and we
do expect them also from theoretical calculations (see Fig. 15). In the
following section (4.2.4.2) we study the different µ-interactions and
how they populate the θe − θµ plot and we show that actually those
are µ→ µe+e− events. Moreover some of these, as well as e− coming
from other interactions, could also fall on the elastic band: so it is
fundamental to distinguish the different classes of interactions and to
define a cut which allows to reject background as much as possible.
The result is presented in Fig. 64: this cut is highly selective in the

region θe < 10 mrad, θµ < 0.5 mrad. The observable Dθ is commonly
used to select only specific regions around a given theoretical one,
as it was done by the NA7 collaboration to measure the pion form-
factor [40]. In our case we used a slightly simplified definition of
Dθ, which depends on the derivative of the theoretical distribution,
which is almost infinite for θe → 0. As a result, in Fig. 64 we observe
some points (13) in the very bottom corner of the plot: these points
are not rejected because for these angular values the definition of Dθ
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Figure 64: θe − θµ correlation plot for Dθ<5× 10−4 mrad.

is inconsistent. However, these points can be interpreted as muons
which travel undisturbed in the detector or with the emission of very
low energy electrons which get re-absorbed. Eventually with this cut
one can save entirely the region around the elastic band and a sub-set
of background events with θe > 10 mrad, which are µ− e events with
an electron which underwent severe multiple scattering.
In order to validate this observable we used our GEANT4 simulation,
with an additional advantage: in data we do not know the initial
energy of the muon, hence the theoretical curve used to evaluate Dθ

is the nominal one at Eµ = 160 GeV (same curve drawn in Fig. 58); in
the simulation we can extract, event by event, the initial beam momen-
tum and use it to evaluate Dθ. This information is fundamental to
understand if the energy spread, which is quoted but not measured in
our experiment, is relevant to our selections and is enough to achieve
the expected control on systematics. Fig. 65 shows the Dθ distribution
normalized for data and simulation: the distance is calculated differ-
ently in the two cases, with the MC result more precise than data. We
observe that the trend of these distributions is the same. Moreover
this cut does not have any direct link to other interesting observable,
such as energy or angle of the two particles, but it is a sharp cut which
rejects all the events under the θe = 10 mrad, θµ = 0.5 mrad region.

The application of the Dθ < 5× 10−4 mrad cut on the 3646 events
from the simulation is shown in Fig. 66 and it confirms the previous
observation: this is a quite sharp cut in the lower region of the plot.
This cut leaves untouched all the points on the theoretical curve, i.e.
signal, as well as all the points with θe > 10 mrad. In the following
section we analyze these events in order to understand if they are from
µ− e scattering or if they are background events, coming from other
µ-interactions. It is fundamental to answer this question since we have
to know if these events could be cut (and how) or if we must determine
a corrective factor based on the relative ratio signal/background to
correct the dσ

dθe
measurement.
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Figure 65: Normalized Dθ distributions for data (red) and Monte Carlo
(blue).

Figure 66: Dθ cut applied to the 3646 µ− e events from Monte Carlo simula-
tion.
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Fig. 66 allows us also to clarify the question about the energy
spread. In this plot we reproduced not only the theoretical curve at
Eµ = 160 GeV, but also the two curves at Eµ = 164 GeV and Eµ = 156
GeV, i.e.

σEµ

Eµ
= 2% as quoted by machine experts. The three curves are

almost indistinguishable: the result is that the Dθ distribution for data
and for Monte Carlo do not present any substantial difference (see Fig.
65). The dispersion of the points around the curve is the combined
effect of the energy spread, the apparatus intrinsic resolution and
the multiple scattering effect, which dominates for most of the θe

values. As stated in sec. 4.1, a nominal precision on the incoming
beam momentum of 2− 3% does not present a limit in the possibility
of achieving our measurement with the desired precision as the effect
of the energy spread is negligible within respect to the other sources
of systematics which we must take into account and control to achieve
a final level of 10−5.

In this Test Beam we did not have at disposal a calorimeter to
create an energy matrix of the secondaries and possibly apply it to
data in order to reject some background at low energies. Due to this
reason we had to study these kinematic cuts which could help us
to select only the signal region, i.e. around the elastic curve, and
to reject background and multiple scattering events which compose
the lower region of the plot. Acoplanarity does not appear to be an
highly discriminating variable, while Dθ seems to be a good candidate
to reject those e+e− events which populate the bottom-left corner of
the plot. However the cut in distance is not an effective criterion to
get rid of events of multiple scattering at θe > 10 mrad, as shown
in Fig. 66. This situation contains two different problems: events
affected by multiple scattering populate the lower band of the plot
and seem to be constrained by a θµ value; events on the elastic curve,
without the possibility of distinguishing charge and/or energy, could
possibly be background events which need to be corrected using the
simulation bin per bin. Hence, the presence of the highly-populated
band can be investigated and possibly filtered but we would still
remain with a population which essentially is unknown in the ratio
signal/background on the elastic band.

For what concerns the lower band of the θe − θµ plot: all these
events are characterized by a muon which traverses the detector almost
unperturbed (θµ ' 0 mrad) and electrons which are emitted at uniform
angles between θe ' 10 mrad and θe ' 30 mrad. Fig. 67 shows the
distribution of the muon angles for the 251 events reconstructed. It
appears as if there were two populations: the first one (θµ < 0.1 mrad)
is characterized by low angle particles, which travel almost without
any interaction in the detector, while the second one (θµ > 0.1 mrad)
is a bump in the distribution. Hence, assuming that this information
could be used to discriminate between two different families of muons
which traverse the experimental set-up, we also applied a θµ cut. The
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Figure 67: θµ distribution for the 251 events reconstructed from data.

Figure 68: θµ − θe scatter plot after the application of Dθ and θµ > 0.1 mrad
cuts. 80 events.

result is encouraging and it is shown in Fig. 68. After the application
of the Dθ cut, the application of a cut at θµ > 0.1 mrad leaves us only
with one of the two groups of muons (see Fig. 67).

The Monte Carlo simulation confirms the validity of this study, as
shown in Fig. 69: we are left with 951 events on the elastic band, with
very small residual background. Both in data and in the simulation,
the application of the two cuts discussed above preserves ∼ 28% of
the initial statistics: this is a crucial point for the final experiment
since, as shown in sec. 4.1, we need the order of 4× 105 signal events
to achieve the final precision on aHLO

µ . However this result plays a
fundamental role in terms of the final analysis strategy: we have
shown that with current state-of-art silicon detectors and using an
experimental apparatus not designed for scattering measurements,
we could define some observables which reject with high accuracy
background from other µ-interactions in the final θµ − θe correlation
plot.

In the final experimental set-up we intend to use a calorimeter
and a muon filter to perform particle ID and resolve the ambiguity
in tracking, especially in the low-angles region (θe ' θµ ' 2− 2.5
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Figure 69: Simulated θµ − θe scatter plot after the application of Dθ and
θµ > 0.1 mrad cuts. 951 events.

mrad), and to create an energy matrix for the secondary track in
order to increase the efficiency of background rejection. However,
it is necessary to understand where these background events, and
the signal events lost due to multiple scattering, are positioned in the
correlation plot and which is their energy in order to understand if they
are still present after the application of the Dθ and θµ cuts presented
here. More precisely, once we filter our dataset as shown in Fig. 68, we
need to know if any corrective factor has to be estimated in order to
take into account possible background event still present in the elastic
region. This is a very crucial and delicate aspect of the design of the
MUonE experiment, as it should ensure the feasibility of the proposed
measurement and the possibility to control the signal/background
ratio. In order to answer these questions we have used our GEANT4

simulation to reproduce the Test Beam conditions and understand
which is the fraction of background present in a possible data-set
collected with this setup.

4.2.4.2 Background population

To study the problem of the background, we are interested in all
the possible interaction the muon undergoes within the experimental
apparatus. According to their energy and to the scattering medium
properties, muons can produce secondaries in different ways and we
should discriminate all of them to identify our signal of µ− e elastic
scattering. There are four basic processes of muon interaction that
determine muon energy loss and properties of the secondary parti-
cle(s): ionization (including production of high-energy δ-electrons),
production of electron-positron pairs, bremsstrahlung and inelastic
interaction with nuclei. In GEANT4 these processes are implemented
with four dedicated models:

• G4MuIonization;

• G4MuBremsstrahlung;
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• G4MuPairProduction;

• G4MuNuclearInteraction.

A detailed description of these models in the simulation toolkit can
be found in [41]. As pointed out above, in GEANT4 each particle is
uniquely identified by the so called parentID. More precisely, every
primary has parentID=0 and every secondary has parentID=1. In our
SteppingAction class we derived the G4Track associated to the current
G4Step. The advantage of using the G4Track is that it contains several
useful methods to retrieve particles properties, such as the parentID

and the CreatorProcess. This information can be extracted using
the GetCreatorProcess() method of the G4Track class and it defines
the interaction process (of the primary particle) which generated the
current secondary.

Hence to address the problem of the background in our experi-
ment, we used our simulation and we registered also the parentID
and the ProcessName of the secondary track which accompanies the
muon. Using the fGeomBoundary boolean variable we can register this
information when the particle was exactly coming out from all the
volumes of the detector geometry, especially the graphite target. We
associated an integer to all the processes activated in the simulation:

if (aTrack->GetCreatorProcess()->GetProcessName() == "muIoni") {

f_processid=1;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "nuclearStopping"){

f_processid=2;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "muBrems"){

f_processid=3;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "eIoni"){

f_processid=4;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "muPairProd"){

f_processid=5;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "compt"){

f_processid=6;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "msc"){

f_processid=7;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "annihil"){

f_processid=8;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "phot"){

f_processid=9;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "eBrem"){

f_processid=10;

} else if (aTrack->GetCreatorProcess()->GetProcessName() == "conv") {

f_processid=11;

}

Where f_processid is a private variable of the SteppingAction class,
defined to associate an integer flag when a specific interaction occurs.
Along with the muon interactions defined above, we also have defined
all the other interactions activated in the PhysicsList of this simula-
tion. Most of them are electromagnetic interactions of electrons, since
we are using the electromagnetic physics list opt4, specialized for this
kind of interactions. Another important property of the secondary
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Figure 70: Histogram of the µ-interactions of secondaries coming out from
the target.

which needs to be studied is its energy. In the final experiment we
do not intend to measure the secondary energy in each module, but
we have at disposal a calorimeter which could be used to create an
energy-theta template and to impose a lower limit on Ee. Moreover
it is important to understand what happens, also in terms of energy,
when we apply the kinematic cuts presented in previous section in or-
der to understand if they have a direct correspondence to secondaries
energy or not.

The first important observation concerns the detector acceptance:
Fig. 70 shows the f_processid values at the exit of the target, while
Fig. 71 shows the same quantity when the selection1 11222 is applied
to data. It is worth to note that both these plots are presented only for
those events with parentID==1, i.e. the secondaries, because we are
interested in studying µ− e events where the electron is a secondary
particle coming from a muon interaction. Moreover the request of
one hit in the two upstream planes and two hits in the downstream
ones leaves us only with secondaries (parentID==1). Most of the
secondaries coming out from the target (Fig. 70) are originated from a
muIonization process and all the others come from muPairProduction.
This is exactly what we expect from the interaction of 160 GeV muons
with 8 mm thick graphite target. However when we select only those
events which satisfy the request 11222 on hits multiplicity, due to the
geometrical acceptance of the detector most of the electrons coming
from µ− e scattering (ionization) are discarded. As we have seen in
Fig. 59 some of these events, emitted at large angles, re-enter the
detector acceptance due to multiple scattering, while the majority
escapes the solid angle accessible with our set-up. More precisely,
the number of electrons coming from pair production compose the
∼ 41% of the remaining dataset. However, almost all the events
of µ → γ? → µe+e− are arranged in the lower band of the θµ − θe

1 Here the selection is 11222 instead of 11444 as above, because in GEANT we have no
ghost hits and the association hits-particle is unambiguous.
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Figure 71: Histogram of the µ-interactions of secondaries coming out from
the target for 11222 selection on hits.

Figure 72: θe − θµ correlation plot with distinction on µ-interactions which
generated secondary electrons.

correlation plot, as shown in Fig. 72. As expected from the theoretical
event generator (see Fig. 15) the background is composed by e+e−

events and electrons undergoing multiple scattering which re-enter
the geometrical acceptance. Using the kinematic cuts proposed in the
previous section (see Fig. 69) the only region which remains populated
in the correlation plot is the elastic band and here we have ∼ 98% of
the events from muon ionization. The remaining ∼ 2% of the electrons
comes from muon pair production. Fig. 73 shows the θe − θµ plot
with the different interactions distinguished one from the other and
the kinematic cuts applied. Thus, the simulation confirmed that the
background is composed by pair production electrons and that the
application of these cuts is fundamental to select the signal region
around the elastic band. However we observe that 13 background
(muPairProd) events remain also in this final data-set. Moreover some
of them also stay on the elastic curve and can not be rejected using any
of the measurable observables. In order to study these events more
in detail, we look at the energy they have at production: eventually
we could introduce a lower limit on the secondary energy using the
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Figure 73: θe − θµ correlation plot with µ-interactions. Cuts presented in sec.
4.2.4.1 are applied to reject background.

Figure 74: Energy distribution of the secondaries at exit of the target.

calorimeter (not installed in this Test Beam); otherwise one should
use GEANT4 to determine the ratio signal/background bin per bin and
apply this corrective factor to the final measurement. Fig. 74 shows the
energy distribution of all the secondaries coming out from the target,
when there are only two tracks in the detector. We see the presence of
high-energy electrons, as expected from theory (see Fig. 15) these are
signal events around the peak region of the elastic curve. However
most of the events contain low-energy electrons which compose both
the signal region at larger θe angles and the background band. Fig.
75 shows the result of the correlation plot after the application of a
cut on the secondary energy at 500 MeV. Since high-energy electrons
compose the signal, especially around the peak region, this cut does
not affect signal events except for those at large θe: above θe = 40 mrad
also events on the elastic curve have low-energy (Ee < 1 GeV, cfr. Fig.
15) and they are mixed with background from pair production. Not
only most of the background from pair production is removed, but
also signal events which underwent severe multiple scattering are lost.
Hence we understand that the lower band highly populated in Fig.
73 is composed by low-energy events. The cut in θµ presented in sec.
4.2.4.1 is somehow similar to this energy cut, except for the fact that it
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Figure 75: Simulated θe − θµ correlation plot with µ-interactions distin-
guished and cut on secondary energy at Ee > 500 MeV applied.

Figure 76: Simulated θe − θµ correlation plot. Kinematic cuts (sec. 4.2.4.1 and
energy cut (Ee > 500 MeV) applied

rejects also background from pair production which has Ee > 500 MeV,
as shown in Fig. 75. In our final apparatus we do not intend to measure
the electrons energy event by event, but we plan to have at disposal a
calorimeter positioned at the end of the detector. This study shows
the necessity of using an information equivalent to this cut to get rid
of events at low energies: while with kinematic cuts presented above
we could not reject those background events from pair production,
which were tracked on the elasticity curve, the application of an
energy cut leaves us with a clear distinction between background and
signal. The further application of the kinematic cuts presented above
to Fig. 75 gives a very promising result: we are left with events from
muIoni, without any background from pair production; the correlation
plot is populated only by signal events which lay on the theoretical
curve, confirming that the ratio signal/background can be controlled.
This result is presented in Fig. 76: it appears fundamental to have
at disposal the secondary energy, as it seems the only observable
which permits the control of the signal/background ratio at the level
expected. The 2017 Test Beam has been extremely fruitful and helped
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Figure 77: Scheme of the apparatus used for the 2018 Test Beam.

us a lot in understanding several aspects fundamental for the MUonE
experiment. The study presented in this section is entirely based on
the GEANT4 simulation and could not be validated using data since
in this Test Beam we did not have at disposal a calorimeter. If the
calorimeter does not provide the possibility to discard low-energy
events we could only apply the cuts presented in sec. 4.2.4.1 and we
should evaluate the ratio signal/background from Fig.73 for those
muPairProd events which have low energy but fall on the elastic band.

4.3 test beam 2018

In order to answer this question and to investigate more in detail
the possibility of using a calorimeter to perform particle ID and to
have at disposal a lower limit on energy, in April 2018 we started
a new Test Beam which is going to last until October. We installed
the experimental set-up behind COMPASS and we plan to use high
energy µ beams (180− 190 GeV) to perform scattering measurements.
In addition to the calorimeter, in this Test Beam we have also installed
two targets in order to study the effect of subsequent modules in the
final apparatus. The detector consists of 8 tracking stations and two
graphite target 8 mm thick. Each station is composed by two single-
sided silicon detectors of 9.3× 9.3 cm2 active area. Their physical
pitch is 121 µm, with a readout pitch of 242 µm with floating strips.
These trackers are 410 µm thick and their resolution on measured
hits is ∼ 35− 40µm. Fig. 77 shows the scheme of the experimental
apparatus. Each station contains two tracking planes, but in boxes
8, 4, 5 we have stereo planes. One of the difficulties in tracking µ− e
events in the 2017 Test Beam was the presence of ghost hits: using
the 11444 selection we could automatically discard one of the two
ghosts, as said above; however in the final apparatus we expect to
analyze also other topologies, where more than two tracks are in the
detector. Hence it is fundamental to resolve ambiguities coming from
the alignment procedure: this is the role of the u, v planes installed in
this set-up. We expect to use hits registered on these tracking planes
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Figure 78: Test Beam 2018 experimental set-up with measured distances.

to uniquely determine hits on the x, y planes which precede/follow
the stereo ones. Stereo planes have the same configuration of the
normal ones but are installed with a 45◦ rotation. Moreover when the
two scattered particles have small angles θe ' θµ ' 2.5/3 mrad, it is
difficult to reconstruct the two tracks and to distinguish one particle
from the other. In this Test Beam we have at disposal a calorimeter
installed at the end of the apparatus (not shown in Fig. 77) which
should help us to perform particle ID in the ambiguity region.

The distances between tracking planes and targets are shown in
Fig. 78: both the upstream and downstream lever arms are smaller
than the ones at disposal with the UA9 apparatus in the 2017 test
beam. The main consequence of this smaller set-up is the worsening
of the intrinsic angular resolution within respect the one of the past
year (∼ 0.02 mrad with 160 GeV muons, see Fig. 50). In fact with
40µm of resolution on hits one has

σintr. =
σhits
√

2
D

, D = 55 cm

σintr. ' 0.1 mrad

In this test beam we worked with two muon beams of different
profiles and energy spread:

• Muons from modified M2 (used for two weeks in April);

• Muons from π decays.

The M2 µ beam has σx = 93.4 mm and σy = 99.8 mm with a flux
for 1013 pot/spill of ∼ 106/cm2, while the muon beam from pion
decays has σx = 80.9 mm and σy = 83.7 mm, with a measured mean
momentum of

〈
pµ

〉
= 186.8 GeV and σpµ = 6.5 GeV. It is fundamental

to link these conditions to each run of our data taking. Without this
information we could not simulate with precision the beam profiles
and perform the analysis of µ− e events with the required precision.
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Figure 79: Test Beam 2018 geometry implemented in Geant4. Trackers in
violet, targets in red and u, v planes in green.

During these months we have improved the alignment algorithm
used for the 2017 Test Beam to process raw data acquired from the
set-up to prepare them for the analysis. As one can see from Fig. 77

distances are not regular between the upper and lower parts of the
apparatus and these tilts must be taken into account to regularize and
prepare data for the analysis. We have also developed a simulation
of this set-up. During the alignment phase we have started looking
at hits profiles and it appears clear that the beam is not entering the
detector parallel to the horizontal axis and that some Si planes have
hardware problems which lead to critical inefficiencies in their readout.
Hence, the GEANT4 simulation is extremely important to control the
result of the analysis and to confirm that this apparatus could be used
with a 190 GeV beam to detect µ− e elastic scattering. Moreover it
is important to study the calorimeter signal and validate it with the
simulation to understand its efficiency in particle identification and
the possibility to use it to reject background events.

Fig. 79 shows the reconstructed geometry using GEANT4. Details of
the simulation are the same presented in sec. 4.2.2, with distances and
dimensions modified according to the new geometry. The two targets
are 8 mm thick and are made of the same graphite used for the 2017

targets (ρ = 1.83g/cm3).
In the PrimaryGenerator class we simulate a simple beam profile

consisting of a 187.0 GeV µ+ beam parallel to the z axis (x in GEANT4),
with position randomly selected within the active area of the trackers.
The simulation works has presented in sec. 4.2.2: the .txt files
produced are processed with a ROOT macro, which adds to the hits
the smearing due to the detector intrinsic resolution and produces
the TTree with the ntuples containing the informations registered. The
tracking algorithm used is a simple extension of the one used for the
2017 analysis: except for distances, the first module has the same
structure of the UA9 set-up with two upstream planes and three
downstream ones. Moreover we could use the stereo planes to solve
ambiguities and we should increase the efficiency in reconstructing
µ− e elastic event. The problem is that the tracking planes present
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Figure 80: θe − θµ correlation plot obtained from the simulation of the 2018

Test Beam. 150E6 muons at 187± 7 GeV.

some severe inefficiencies and these are correlated one plane from
the other. Due to this situation, the alignment procedure of these
data took more than expected, because we had to control that all
the reference frames used for the data alignment were suitable and
did not contain the most inefficient trackers. As a consequence of
these inefficiencies, we need to merge different runs to collect enough
statistics to reconstruct elastic events. However, the analysis of the first
∼ 5 weeks runs did not show any clear angular correlation of µ− e
elastic events reconstructed. Hence, to understand these problematics
we used the GEANT4 simulation, where the efficiency in tracks selection
is maximum and silicon planes do not present strange behavior in hits
recording. Fig. 80 shows the θe − θµ correlation plot obtained from
150e6 incoming muons simulated, when we require only one track
entering the detector (selection with max. efficiency (ε = 1) in GEANT4)
and two tracks in the first module of the experimental set-up, as we
did for the 2017 Test Beam data and simulation. This constraint on
multiplicity on trackers leaves us with 46056 events. In this Test Beam
we are using an apparatus with shorter lever arms within respect
the 2017 detector and Si trackers have a worse intrinsic resolution:
the result is the important background band in the correlation plot.
Moreover, this apparatus also has a larger angular acceptance within
respect the 2017 one: we had 35− 40 mrad for the 2017 detector and
∼ 160− 200 mrad for the 2018 one. We see that most of the events
reconstructed populate this region, instead of the signal one (elastic
curve). However with such an high statistics, we show that signal can
be distinguished from background. Especially for θe < 15− 10 mrad
the signal and background populations become distinct and actually
there are events which lay on the 187 GeV elastic curve.

As we did for the 2017 Test Beam, we have reproduced the an-
gles correlation plot distinguishing contributions from different µ-
interactions. The result is presented in Fig. 81 and it is analogous to
what we have found the past year. Background events are composed
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Figure 81: Simulated θe − θµ correlation plot with µ-interactions distin-
guished one from the other.

Figure 82: Energy spectrum of muPairProd events.

by pair production, intrinsically mixed with signal events lost due
to severe multiple scattering. The background population is highly
mixed with signal with respect the 2017, due to the acceptance and
resolution of the detector used. For θe > 10 mrad signal and back-
ground are no longer distinguishable and there is high contamination
of the elastic band. From GEANT4 we can extract the energy of these
particles to better describe this population. Fig. 82 shows the energy
spectrum of the background events: all the events from muPairProd

are characterized by low-energy electrons (or positrons, since we do
not distinguish the charge). When a cut on the secondary energy is ap-
plied, most of the events coming from e+e− production are rejected, as
well as electrons from elastic events which have an important multiple
scattering effect. More precisely, in the correlation plot for Ee > 500
MeV only few events from pair production are left in the bottom left
corner, as shown in Fig. 83.

The collaboration is currently working on the data analysis of the
2018 Test Beam and further results and Monte Carlo validation are
going to be the next steps of the MUonE project. Starting from the
dedicated GEANT4 we could confirm that signal events are expected,
hidden in data due to the available accuracy of silicon trackers and
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Figure 83: Simulated θe − θµ correlation plot with secondary energy cut
applied. Ee > 500 MeV.

their intrinsic resolution on hits. The apparatus used this year allows
to investigate a wide angular acceptance, however most of the events
at θe > 30− 40 mrad are going to be useless due to the intrinsic mix
of background and signal.
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5
C O N C L U S I O N S

The MUonE experiment has the goal to measure the leading order
hadronic contribution (aHLO

µ ) to aµ with a statistical uncertainty of 0.3%
exploiting µ− e elastic scattering. The crucial part of this innovative
experiment is to control systematic uncertainty at the same level
of statistical one. The experiment is primarily based on a precise
measurement of the angles of the two outgoing particles as the q2 of
the µ− e interaction can be directly determined from one of the two
scattering angles.

The basic detector foresees a modular apparatus, each module
being composed of a target and three tracking layers. A low-Z target,
limiting the effect of multiple scattering as well as other µ-interactions,
will be used as scattering center.

In October 2017 we had a Test Beam dedicated to the MUonE
experiment to study multiple scattering on O(10 GeV) electrons and
to test a proof-of-concept of one module of the final detector. The
intent of this test beam was to achieve a precise description of the
multiple scattering effect in thin graphite targets and to develop a
GEANT4 simulation of the experimental apparatus to validate results of
the analysis. Results are presented in sec. 4.2.

The analysis of 12, 20 GeV electrons allowed us to improve the
GEANT4 simulation and to achieve a ∼ 1% agreement between data
and Monte Carlo (sec. 4.2.2). We studied in detail the effect of
multiple scattering in thin carbon targets (sec. 4.2.3) and we were able
to estimate the effect on the overall resolution of the experimental
apparatus. We also studied an analytical expression adequate to
describe the multiple scattering in the silicon telescope. Using the
convolution of a gaussian distribution and a Student’s t we obtained an
overall good agreement for all the test cases studied. A complementary
use of the GEANT4 simulation and of the analytical approach could
allow us to have a deep understanding of all the components of the
angular deflection distributions and to model multiple scattering with
a systematic accuracy better than 1%.

Using a 160 GeV µ beam we could collect data during the last day
of the allocated week for a total of∼ 1.5× 106 events. Notwithstanding
the apparatus used is not specialized for scattering measurements,
we could observe a first θe − θµ correlation plot (see Fig. 58) which
confirms the validity of our proof-of-concept detector module. Using
our GEANT4 simulation we have performed a detailed analysis on
this topic to investigate possible kinematic cuts to select signal with
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high efficiency and to understand which µ-interactions populate the
background and to quantify the signal/background ratio (sec. 4.2.4).

We validated these preliminary results using the GEANT4 simulation.
The kinematic cuts studied could be used to reject background and
preserve only signal events. We demonstrated that background mainly
comes from e+e− pair production from muon interaction, as well as
from e− which underwent severe multiple scattering in target. We
have also shown that a possible cut on secondary energy (e.g. Ee > 500
MeV) could help to reject background.

In April 2018 a new Test Beam has started and it will run contin-
uously until October 2018, collecting data with muons. The experi-
mental apparatus used in this test beam is dedicated to the MUonE
experiment and it contains two modules, instead of one as in the 2017

TB, and a calorimeter has been installed at the end of last module.
We have already developed a dedicated GEANT4 simulation for this
year Test Beam and we have studied the feasibility of collecting signal
events with a detector resolution lower than the past year. We have
confirmed that signal events are expected, however the statistics col-
lected so far is too low. The presence of hardware inefficiencies and a
0.1 mrad angular resolution, increased the time needed to collect high
statistics. With the simulation we have also studied the background
population, obtaining results in agreement with expectations: e+e−

pairs populate background; a possible cut on secondary energy could
help to control the ratio signal/background.

We have developed a dedicated simulation, which confirmed that
the same apparatus, without inefficiencies, could resolve µ− e signal
events for θe < 10 mrad. In the next months we plan to study the
calorimeter signal and to use it to discriminate ambiguities in particle
identification. Along with this we are improving the GEANT4 simulation
to perform dedicated studies on geometry and trackers thickness. In
addition, the complete simulation obtained starting from this work
is going to be used to simulate the final apparatus of the MUonE
experiment.

In this work we have studied several issues of fundamental im-
portance for the MUonE experiment. None of the two test beams
returned results which could be interpreted as show-stoppers for the
final experiment.

The MUonE experiment proposes to use a simple and robust tech-
nique, which has the potential to keep systematic effects under control,
aiming to reach a systematic uncertainty of the same order as the
statistical one. Preliminary results from Test Beams and simulations
validated the experimental idea and the proposed method. Eventu-
ally, with a muons beam of 150 GeV with an average intensity of
∼ 1.3× 107 µ/s, available at the CERN North Area, a statistical un-
certainty of ∼ 0.3% can be achieved on aHLO

µ in two years of data
taking.
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