Amplitude analyses for heavy baryon electromagnetic dipole moment measurements

Daniele Marangotto

INFN and Università degli Studi di Milano, Italy

Issues in Baryon Spectroscopy Workshop

MIAPP, 28th Oct 2019

Istituto Nazionale di Fisica Nucleare

Daniele Marangotto (INFN-Milano/UNIMI) Amplitu

Amplitude analyses for baryon EDM/MDM

Electromagnetic dipole moments

 Magnetic (MDM) and electric (EDM) dipole moments are electromagnetic properties proportional to the particle spin

$$\hat{oldsymbol{\mu}}=grac{\mu_{B}}{\hbar}\hat{f S}$$

- Elementary particles *g* = 2+ QFT loop corrections
- Composite particles g ≠ 2 depending on their structure
- → Probe for baryon structure Low-energy QCD physics

$$\hat{oldsymbol{\delta}} = oldsymbol{d} rac{\mu_{B}}{\hbar} \hat{f S}$$

- EDM violates time-reversal and parity symmetries
- No flavour-diagonal *CP*-violation sources in the SM
- → Probe for new physics No SM background

Heavy baryon MDMs/EDMs

- MDMs/EDMs directly measured for nucleons and strange baryons
- Never measured for heavy (charm and beauty) baryons
- Experimentally challenging due to short lifetimes
- Only indirect limits existing
- Recently, an experiment for the first heavy baryon direct MDMs/EDMs measurement has been proposed
- See Refs. EPJC 77 (2017) 181, EPJC 77 (2017) 828
- SELDOM project funded by ERC
- Part of CERN Physics Beyond Colliders proposals for fixed-target experiments at the LHC, arXiv:1901.09966
- Installation within LHCb experiment under study

Experiment concept

- Source of polarised baryons
- Selected from *p*-nucleus collisions, with polarisation orthogonal to the *p*-baryon production plane for parity symmetry in strong interactions

- Intense EM field enough to induce significant spin precession before the baryon decay
- \rightarrow Exploit the interatomic electric field $\boldsymbol{E} \approx 10^{11} eV/m$ of a bent crystal
- Derived spin evolution equations in which EDM effects are treated as small corrections to the MDM induced precession

Particle channeling in bent crystals

- Positive particles can be trapped between crystal atomic planes, acting as potential barriers
- In bent crystals channeled particles are deflected by following planar channels
- The electric field deflecting the particle, providing the centripetal force, produce the desired spin precession

Charm baryons spin precession

• Spin after channeling along the crystal with deflection angle θ_C

- Main MDM precession in the bending plane, the EDM producing an orthogonal spin component otherwise not present
- Spin precession proportional to $\gamma \theta_C$: need high momentum baryons and high crystal bending angle
- Measurement of the heavy baryon polarisation after channeling by studying the angular distribution of their decays, via amplitude analysis

Physics with amplitude analysis

- Understanding of the intermediate states contributing to the decay
- Resonance composition, characterisation and interferences
- Spectroscopy searches: new hadronic resonances and exotic states like tetra/penta-quarks
- Polarisation measurements
- Additional information carried by baryons w.r.t. mesons
- Parity-violation studies
- P-violation determines correlation between polarisation and decay kinematics
- CP-violation searches with enhanced sensitivity
- Decay structure allow to search and localise *CP*-violation sources

Amplitude analyses of $\Lambda_c^+ \rightarrow \rho K^- \pi^+$ decay

- Λ_c^+ is the most abundant charm baryon
- Best precision on charm quark dipole moments
- Three-body $\Lambda_c^+ \to p K^- \pi^+$ decay is its main decay channel ($\mathcal{B} \approx 6\%$), allowing polarisation measurement with maximum statistics
- Two-body decays have lower branching fractions (\lessapprox 1%) and involve long-living strange particles
- Amplitude analysis on ≈ 1000 Λ⁺_c → pK⁻π⁺ events performed by E791 experiment (Phys. Lett. B471 (2000) 449)
- Large samples of Λ⁺_c → pK[−]π⁺ decays (order 1M events) recorded by the LHCb experiment
- Amplitude analyses for both weak and strong interaction Λ_c^+ production ongoing

Baryon polarisation

- Baryon polarisation defined with respect to a reference coordinate frame, defining the three spin operators \hat{S}_i
- Quantum spin state expressed in terms of simultaneous \hat{S}^2, \hat{S}_z eigenstates |sm
 angle
- Most general quantum state for a spin 1/2 baryon, allowing for statistical ensembles of particles, is described by the density matrix

$$\rho = \frac{1}{2} \left(\mathcal{I} + \vec{P} \cdot \vec{\sigma} \right) = \frac{1}{2} \left(\begin{array}{cc} 1 + P_z & P_x - iP_y \\ P_x + iP_y & 1 - P_z \end{array} \right)$$

with polarisation components P_i being the expectation values of the spin operators

Examples of baryon polarisation frames

- Any physically well defined choice for the polarisation frame is possible, up to the experimentalist interest
- For heavy baryon dipole moments measurement, the natural frame is the bent crystal reference one, where spin precession occurs
- Strong production: polarisation orthogonal to the production plane
 P || *p*(*p*) × *p*(*B*) in laboratory frame due to parity conservation
- Weak production: polarisation expected along p(B) in mother baryon frame due to parity violation
- Helicity frame choice(s): *z* quantisation axis parallel to baryon momentum, S_z || *p*(B)

Helicity formalism

- Amplitude model written following the helicity formalism
- Helicity is the spin projection along particle momentum $\hat{\lambda} = \hat{\mathbf{S}} \cdot \mathbf{p} / |\mathbf{p}|$
- Invariant under rotations and boosts || **p**
- Application of the spin-orbit combination of angular momenta to relativistic processes thanks to helicity transformation properties
- Three-body decay amplitude decomposed in single two-body
 A → BC amplitudes defined in terms of final-state helicities
- $\bullet\,$ Factored in three terms: Complex couplings $\times\,$ Rotation matrix $\times\,$ Mass dependence

$$\mathcal{A}_{m_{A},\lambda_{B},\lambda_{C}}^{A\to BC} = \mathcal{H}_{\lambda_{B},\lambda_{C}}^{A\to BC} \times D_{m_{A},\lambda_{B}-\lambda_{C}}^{J_{A}}(\phi_{B},\theta_{B},0)^{*} \times \mathcal{R}(m_{BC}^{2})$$

Helicity formalism

- Complex couplings encode the decay dynamics, to be determined from fit to experimental data
- NB: they are assumed to be mass-independent
- Wigner D-rotation matrix expresses the spin basis rotation from *A* polarisation frame to *B* helicity frame
- <u>NB</u>: the *B* helicity frame is defined up to rotations around its momentum. The definition of *S_x*, *S_y* operators must be specified.
- Invariant mass dependence: parametrisation of the A particle width
- Needed for intermediate resonant states. Lineshape function dependent on the specific resonance
- <u>NB</u>: the helicity formalism is relativistic but not explicitly covariant

Amplitude model for $\Lambda_c^+ \to \rho K^- \pi^+$ decays

 Amplitudes built for each intermediate resonance R Λ⁺_c → R{p, K⁻, π⁺}, R → {K⁻π⁺, pπ⁺, pK⁻} multiplying two-body helicity amplitudes, e.g.

$$\mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{R},\lambda_{
ho}}^{[R]}(\Omega)=\mathcal{A}_{\lambda_{R},0}^{\Lambda_{c}^{+}
ightarrow R\pi^{+}}\mathcal{A}_{\lambda_{
ho},0}^{R
ightarrow
ho\kappa^{-}}$$

 Total helicity amplitudes for definite initial and final particles helicities obtained summing over all intermediate resonance helicity states

$$\mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{p}}(\Omega) = \sum_{i=1}^{N_{R}} \sum_{\lambda_{R_{i}}=-J_{R_{i}}}^{J_{R_{i}}} \mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{R_{i}},\lambda_{p}}^{[R_{i}]}(\Omega)$$

Proton spin rotation

- Definition of the proton helicity frame depends on the particular decay chain considered (i.e. the proton momentum in the resonance rest frame)
- Amplitudes can be summed only if the proton spin is referred to a single frame, of arbitrary choice
- Additional rotation to be applied to the helicity amplitudes: given reference proton spin states $|1/2, \lambda_p\rangle$ and a different basis $|1/2, \lambda'_p\rangle$, amplitudes are rotated as

$$\mathcal{A}_{m_{A_{c}^{+}},\lambda_{\mathcal{B}_{i}},\lambda_{p}}^{[\mathcal{R}_{i}]}(\Omega) = \sum_{\lambda_{p}^{\prime}} D_{\lambda_{p}^{\prime},\lambda_{p}}^{1/2}(\alpha,\beta,\gamma)^{*} \mathcal{A}_{m_{A_{c}^{+}},\lambda_{\mathcal{B}_{i}},\lambda_{p}^{\prime}}^{[\mathcal{R}_{i}]}(\Omega)$$

Proton spin rotation

- The definition of the reference proton spin frame must be consistent for all the three coordinates
- i.e. the three spin operators \hat{S}_i for the proton must be the same
- Indeed, suppose one has two proton spin frames with coinciding z axis and different x, y axes
- they differ by a rotation around z, $e^{-i\psi \hat{S}_z}$
- its action changes the proton state phase

$$e^{-i\psi\hat{S}_z}|s,\lambda\rangle = e^{-i\psi\lambda}|s,\lambda\rangle$$
 (1)

• The phase difference produce unphysical interference patterns

Polarised decay rate

- Polarised decay rate obtained summing helicity amplitudes over the initial Λ_c^+ generic density matrix $\rho_{\Lambda_c^+}$ and that of the unmeasured proton spin $\rho_p = \mathbb{I}/2$
- In matrix notation, with $T_{m_{\Lambda_c^+},\lambda_p} = \mathcal{A}_{m_{\Lambda_c^+},\lambda_p}(\Omega)$ is

$$p(A \rightarrow f) = \operatorname{tr}\left[\rho_A T \rho_f T^{\dagger}\right]$$

yielding

$$\begin{split} p(\Omega, \vec{P}) \propto \sum_{\lambda_p = \pm 1/2} \left[(1+P_z) |\mathcal{A}_{1/2,\lambda_p}(\Omega)|^2 + (1-P_z) |\mathcal{A}_{-1/2,\lambda_p}(\Omega)|^2 \\ &+ (P_x - iP_y) \mathcal{A}^*_{1/2,\lambda_p}(\Omega) \mathcal{A}_{-1/2,\lambda_p}(\Omega) \\ &+ (P_x + iP_y) \mathcal{A}_{1/2,\lambda_p}(\Omega) \mathcal{A}^*_{-1/2,\lambda_p}(\Omega) \right] \end{split}$$

Baryon 3-body decay kinematics description

- Three-body decays described by 5 degrees of freedom: 12 four momenta components - 3 mass requirements - 4 energy-momentum conservation relations
- Decay confined to a decay plane: 2 two-body invariant mass Dalitz variables + 3 decay plane orientation angles \rightarrow 5 phase-space variables
- For polarised baryons spherical symmetry is broken: decay plane orientation angles must be included in the amplitude analysis
- Euler rotation angles defined with respect to the baryon polarisation frame

E791 amplitude analysis

Phys. Lett. B471 (2000) 449

- E791 500 GeV π-Pt fixed-target experiment at FNAL
- 946 \pm 38 $\Lambda_c^+ \rightarrow
 ho K^- \pi^+$ decays
- Trend of increasing negative polarisation with increasing p_T
- Problems (beyond statistics):
- Amplitude model not correct (no proton spin rotation)
- No separation between $\Lambda_c^+/\overline{\Lambda}_c^-$ events, may have different polarisation

$\Lambda_c^+ \rightarrow \rho K^- \pi^+$ decays from semileptonic production

- Considered Λ⁺_c → pK⁻π⁺ decays from Λ⁰_b semileptonic decays
- $\Lambda_c^+ \mu^-$ vertices displaced from pp collision vertex
- Very pure selection exploiting LHCb particle identification
- \sim 1 million of $\Lambda_c^+ \rightarrow p K^- \pi^+$ candidates from 2016 dataset only
- Negligible background contributions

Model building

- Resonance contributions expected from PDG
- $\Lambda^* \to \rho K^-$: many states from 1.4 to 1.9 GeV, including the $\Lambda^*(1405)$ under-threshold
- $K^* \rightarrow K^- \pi^+$: $K^*(892)$, and $K^*(1410)$, $K^*(1430)$ peaking outside the allowed phase
- $\Delta^{*++} \rightarrow p\pi^+$: Δ^* (1232) plus some states in 1.6-1.7 GeV region
- Resonance lineshapes parametrised by default with relativistic Breit-Wigner lineshapes multiplied by angular barrier terms and corrected by Blatt-Weisskopf form factors
- $\Lambda^*(1405)$ parametrised with a sub-threshold relativistic Breit-Wigner (featuring a different mass-dependent width to parametrise *pK* channel opening, arXiv:1711.09854)
- Spin-zero K* contribution included using LASS parametrisation, Nucl. Phys. B296 (1988) 493

Maximum likelihood fit

 Model parameters (ω, including polarisation, couplings, resonance parameters) are determined by maximum-likelihood fit, minimising

$$-\log \mathcal{L}(\omega) = -\sum_{i=1}^{N} \log p_{tot}(\Omega_i | \omega),$$

in which $p_{tot}(\Omega_i | \omega)$ represents the total fitting PDF,

$$p_{tot}(\Omega_i|\omega) = rac{p(\Omega_i|\omega)\epsilon(\Omega_i)}{l(\omega)}rac{n_{sig}}{N} + p_{bkg}(\Omega_i)rac{n_{bkg}}{N},$$

Maximum likelihood fit

If background contributions are negligible, the fitting PDF becomes

$$p_{tot}(\Omega|\omega) = rac{p(\Omega|\omega)\epsilon(\Omega)}{Norm(\omega)}$$

 Efficiency-corrected normalisation computable using flat phase-space events simulated through full detector reconstruction

$$Norm(\omega) = \int p(\Omega|\omega)\epsilon(\Omega)d\Omega = \int p(\Omega|\omega)d\Omega' = \sum_{i=1}^{N_{MC}} p(\Omega_i|\omega)$$

 Efficiency term becomes an irrelevant constant term of the log-likelihood

$$-\log \mathcal{L}(\omega) = -\sum_{i=1}^{N} \left[\log p(\Omega_i | \omega) / \textit{Norm}(\omega) + \log \epsilon(\Omega_i)
ight]$$

Amplitude fit tools

- Fitting tools for baryon amplitude analyses developed in LHCb under the TensorFlowAnalysis (TFA) package
- TFA exploits the machine-learning framework TensorFlow flexibility for the definition of the amplitude model
- Tensorflow is based on the computer algebra paradigm: the user describes the computation, leaving the package to run it.
- It handles tensor data, optimises automatically the computational graph, and compiles for different architectures
- TFA is interfaced with the MINUIT minimisation package, which allows the computation of statistical uncertainties

Conclusions

- Heavy baryon EDM/MDM measurements now possible exploiting LHC high energy and bent crystal intense electric fields via spin precession
- Amplitude analyses allow best precision on polarisation measurements for heavy baryons decaying to multibody final states, like the Λ_c^+
- Amplitude model including generic baryon polarisation states can be written in the helicity formalism
- Large samples of $\Lambda_c^+ \rightarrow \rho K^- \pi^+$ decays recorded by LHCb
- Computational tools for maximum-likelihood fits developed
- Amplitude analysis of $\Lambda_c^+ \to p K^- \pi^+$ decays with large statistics at LHCb under way