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"Why should a man climb the Everest? Because it is there."
Everest - Public Service Broadcasting

"Do the scary things first and get scared later."
Lemony Snicket
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Abstract

As first purpose of this thesis, a new sensitivity estimation method was developed
in order to save computational power in future searches. This method was tested
for O2 data thanks to a comparison with the Upper limit computed with software
injection and then used on O3 in order to define new sensibility and Upper limit
curves. Moreover, the Band Sample Data (BSD) framework was implemented in the
Frequency Hough pipeline instead of the four-bands division database called SFDB
which has fixed coherence time, i.e. TFFT for each band. Thanks to the tunability of
the TFFT in BSD, there were provided proofs of the improvement of the candidates
in the pipeline through the Critical ratio value, a random variable that measures
the statistical significance of the of the candidate respect to its expected value in
presence of the noise alone. This can be considered as a starting point to for an
improved the sensibility of the LIGO-Virgo detectors.
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Introduction

The first detection of gravitational waves (GWs) made by the two LIGOs on 14th
September 2015 and recorded as GW1509141 was a breakthrough in the astrophysical
field. It proved that an Einstein’s prediction was correct once again. There are other
several reasons why a detection of GW is important: first, it is a new window of
information transport from the one carried by electromagnetic waves; second, by
comparing the arrival times of light and GW the Einstein’s prediction about the
speed of GW being equal of light speed can be checked2; finally, the detection gives
information about the polarization of the GW signal (which are two for the General
Relativity, but other theories state the existence of six different polarization [37]).
GW150914 was a coalescence of a binary system composed by two black holes
(BH-BH) with very similar values of mass (36+5

−4M� and 29+4
−4M�, [1]), but there are

plenty of other possible sources that the astrophysicists are looking to detect.
In Chapter 1 I will discuss about the GWs solution starting from Einstein’s field
equations - Section 1.1 - and different typologies of GWs generators - Section 1.2-,
focusing on the periodic neutron star (NS) source in a particular research field called
All-sky - Section 1.3.
Of course, to detect a signal it’s fundamental the data analysis procedure. In the
present work I used the hierarchical data analysis pipeline known as Frequency
Hough (FH) that will be described in the first part of Chapter 2 while Section 2.2 is
about the new framework Band Sampled Data (BSD).
Chapter 3 contains the first half of my work whose core is a new procedure that
makes use of a parameter called Critical ratio (CR). This function will be applied to
O2 data with the aim to prove the validity of the new sensitivity estimation method,
and then to O3 data to compute and define the new Upper limit (UL) and sensitivity
curves.
Chapter 4 is the second half of my thesis and it focuses on the implementation of
the BSD database instead of the original four-bands splitting (SFDB) as initial step
of the FH pipeline. This new algorithm will be used at first to make a comparison
between Hough maps computed in different Doppler correction cases. Moreover,
thanks to some hardware injections (HIs) and the flexibility of the BSD, I have
been able to prove and provide the relation between TFFT and CR for the two
Doppler corrections. This has made possible to conclude that the lower is the pulsar

1This name has the following meaning: GW stands for Gravitational Wave, the numbers are
the year/month/day of the event.

2Thanks to the event GW170817 - a coalescence of two neutron stars and the first multi-messenger
detection - the resulting constrain on the fractional speed difference is −3 ·10−15 ≤ ∆ν

νEM
≤ +7 ·10−16

where ∆ν = νGW − νEM as reported in [4].
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frequency respect to the SFDB four intervals, the better CR improvement will be.
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Chapter 1

Gravitational waves

Gravitation waves (GWs) were first postulated in 1916 by Albert Einstein and are
one of the most interesting predictions of General Relativity (GR). Thanks to Russell
Alan Hulse and Joseph Hooton Taylor they were indirectly observed in a binary
system called PSR B1913+16 1 through its changing periastron period. In Fig. 1.1
are reported the GR prediction (solid curve) and the data acquired (black dots) by
Arecibo, a radio telescope.

Figure 1.1. The horizontal axis represents the time (in years) while the vertical axis the
variation of periastron (in seconds). The solid curve describes the period variation
of the pulsar according to General Relativity prediction, the black dots are the data
acquired during the years and the straight horizontal line is the zero periastron variation.
This indirect observation was worth the Nobel Prize in 1993 for R. A. Hulse and J. H.
Taylor [38].

1The system is composed by a pulsar (i.e. a rotating neutron star that emits strong and fast
electromagnetic impulses) and a neutron star.
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An (unsuccessful) attempt to measure GW directly was made by Joseph Weber
in the mid-1960s with the so-called Weber bars. Weber designed these heavy metallic
bars that were seismically isolated and to which a set of piezoelectric strain transducer
were bounded in order to detect bar vibration if excited by a GW. The main problem
was that these bars were not sensitive enough.
After the bars, gravitational wave detectors with laser beams were constructed and
they can be summarized as a Michelson interferometer. These devices are L shaped2

and several kilometers long. The source beam is divided by a Beam Splitter (BS),
then at the end of each arm a mirror reflects the laser and the two beams are reunited
in the BS, in the end the composed laser is analyzed. A GW passing will cause
a variation of the length of the two arms: when one contracts, the other expands
and viceversa producing a phase variation of the two laser beams. Of course, actual
detectors such as LIGO (one in Livingston and the other in Hanford both in USA)
and Virgo (Cascina, Italy) are far more complicated than this simple configuration
because several practical issues have to be taken into account as is shown in Fig 1.2.

Figure 1.2. A representation of LIGO that shows the optical configuration and the
additional elements with respect to Michelson’s configuration [13].

After having briefly outlined the GW history, in this following first chapter I will
discuss the mechanism that originates the metric perturbation of the spacetime, i.e.
the gravitational waves, (1.1) along with a more detailed discussion of its different
sources (1.2) and the variety of searches that are used to study the sky in order to
find a GW signal (1.3).

2Different configurations are possible: the Einstein telescope, of the third generation detectors,
is LISA - that will be the first space laser GW detector and that is planned to be triangle-shaped.
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1.1 Generation mechanism of gravitational waves
General Relativity is currently the framework that can explain gravitational phe-
nomena on macroscopic scales. It’s a classical (i.e. non-quantum) theory of the
gravitational field whose degree of freedom are described by the rank-2 metric tensor
gµν which is symmetric, covariant and has ten independent components. GR reduces
to Newton’s formulation in the case of weak (gravitational) field and it includes a
local stress-energy-momentum conservation (Tµν,ν = 0). In addition to all of that,
GR has passed several test: gravitational lensing of the light, precession of Mercury
perihelion and gravitational redshift.
According to Newton, the changes in gravitational field are instantaneous i.e. they
propagate with infinite speed; this would cause a problem in the principle of causality
because there isn’t any information that can travel faster than light. In Einstein’s
theory the information propagates with finite speed and with the speed of light [20].
This traveling information about gravitational field changes is a gravitational wave.
The equations of interest are the Einstein’s field equations summarized as

Rµν −
1
2gµνR = 8πG

c4 Tµν (1.1)

or
Gµν = 8πG

c4 Tµν (1.2)

where
Gµν = Rµν −

1
2gµνR

is the Einstein tensor.
The elements of Eq. 1.1 are now going to be stress out one by one and from left to
right. They are the Ricci tensorRµν , the curvature scalar R and the stress-energy
tensor Tµν .
To understand the left side of the equation, the affine connections - or Christoffel
symbols - have to be introduced. Given a vector field ~V = V µ~e(µ), the derivative of
the basis vector ~e(µ) (that takes the α index) is

∂~e(α)
∂xβ

= Γµαβ~e(µ)

where α indicates which basis vector we are differentiating while β indicates the
coordinate with respect to which the differentiation is performed.
Γµαβ represents the Christoffel symbol that is the variation of the vectors due to the
spacetime curvature. The explicit form is 3

Γσαβ = 1
2g

σµ(gµα,β + gµβ,α − gαβ,µ) (1.3)

Rµν , Ricci tensor. The Ricci tensor is a contraction of the Riemann tensor Rαβµν4

i.e. Rµν = gαβRαµβν which is linear in the second derivatives of gµν and non linear
3This is the result of some calculations performed in [16].
4Rαβµν = gαλR

λ
βµν . The Riemann tensor gives information about spacetime curvature: if

Rλβµν = 0 in any reference frame → flat spacetime; if Rλβµν has at least one component that is not
null → curved spacetime. For this reason, Riemann tensor is also called curvature tensor. [16]
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in the first derivatives; the dependence on the metric tensor can be pointed out by
writing down the full Riemann’s tensor form

Rλβµν = 1
2g

ασ(gσν,βµ − gσµ,βν + gβµ,σν − gβν,σµ)

which clearly recalls the Eq 1.3, so rearranging the index it can be written as

Rαµβν = −(Γαµβ,ν − Γαµν,β + ΓανηΓ
η
µβ − ΓαβηΓηµν)

R, Curvature scalar. The curvature scalar R is a contraction of Ricci tensor Rµν ,
i.e. R = gµνRµν . The curvature scalar is a real number that express the amount
by which the volume of a small geodesic ball in a Riemannian manifold deviates
from that of the standard ball in Euclidean space. It has a similar role of Gaussian
curvature (K) that is used to express the curvature of a two-dimensional surface (in
2D space R = 2K).
Tµν , Stress-energy tensor. Given a system of n non-interacting particles located at
some points ξn(t), each with energy-momentum pαn = (p0

n, p
i
n) (where p0 = mcγ = E

c
is the time-component and pi = mγvi are the space-components), the stress-energy
tensor is defined as

Tαβ = c2∑
n

pαn
dξβn
dt

δ3(ξ − ξn(t)) (1.4)

where the bold represents a three-dimensional vector like a = (a1, a2, a3).
This form summarizes the three quantities

• Density of energy (α = 0, β = 0)

T 00 ≡
∑
n

cp0
n(t)δ3(ξ − ξn(t)) =

∑
n

Enδ
3(ξ − ξn(t))

• Density of momentum (α = 0, β = i)

T 0i ≡
∑
n

cpin(t)δ3(ξ − ξn(t))

• Current of momentum (α = k, β = i)

T ki ≡
∑
n

pkn(t)dξ
i
n

dt
δ3(ξ − ξn(t))

An alternative way of writing Eq 1.4 is

Tαβ = c
∑
n

∫
pαn
dξβn
dτn

δ4(~ξ − ~ξn(τn))dτn (1.5)

where the→ stands for a four-dimensional vector like ~v = (v0, v1, v2, v3). This brings
to the generic expression5

Tαβ = c
∑
n

∫ 1√
−g

pαn
dxβn
dτn

δ4(~x− ~xn(τn))dτn (1.6)

5The term 1√
−g comes from the transformation of the delta δ4(~ξ − ~ξn) = δ4(~ξ−~ξn)√

−g and g is the
determinant of the metric tensor.
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which describes the non-interacting cloud of particles both in flat and curved
spacetime: in flat spacetime and in a locally inertial frame

√
−g = 1 that is the Eq.

1.4 indeed.
Tαβ has several proprieties, for example: it is symmetric and this can be seen by
substituting pβn = En

c2
dξβn(t)
dt in Eq. 1.4 obtaining pαnpβn; in flat spacetime it satisfies

the conservation law Tαβ,β = 0: in an enclosed volume V the energy conserves
(
∫
V T

00dV = constant) and the momentum (
∫
V T

i0dV = constant) as well.
An interesting case is the one of the perfect fluid that corresponds to the study of a
neutron star (the focus of this work). Here, the stress-energy tensor assumes the
expression

Tµν =


ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


that it also can be written as

Tµν = (ε+ p)uµuν + pηµν

uα = (1, 0, 0, 0) is the four velocity associated to the fluid element in the LICF
system (Locally inertial comoving frame). Since in a LICF gµν ≡ ηµν , it becomes

Tµν = (ε+ p)uµuν + pgµν

By analyzing the components, it can be seen that

• T 00 = ε is the density energy;

• T 0i = 0 because a perfect fluid has no heat exchange;

• T ki = δkip. A perfect fluid hasn’t tangential stress, so the force that is exerted
on the surface orthogonal to the axis xk is must be parallel to axis xk. The
pressure is, by definition, the ratio of the force orthogonal to the surface and
the surface itself or simply the force per unit surface.

G
c4 . Last but non least, the constant G

c4 = 8 · 10−50 s2

g·cm : it is the reason why gravita-
tional waves are extremely weak.

Now that all the elements of Eq. 1.1 have been discussed, it’s time to intro-
duce the perturbative approach. With another approach, the exact approach, there
have been extracted solutions only in cases with particular symmetry as plane,
spherical or cylindrical symmetry; a famous example is the Schwarszchild solution
that implies static (timelike Killing vector) and spherical symmetry (three spacelike
Killing vectors). Instead, the perturbative approach, as the name suggests, consists
of a first-order perturbation of the zero-order metric

gµν = ηµν + hµν (1.7)
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where the order zero is represented by ηµν = diag(−1, 1, 1, 1) that is the Minkowsky
metric (flat spacetime) while hµν is the metric perturbation that needs to satisfy
the condition

|hµν | � |ηµν | = 1 (1.8)

called weak field.
Eq. 1.1 will be affected by this new perturbed form of the metric tensor gµν . For
the stress-energy tensor Tµν it is

Tµν = T 0
µν + δTµν

By performing all the calculation ( [16] ) and by taking only the first order pertur-
bation i.e. the elements in hµν whilst discarding the terms in O(h2), the solution
is

�Fhµν −
[

∂2

∂xλ∂xµ
hλν + ∂2

∂xλ∂xν
hλµ −

∂2

∂xµ∂xν
hλλ

]
= −16πG

c4

(
δTµν −

1
2ηµνδT

)
(1.9)

where �F = (− 1
c2

∂2

∂t2 +∇2) is the d’Alambertian in flat spacetime.
In order to simplify Eq. 1.9, it is convenient to choose a coordinate system in which
the harmonic gauge condition is satisfied

gµνΓλµν = 0

that leads to
∂

∂xµ
hµν = 1

2
∂

∂xν
hµµ (1.10)

Using this the terms in square brackets in Eq. 1.9 vanish.
If the present reference frame doesn’t satisfy the gauge condition, one can make the
following infinitesimal coordinate transformation

x′µ = xµ + εµ(x)

where, starting from the reference frame of coordinates xµ one arrives in another of
coordinates x′µ; εµ is an arbitrary vector such that ∂εµ

∂xµ is the same order of hµν . In
this new frame, the gauge condition is satisfied if it is provided that

�F ερ = ∂hβρ

∂xβ
− 1

2
∂hββ

∂xρ
(1.11)

As last step, it is useful to introduce the tensor

h̄µν ≡ hµν −
1
2ηµνh

So Eq 1.9 and Eq. 1.10 which are
�Fhµν = −16πG

c4

(
δTµν −

1
2ηµνδT

)
∂

∂xµ
hµν = 1

2
∂

∂xν
hµµ

(1.12)
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become 
�F h̄µν = −16πG

c4 δTµν

∂

∂xµ
h̄µν = 0

(1.13)

and outside the source where δTµν = 0
�F h̄µν = 0
∂

∂xµ
h̄µν = 0

(1.14)

The perturbation of the metric has ten independent components, but not all of them
have a physical meaning. In order to understand which, the TT gauge (Transverse6

and Traceless) is needed. This is given by the condition

�F ε
µ = 0

that comes from the infinitesimal coordinates transformation written above where
in both the reference frames the gauge condition is satisfied. From the four function
of εµ (µ = 0, 1, 2, 3) one can choose four quantities to put equal to zero.
For a travelling gravitational wave in z direction, one can take

h̄tx = h̄ty = h̄tz = h̄yy + h̄zz = 0 (1.15)

From the gauge condition it follows that

h̄tt = h̄xt h̄ty = h̄xy (1.16)
h̄tx = h̄xx h̄tz = h̄xz (1.17)

So, given Eq. 1.15 it is also

h̄xx = h̄xy = h̄xz = h̄tt = 0

The remaining non-vanishing components are h̄zy and h̄yy − h̄zz. It’s true then that

hµν =


0 0 0 0
0 0 0 0
0 0 hyy hyz
0 0 hyz −hyy


In conclusion, there are two physical degree of freedom which corresponds to the
two polarization states, h+ (two equal indices) and h×.

hµν =


0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+


6As the name suggests, Transverse indicates that the components of hµν different from zero are

on the plane orthogonal to the direction of propagation, i.e. transverse.
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After this example, it’s now time to introduce a more complete resolution of Einstein’s
field equations. Starting from Eq. 1.13 7 which lays on weak field approximation,
i.e. Eq. 1.8, the goal is the solution in the quadrupole formalism. The second
approximation that needs to be made is the slow motion one. Given a region (with
radius ε) in which the source of GW is confined

|xi| < ε

(where Tµν 6= 0) it’s required that said region is smaller than the wavelength of the
emitted radiation λGW = 2πc

ω that implies

2πc
ω
� ε → εω � c → vsource � c (1.18)

which is the slow motion approximation. After several calculation that can be
found in [16], thanks to Eq. 1.18 one arrives to the solution

h̄µν(t, r) = 4G
c4

1
r

∫
V
Tµν(t− r

c
, xi)d3x (1.19)

This is the perturbation of the metric h̄µν at distance r (from the origin of the
reference system which is centered in the source) at time t generated by the source
of volume V at time t− r

c .
By defining

qkn(t) = 1
c2

∫
V
T 00(t, xi)xkxnd3x

that is called quadrupole moment tensor and from the Tensor Virial Theorem

1
c2
∂2

∂t2

∫
V
T 00xkxnd

3x = 2
∫
V
T knd3x (1.20)

which gives ∫
V
T kn(t, xi)d3x = 1

2
d2

dt2
qkn(t)

it’s possible to express the solution above in the quadrupole approximation.
The solution of Einstein’s field equations in weak field and slow motion approxi-
mation in the quadrupole form is{

h̄µ0 = 0 µ = 0, ..., 3
h̄ik(t, r) = 2G

c4
1
r · [

d2

dt2 q
ik(t− r

c )] i, k = 1, 2, 3
(1.21)

It’s worth to notice and to discuss the presence of quadrupole instead of a dipole
moment. A system of accelerated charged N particles with charge q has a dipole
moment different from zero

~dEM =
N∑
i=1

qi~ri

7From now and on, δTµ → Tµν .
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that will emit dipole radiation; for an isolated system of masses the dipole moment
will be

~dG =
N∑
i=1

mi~ri

which satisfies the conservation law of the total momentum of an isolated system

d

dt
~dG = ~0

and for this reason the dipole contribution in gravitational case, i.e. for GW,
is not present. The next term in the expansion is the quadrupole moment that
can be different from zero depending on the source: for instance, a spherical (or
axisymmetric) and stationary distribution of matter would not generate a GW signal
because the quadrupole moment would be constant, i.e. the first (and so the second)
time derivative is zero.
With the aim of showing its physical degrees of freedom, the solution in Eq. 1.21
has to be projected into the TT gauge with the transverse-traceless operator Pikmn8

Pikmn ≡ PimPkn −
1
2PikPmn

where
Pik ≡ δik − nink

Applying it to the tensor hµν and so to the system of Eq. 1.21

hTT
ik = Pikmnhmn = Pikmnh̄mn

the components of the perturbed metric in the TT gauge are{
h̄TT
µ0 = 0 µ = 0, ..., 3
h̄TT
ik (t, r) = 2G

c4
1
r · [

d2

dt2 q
ik(t− r

c )] i, k = 1, 2, 3
(1.22)

It is useful to define and to use the reduced quadrupole moment Qik

Qik ≡ qik −
1
3δikq

m
m (1.23)

that only differs from the quadrupole moment for a constant, i.e. the trace, that
cancels in the time derivative; it is also the term which is directly observable and
present in the expansion of the newtonian potential9. In the TT gauge it becomes

QTT
ik = Pikmnqmn = PikmnQmn

At the end of these numerous steps, one finally gets the components that was looking
for {

hTT
µ0 = 0 µ = 0, ..., 3
hTT
ik (t, r) = 2G

c4r · [
d2

dt2Q
TT
ik (t− r

c )]
(1.24)

8The application of the TT operator Pikmn is equivalent to the coordinate transformation
together with �F εµ = 0 condition.

9The expansion is φ ∼ −M
r

+ djn
j

r2 + 3Qjkn
jnk

2r3 + ...
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Another fundamental part of the GWs phenomenon is that it carries energy taken
from the source. This is an important aspect because there are circumstances in
which the GWs waves cannot be detected, but their effect (given by the energy loss)
can be observed. The pseudo-tensor tµν is useful to the purpose of evaluating the
significance of this energy loss. Pseudo-tensor means that it acts like a tensor only
under a linear coordinate transformation; this happens because it is formed by the
Christoffel symbols which have this characteristic.
Given a source and an observer who wants to detect the incoming wave along the
direction identified by the versor n= r

|r| (where r is the vector distance between
source and observer and |r| the absolute value) the energy per unit time which flows
across a unit surface orthogonal to the direction r is

t0r = dEGW
dtdS

= c3

16πG

(dhTT+ (t, r)
dt

)2

+
(
dhTT× (t, r)

dt

)2


= c3

32πG

∑
ik

(
dhTTik (t, r)

dt

)2
 (1.25)

By the fact that in GR the energy of gravitational field can’t be defined locally, to
find the GW-flux it is requested the average over several wavelenght expressed by
< · · · >. By integrating Eq. 1.24 respect to dS = r2dΩ, the gravitational luminosity,
i.e. the energy carried by the GW per unit time, is

LGW =
∫
dEGW
dtdS

dS

= G

2c5
1

4π

∫
dΩ <

∑
ik

(
Pikmn

...
Qmn(t− r

c
)
)2

>

= G

5c5 <
3∑

k,n=1

...
Qkn(t− r

c
)
...
Qkn(t− r

c
) >

(1.26)

This was the formula derived by Albert Einstein in 1918 and published in the paper
Über Gravitationswellen.
The solutions expressed by Eq. 1.24 and Eq. 1.26 can be applied to a system in
which the hypothesis of weak field and slow motion are verified; when it is not
sufficient to describe the system anymore, the Post-Newtonian (PN) expansion -
that lays on the same hypothesis - is needed for more accuracy. In fact, for a generic
metric theory, the PN involves the expansion of the metric and the stress-energy
tensor in terms of the parameter ε ∼

√
GM
c2R ∼

v
c ∼

p
ρ .

For gµν the first order post-Newtonian expansion involves the potentials

g00[O(4)] : U2, φW , φ1, φ2, φ3, φ4,A,B
gjk[O(2)] : Uδjk, χ,jk
g0j [O(3)] : Vj ,Wj

with U as the Newtonian potential. Then one makes use of parameters in front
of the PN metric; the expansion is called Parameterized Post-Newtonian (PPN)
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and includes 10 parameters: α1, α2, α3, β, γ, ξ, ζ1, ζ2, ζ3, ζ4. For General Relativity
β = γ = 1 where the others are zero. In this particular case

g00 = −1 + 2U − 2U2 + 4φ1 + 4φ2,+2φ3 + 6φ4

gjk = (1 + 2U)δjk

g0j = −7
2Vj −

1
2Wj

The first order PN expansion for Tµν regarding a perfect fluid is

T 00 → ρO(2)
T 0j → ρO(3)
T jk → ρO(4)

being
Tµν = (ρ+ ρΠ + p)uµuν + pgµν

with Π as specific energy density. Further details on gµν generic explicit form and
other metric theories can be found in [39].

1.2 Variety of astrophysical sources
The GW events that have been detected so far are binary coalescing systems com-
posed by BH-BH, NS-BH or NS-NS. They are only a fraction of the possible GW
sources that are divided in four main categories.

Burst sources
In this class are included for example supernovae explosions, and so on. Gravita-
tional waves that come from supernova explosion are suppose to radiate below a
few kHz and to be generated from instabilities present in the collapse and just after it.

Compact binary coalescence (CBC) This category embraces stars that are
falling into massive black holes (MBH) or the binary system discussed above. The
binary coalescing compact system is the most known and it has the peculiar waveform
called chirp which identifies the final stage of the coalescence; the event lasts few
minutes in which strong quasi-periodic GWs are radiated. The event rate of NS-NS is
estimated to be about 110-3848 1

Gpc3 year
[3]; for massive black hole binaries (MBH)

the event rate is once per year within 3 Gpc. The event rate of burst waves radiated
from stars spiraling into MBHs is not well known yet.

Periodic sources
Periodic gravitational waves are radiated by binary stars (far from the coalescence)
and from rotating neutron stars which are called pulsars.

Stochastic sources
Some good examples of stochastic sources are the GWs background originated during
the Big Bang and the phase transitions in the early Universe. The former involves
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GWs emitted in the so-called dark age that is an epoch prior to the Big Bang Nucle-
osynthesis (BBN) and in particularly it refers to a rapidly varying gravitational field
during the inflation that can produce a stochastic background by the amplification
of quantum, vacuum fluctuations. Nowadays, this GW background would be in the
frequency range of 10−16 − 1010 Hz which is covered by the detectors. The latter
occurs at the end of the inflation when symmetry breaking phase transitions create
the cosmic strings which produce GW with their oscillation [14].

1.2.1 Spinning and isolated neutron stars

A Neutron star (NS) is the final fate of a 2M� < M < 20 − 30M� star after
supernova explosion that can emit GWs if deformities occur. The principal GWs
generation mechanisms for a single spinning NS are its elliptical deformities respect
to the ideal spherical shape: they can be generated through strong magnetic fields in
the core or elastic strains in the crust. Such deformities are called mountains. The
former mountains (magnetic mountains) can arise in both isolated and accreting NS;
the latter (thermal mountains) are sustained by elastic strain in the crust and can
only be found in accreting NS because the temperature gradients are generated by
asymmetries in the release of the mass done by its companion.
If one considers an ellipsoid with uniform density ρ, the quadrupole moment and
inertia tensor

qij =
∫
V
ρxixjd

3x i = 1, 2, 3 (1.27)

Iij =
∫
V
ρ(r2δij − xixj)d3x (1.28)

which together give qij = −Iij + δijq, can then compute the Qij in terms of the
inertia tensor

Qij = −(Iij −
1
3δijI) (1.29)

and substitute in the quadrupole approximation of Eq. 1.24 to study the form of
the perturbed metric.
For a non rotating ellipsoid of mass M and with semiaxes a, b and c, Iij is

Iij = M

5

b2 + c2 0 0
0 c2 + a2 0
0 0 a2 + b2

 =

I1 0 0
0 I2 0
0 0 I3


where the principal moments of inertia are on the diagonal. For a rigidly-rotating
ellipsoid around one of its principal axes, with angular velocity Ω = (0, 0,Ω), a second
coordinate system is taken. In this co-rotating frame I ′ij has the aforementioned
expression while in the inertial frame (from which one sees that the ellipsoid is
rotating) knowing that ϕ = Ωt, Iij is

Iij =

 I1cos
2ϕ+ I2sin

2ϕ −sinϕcosϕ(I2 − I1) 0
−sinϕcosϕ(I2 − I1) I1sin

2ϕ+ I2cos
2ϕ 0

0 0 I3
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Figure 1.3. The ellipsoid and its semiaxes. The rotation is taken respect to z axes and it’s
represented by the anti-clockwise arrow [16].

hence

Qij = I2 − I1
2

cos2ϕ sin2ϕ 0
sin2ϕ −cos2ϕ 0

0 0 0

+ constant

By looking at the argument of sine and cosine, one can see that the GW emission
frequency is twice the rotational one, like in the case of binary coalescence, i.e.
fGW = 2frot. The multiplying quantity I2−I1

2 expresses the absence of GW emission
if a = b because I2 = I1, therefore for this ellipsoid it is important to deviate from
symmetry along the x and y axis. In order to quantify the difference between the
semi-axes a and b, it’s useful to introduce the ellipticity ε

ε ≡ a− b
(a+ b)/2 (1.30)

and to rewrite the reduced quadrupole moment as

Qij = εI3
2

cos2ϕ sin2ϕ 0
sin2ϕ −cos2ϕ 0

0 0 0

+ constant

that can finally be put in the quadrupole solution giving the amplitude h0

h0 = 4GΩ2

c4r
I3ε (1.31)

whose normalization is

h0 = 4.21 · 10−24
[ms
T

]2 [Kpc
r

] [
I3

1038kg m2

] [
ε

10−6

]
(1.32)

If it is assumed that the energy loss is completely due to GW emission (spin down
limit), an upper limit of the ellipticity εsd can be obtained

ε ≤ εsd =

√
5c5|ḟ |

512π4Gf5I3
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For the Crab nebula pulsar [5] hsd0 < 1.4 · 10−25 since no signal has been detected
from this source.
Another possible generation mechanism is the case in which the star is freely preceding
respect one of its principal axis. Here, the previous condition a 6= b is not demanded,
hence I1 = I2 is now assumed for simplicity. For a small wobble angle θ that is the
angle of the precession, in the inertial system it is

Qij = (I1 − I3)θ

 0 0 −sinϕ
0 0 cosϕ

−sinϕ cosϕ 0

+ constant+O(θ2)

this time, the GW emission frequency corresponds to the rotational one, i.e.
fGW = frot and the amplitude of the metric perturbation is [16]

h0 = 2GΩ2

c4r
(I1 − I3)θ (1.33)

where the deformation depends now - among the other parameters - to the difference
(I1 − I3) (x/y axis and z axis) and to the wobble angle θ.
Returning to the case of Fig. 1.3, the expression of the ellipticity ε - that depends
on the mechanism that is taken into account - can be derived. For what concern
the magnetic fields, many studies have been made with the aim to understand their
actual structure and role on quadrupolar deformation. What is known from some
models - because there isn’t any direct information about their internal shape - is
that purely toroidal or poloidal magnetic fields are unstable on dynamical timescales
(Alvén timescale); so, in order to be a reliable and durable source of deformities, the
structure has to be "mixed" as the so-called twisted-torus: the poloidal magnetic
field goes throughout the star, from the inside to the outside while the toroidal field
is confined in a torus-shaped region inside the star as reported in Fig. 1.4.

The deformations due to this configuration can be estimated as [23]

εB ∼ 4.5 · 10−7
(

Bp
1014G

)2 (
1− 0.389

Λ

)
(1.34)

where Bp is the poloidal component of the surface magnetic field, Λ is the ratio
between poloidal-to-total component (Λ = 0 purely toroidal, Λ = 1 purely poloidal)
- or equivalently [17]

εB ∼ 10−5B2
p

(
1− 0.64< B2

tor >

< B2
pol >

)
(1.35)

Eq. 1.34 is particularly pessimistic for GW because only a few stars such as the mag-
netars have a high magnetic field of order Bp ∼ 1014G. The model discussed above
doesn’t consider the existence of superconducting matter: for a non-superconducting
NS εB ∼ B2 as previously written, but εB ∼ B if there is a superconducting phase.
A first superconducting model is the two-fluid one where in the outer core neutrons
form a superfluid and the protons can be either a normal fluid or superconductor,
but exotic states of matter allow even higher ellipticities: the exotic proprieties of
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Figure 1.4. The dashed line represents the star surface while the solid ones the poloidal
components of the magnetic field and the donut-shaped region in dark grey is the toroidal
magnetic field, adapted from [6].

the color-superconducting phase of quarks could accommodate this demand (Fig.
1.5). Two of the quark composition possibilities are: the color-flavor-locked (CFL)
phase and the two-flavor superconducting (2SC) state for which the ε are

εCFL ∼ 1.2 · 10−5< B >

1014G ε2SC ∼ 4.0 · 10−6< B >

1014G (1.36)

with < B > as the average magnetic field in the core.
A last consideration on the role of magnetic field can be made about the situation in
which the rotational axis and the magnetic dipole moment of the NS are misaligned.
This leads the star to a precession characterized by the angle χ between the two
axes and an emission frequency fGW = frot. The resulting strain amplitude of a
GWs is [34]

h0 = 6.48 · 10−30 β

sin2χ

(
R

10 km

)2 (1 kpc
d

)(1 ms
P

)(
Ṗ

10−13

)

β is the magnetic distortion factor and quantifies the distortion in the star due to the
magnetic structure. This coefficient is linked to the ellipticity through the relation
ε = βM2/M2

0 whereM is the magnetic dipole moment andM0 has the dimension
of a dipole moment in order to have β dimensionless. The strain h0 grows if χ→ 0
or for large β. It is clear that χ can’t be too small due to its position in the equation
above.
The second typology of mountains, thermal mountains, can be found in Low-mass
X-ray Binaries (LMXBs) which are binary systems composed by a star in its main
sequence - the donor - and a NS/BH - the accretor. The mass on the accretor
is buried and compressed until nuclear reactions occur; these reactions heat the
crust and generate a temperature gradient: since the mass release is asymmetric,
the heating and so the gradient will be too. Thanks to the temperature gradient,
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Figure 1.5. The blue crosses and the green squares are for normal (i.e. non superconducting)
NS matter where the former is for pure poloidal magnetic field and the latter for an
almost pure toroidal one (Λ = 0.01); the red circles represent the superconducting CFL
model provided < B >= 10Bp. Black dashed curve is the projected strain sensitivity for
Einstein Telescope (ET) whilst the solid one is for aLIGO and the grey one is the strain
sensitivity for the initial S5 run with two years of coherent integration [23].

quadrupolar deformations arise and are sustained by elastic strain of the crust -
for this reason they are included in the class of elastic mountains. The ellipticity
associated to this phenomenon is

εth ∼ 10−10R4
6

(
δTq

105K

)(
Q

30MeV

)3
(1.37)

Q is the threshold energy of electron capture by nuclei (one of the reactions that
occur in the crust); δTq is the quadrupolar thermal gradient which is a fraction of the
total thermal gradient δT and, in the most optimistic scenario, δTq . 0.1δT . 105K;
R6 is the stellar radius. If εth is substituted in the amplitude formula h0 according to
the expression in [17], the output value is h0 ∼ 10−27−10−28 which is too weak to be
detected by aLIGO/Virgo but potentially not for ET if δTq/δT is not smaller than
∼ 0.1. By the fact that these thermal mountains belong to the elastic mountains
class, they depend on the stress that the crust can sustain before breaking that is

εth .
µcrσbrVcr
GM2/R

∼ 10−5
(
σbr
0.1

)
µcr is the shear modulus of the crust, Vcr the volume of the crust and σbr the crustal
breaking strain which maximum value can be ∼ 0.1.
A last remarkable example of instability in rotating stars is the unstable oscillation
modes. For what concern "normal" neutron stars (i.e. not magnetars), it’s worth to
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focus on secular rather than dynamical instabilities of normal modes formulated in
the Chandrasekhar, Friedman and Schutz (CFS) theory. Two are the requisites for
the onset of secular CFS instability: the change in sign of mode velocity and the
coupling to a dissipative mechanism. The first request involves two frames, one is
co-rotating with the star and the other is inertial. If the counter-moving mode in
the co-rotating frame appears co-moving with the star in the inertial frame, then
the request is satisfied; this means that the pattern speed [7]

σp = dϕ

dt
= −ωi

m

changes sign from negative (co-moving frame) to positive (inertial frame). From the
relation ωi = ωr −mΩ, this is achieved if the stellar angular frequency Ω is

Ω >
ωr
m

(1.38)

where ωi is the angular frequency in the inertial frame and ωr in the co-rotating
frame.
For the second condition, it turns out that the GW radiation is often the dominant
dissipative mechanism and it is effective when its emission is faster than the viscous
damping rate i.e. τGW < τvisc. Among the several oscillation modes that satisfy
both the conditions, the two most important are the fundamental f-mode and the
inertial r-mode (Coriolis force as restoring force). The f-modes are the first order
of the p-modes instabilities which are pressure driven instabilities: it has been seen
that, due to the strong reduction of the instabilities caused by superfluid vortex
array, the only realistic candidate for these modes could be newly born and fast
rotating NS called supramassive neutron star10 with hot non-superfluid matter [17].
r-modes are quite a lot more interesting because they could be a real observable GW
emission mechanism. In absence of dissipation, the instability is guaranteed for any
Ω by the fact that the pattern velocities are

σr = − 2Ω
l(l + 1) < 0 σi = Ω(l − 1)(l + 2)

l(l + 1) > 0

When the dissipation is switched on, an Ω−T instability window has to be taken into
account [17] and it is wider than the f-mode one (minΩc = 0.045Ωmax of r-modes
against the minΩc = 0.91Ωmax of f-modes [28] in order to satisfy Ω > Ωc for the
change in sign of the pattern velocity).
To describe these modes, one starts by defining the displacement vector ~ξ which
represents the perturbation from the equilibrium and hence the oscillation of the
fluid. This displacement leads to a variation of the fluid velocity ~u

δ~u = ∂t~ξ

In addition, one assumes an harmonic time-dependence of the modes which is

~ξ → ~ξei(mϕ+ωrt)

10This is the post-merger remnant of mass 1.2MTOV . M . 1.5MTOV where MTOV is the
Tolman-Oppenheimer-Volkoff mass [33].
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to perturb Euler equations [7]. There exist two classes of displacement: spheroidal
and toroidal

~ξ
r =

∑
lm

(
Slm, Hlm∂θ,

Hlm
sinθ∂ϕ

)
Ylm spheroidal

~ξ
r =

∑
lm

(
0, Tlmsinθ∂ϕ,−Tlm, ∂θ,

)
Ylm toroidal

(1.39)

with Ylm(θ, ϕ) as the standard spherical harmonics. The overall displacement in the
case of rotating star is

~ξ

r
= T + S =

∑
lm

(
0, Tlm
sinθ

∂ϕ,−Tlm, ∂θ,
)
Ylm +

∑
ν=l±1

(
Slm, Hlm∂θ,

Hlm

sinθ
∂ϕ

)
Yνm

(1.40)
the advantage of the rotating case is the disappearance of m degeneracy although it
is more complicated to describe due to the fact that [l,m] toroidal mode couples to
the [l± 1,m] spheroidal one. By taking the l = m case for slowly rotating barotropic
stars, the velocity perturbation in the co-rotating frame is [28]

δ~u = αΩR
(
a

R

)l
~Y B
ll e

iωrt

where α is a dimensionless amplitude, ~Y B
ll are the magnetic multipoles introduced

by Thorne [36] and a ranges from 0 to R of the non-rotating star. At leading order
i.e. ωr ≈ 2mΩ

l(l+1) , and for the case of l = m = 2 which is dominant for GW emission,
the velocity field results in a elliptical shape whilst the single elements of fluid have
ellipses with θ-dependent eccentricities and move according to

δr ≈ 0
δθ ∝ αsinθcos(mϕ+ ωrt)
δϕ ∝ αsinθcosθsin(mϕ+ ωrt)

This is well illustrated in Fig. 1.6.
The GW emission - which occurs at fGW = 4

3frot - takes away positive angular
momentum from the rotating star; this positive angular momentum is subtracted
from the negative angular momentum of the mode making it more negative and
growing the amplitude of oscillation hence the mode falls in a positive-feedback: as the
amplitude of the mode grows, there is an increase of the positive angular momentum
emitted and therefore a more negative angular momentum of the mode [23], [31].
The strain associated to the r-modes is [34]

h0 = 4.4 · 10−24α

(
ωr√
πGρ̄

)3 (20 Mpc
d

)
(1.41)

where α is the dimensionless parameter associated to the r-modes and ρ̄ the mean
density.



1.2 Variety of astrophysical sources 19

Figure 1.6. The main figure on the left represents the field velocity in the case of slow
motion and at leading order l = 2 with l = m = 2. The narrow vertical slice contains the
trajectory of the single fluid element around an equilibrium θ position: when θ → 0, π
the ellipses approach circles and the radius shrinks to zero; for θ → π/2 (equator)
the trajectory is a line in which the fluid elements moves up and down respect to θ
direction [7].
The figure on the right is a further focus of the field velocity for l = m = 2, but other
modes (even l 6= m) can be found in [32].
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1.3 Types of searches
Rapidly spinning neutron stars are the most promising continuous wave (CW)
sources, but their search can be almost unmanageable from a computational point
of view depending on the a priori knowledge of the source parameters. For a single
source these parameters are its frequency and all the spin-down orders, the most
important of which are ḟ0 and f̈0: the first order of spin down (ḟ0) gives a description
of the variation of the frequency of the source while how this variation changes
during time comes from the second order (f̈0). In the case of binary system, more
parameters add to the previous ones as the ellipticity, the inclination of the orbit
and the period. According to this a priori knowledge, research strategies for CW
radiation are divided into three main categories: targeted searches in which star
position, rotational frequency and all the spin-down orders are known; directed
searches in which only the position is assumed as known11; All-sky for unknown
position-and-frequency-evolution stars. From the first to the third category, the
parameter space volume that need to be studied grows because more parameters are
left unknown. There exist grey regions between them, as for example the narrow-
band searches in which the sky position and the rotational parameters are known,
but they refer to a more relaxed emission model in which the relation between fGW
and frot is not constrained. Because more computational resources can be focused
on less parameters, the targeted search has the best sensitivity respect to the others
classes but it is limited to known pulsars. All of this is well summarized in Fig. 1.7.

Figure 1.7. The figure contains sensitivity vs computational cost of several search strategies:
the more parameters are left unknown the higher the computational cost. Nowadays,
one refers to the blind searches as all-sky searches.

From a recent (2018) method strategy in the directed searches, therefore for a fixed
sky location, it has been estimated a computational time equal to 2.4 CPU hours
for a one month data of a single detector in order to recover the 131 fake signals in

11In the case of supernova remnant, the nebula that surrounds the NS is quite large, therefore
the NS position is obtained thanks to several information in the electromagnetic spectrum.
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[70-200] Hz frequency band, hence a very fast approach [24]. A CPU is the acronym
for Central Processing Unit, the processor that executes the instructions.
In the last years, new computing strategies were born as the GPU which stands for
Graphical Processing Unit that performs computations with high parallelism and
efficiency. The new GPU is preferred to the old CPU in the most computational
demanding searches. Giving some further details, the specific role in 2018 of the
Italian center of calculus CNAF12 for the Virgo CW searches regarding only the
Hough transform (a step of the All-sky pipeline FrequencyHough) a total of 106

CPU hours have been used at CNAF for CW searches. For the All-sky searches at
CNAF there are needed 30 million of cores per hour considering three detectors for
a year. This request of 30 MSU, if the energy is distributed over 1 year, implies
30 · 106 1

365
1
24 ∼ 3425 cores every hour. One core at CNAF is equal to 11 HS0613

with 2 GB of RAM. For what concerns the operative system, it makes use of nodes
of 36/72 cores each with 3G per core.
As last information, for the LIGO detectors a complete search on the 9 months long
run can be accomplished in a couple of months with 200 GPUs whilst there are
needed several months and 2000 CPUs in the old system [11].
Among the several CW searches, here I will focus on isolated and spinning neutron
stars in the All-sky searches that are the subject of this work after having briefly
described the targeted and directed.

1.3.1 Signal model

Considering a source, precisely a rigid rotating NS, that produces a strain which
can be written as

h(t) = F+(t, ψ)h0
1 + cos2(ι)

2 cos(Φ(t)) + F×(t, ψ)h0cos(ι)sin(Φ(t)) (1.42)

where ι is the angle between star spin direction and the propagation direction of
the GW, F+, F× are the detector radiation patterns (the "sensitivity" to h+ or h×
polarization), ψ is the polarization angle and Φ the phase of the signal that has to
be corrected and whose Taylor series expansion is [2]

Φ(τ) = φ0 + 2π
[
f0(τ − τr) + 1

2 ḟ0(τ − τr)2 + 1
6 f̈0(τ − τr)3

]
(1.43)

f0, ḟ0 and f̈0 are the intrinsic source frequency, first and second order spin-down at
the fiducial time τr, φ0 is the initial phase, τ is the time at the source and t is the
arrival time of the signal at the detector

τ(t) = t+ ~r(t) · n̂
c

~r(t) is the vector which joins the solar system barycenter (SSB) and the detector
and n̂ identifies the source position in the SSB. Here, the two Shapiro and Einstein
time delays are getting neglected.

12It the national center the INFN (Istituto Nazionale di Fisica Nucleare) who is in control of the
management and development of the principal information services and data for INFN.

13It is used for measuring CPU performance.
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The signal emitted by the source is then subject to the Doppler effect only that is
caused by the detector movement which has a velocity ~v respect to the SSB; this
velocity is composed by the Earth orbit around itself (~vrot) and around the Sun
(~vorb). Giving that

f(t) = 1
2π

dΦ
dt

then this shift is described by

f(t) ' f0

(
1 + ~v · n̂

c

)
≈ f0

(
1 + ΩorbRorbcosβsin(Ωorbt)

c

)
(1.44)

where f0 is always the intrinsic frequency of the source, Ωorb is the Earth orbital
angular velocity, Rorb the radius of that orbit and β the latitude of the source.

1.3.2 Targeted searches

Electromagnetic active pulsars are perfect candidates for this category thanks to
the ephemerides measured from observation in the electromagnetic band (X-ray,
γ-ray, optical, radio) and an accurate Doppler correction can be applied to these
sources along with other GR effects. The correction can be accomplished through
different methods: 5-vector which adopts the matched filter approach, F/G statistic
and the time-domain heterodyne-based pipelines (like Bayesian and Band Sampled
Data). For example, regarding the Crab pulsar, the 5-vector analysis method
computed an ellipticity ε of 16.3(15.7) ·10−6 (h95%

0 = 3.0(2.9) ·10−26), while the F/G
statistic 10(8.1) · 10−6 (h95%

0 = 1.9(1.5) · 10−26) and the Bayesian one 8.6(7.4) · 10−6

(h95%
0 = 1.5(1.2) · 10−26) [5].

1.3.3 Directed searches

For directed searches, a coherent integration of the observation time is not possible
due to the knowledge of the position alone i.e. there is no information about the
evolution of the phase. The computational cost depends on the nominal/intrinsic
GW frequency and its derivatives f0, ḟ0, f̈0 and grows accordingly to the observation
time. In order to use computational resources effectively, a semi-coherent approach is
applied to the data rather than a coherent procedure. The semi-coherent technique
reduces computational cost by dividing into short segments the data that are analyzed
coherently and then combined incoherently; unfortunately, the procedure reduces the
sensitivity respect to a full coherent analysis. For example, from three directed search
methods: BSD, Single-harmonic Viterbi and the Dual-harmonic Viterbi; the most
strict constrains on the intrinsic GW strain from a sample of 15 supernova remnants
comes from the BSD with h95%

0 ≈ 7.7 · 10−26 for G39.2-03 and h95%
0 ≈ 7.87 · 10−26

for G65.2+1.2 around 200 Hz [35].

1.3.4 All-sky searches

All-sky searches look for NS without electromagnetic counterpart: 108 − 109 NS are
supposed to populate the Milky Way, but only ∼ 2 · 103 have been discovered thanks
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to their electromagnetic signals. Hence, in this case, the detection of a CW would
increase the number of known pulsars.
In the All-sky procedure, the Doppler and the antenna pattern corrections are
sky-dependent since phase and position are unknown, making the computational
cost high. If one considers for a fixed signal frequency f0 a bin of size δf which is
δf = 1/TFFT , then the angular resolution

δθ ≈ 9 · 10−3rad

(30 minutes
TFFT

)(300 Hz
f0

)
If TFFT = 1 year and f0 = 1 kHz → δθ ∼ 0.3 µrad and the number of sky points
∼ 1/(δθ)2 is of order O(1014). If more parameters like ḟ0 and f̈0 are included in this
1 year data, the coherent analysis is unmanageable; hence a different strategy has to
be used. By dividing the total observation time in N segments, i.e. N = Tobs/TFFT ,
each of which is analyzed coherently and then the results are added incoherently
(therefore a semi-coherent analysis is performed) a good compromise between strain
sensitivity and computational cost is reached with a degradation in sensitivity ∼ N1/4

as TFFT increases but also with the advantage of more robustness with respect to
deviation of a signal compared to a coherent model.
Several search pipelines of semi-coherent analysis are based on the Hough transform
as SkyHough and FrequencyHough, but others use the StackSlide algorithm as
PowerFlux or can lay on the F -statistic as Einstein@Home. Fig. 1.8 gives a view of
the strain amplitude obtained from these several techniques. From these methods,
the best limit on the strain amplitude h95%

0 is for O3 data using PowerFlux, near 200
Hz, h95%

0 ∼ 1.7 · 10−25 (linearly polarized), h95%
0 ∼ 6.3 · 10−26 (circularly polarized)

and h95%
0 ∼ 1.4 · 10−25 (population-averaged ensemble) [27].
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Figure 1.8. The curves represent the detectable strain amplitude h0 with variable confidence
level (90% − 95%) from 20 Hz to 2000 Hz. There are reported the early O3a results
along with the full O2 ones. The circular polarized (front view of the GW) curve is the
optimistic case while the linear polarization (side view) the pessimistic one [27].
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Chapter 2

Approaches in the All-sky
search

Vast portions of sky and spin-down parameters are involved in order to search
for continue wave sources. With a full coherent procedure the computational cost
is prohibitive, hence the best strategy is a hierarchical approach. This method,
frequently used in the All-sky search, is composed by several individual steps that
are performed in sequence. Fig. 2.2 is a good representation of a general hierarchical
method: the semi-coherent analysis is applied to the acquired data while a refined,
i.e. full coherent, analysis is adopted for the (few) surviving candidates.

Figure 2.1. A general scheme of hierarchical approach which includes a semi-coherent
analysis on the acquired data and then a full coherent analysis on the candidates that
have survived all the previous steps [21].

The hierarchical semi-coherent pipeline that was chosen in this All-sky search is the
Frequency Hough.
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2.1 Frequency Hough (FH) method
By referring to Fig. 2.2, the semi-coherent Frequency Hough (FH) method is
composed by a first coherent step that is the Doppler correction and a subsequent
incoherent one, i.e. Hough transform. A detailed scheme of FH is given in Fig. 2.2
whose blocks will be discussed in the following sections.

Figure 2.2. The FH pipeline. Scheme from Rome Frequency Hough (FH) All-Sky
search (including Follow-up) applied to O3 data page at https://wiki.ligo.org/CW/
RomeFrequencyHoughJUN2021.

2.1.1 SFDB

The initial step of the FH hierarchical pipeline is the construction of the Short1
FFT2 DataBase (SFDB) starting from the time-domain calibrated3 data acquired
from the detector. These data are first divided into chunks each of time duration
TFFT called coherence time

TFFT ∼
1.1 · 105
√
fmax

[s] (2.1)

1Short respect to the observation time Tobs and to the effects of the Doppler shift due to Earth’s
motion.

2It stands for Fast Fourier Transform.
3Calibrated implies some procedure applied to the raw data of the detector like time domain

disturbances removal.

https://wiki.ligo.org/CW/RomeFrequencyHoughJUN2021
https://wiki.ligo.org/CW/RomeFrequencyHoughJUN2021
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that is taken accordingly to the maximum value of the frequency interval taken
into account with the purpose to contain the Doppler shift of a potential signal
within a frequency bin of the FFT which is δf = 1

TFFT
. In the current case [10],

four intervals and hence four TFFT are chosen: [10 − 128] Hz (TFFT = 8192 s),
[128− 512] Hz (TFFT = 4096 s) , [512− 1024] Hz (TFFT = 2048 s) and [1024− 2048]
Hz (TFFT = 1024 s). For each of the four intervals, the (time-domain) chunk is taken
after ∆T = TFFT /2 s the previous one, i.e. it is half interlaced, and windowed with
the flat-top cosine window: the two choices, together, assure the uncorrelation of the
spectrogram data without information loss. The windowing before the conversion of
the chunk into its corresponding FFT is crucial: if the period in the segment is not
an integer multiple of TFFT , then in the frequency domain a "spectral leakage" will
occur and the spectrum will show a spread of the amplitude along other frequencies
in addition to the original (true) frequency. By applying the window4, this unwanted
effect is minimized with the flat-top window being the best choice because its
resulting spectrum amplitude is closest to the real one [18]. After this operation

Figure 2.3. The left side of the figure shows the "leakage" problem cited in the text whilst
the right one the solution to the problem that is the application of the flat-top window
(blue and orange curves) thanks to which the signal (gray) goes toward zero smoothly,
avoiding the edge problem. Collage made from figures in [18].

one makes the FFT of the windowed chunk; the collection of the N FFT of the N
time-domain chunks produces a (t, f) spectrogram of resolutions (i.e. single bin
length) δt = ∆T and δf = 1

TFFT
. The single FFT appears then as a "frequency

vertical slice" (0 ≤ f ≤ fmax) of length ∆T . The four spectrograms are then created
4With this expression one means that the time domain signal is multiplied with the window

function.
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B [Hz] TFFT [s] δf [Hz] Nf

1024–2048 1024 9.7 ·10−4 2.09 ·106

512-1024 2048 4.88 ·10−4 2.09 ·106

128-512 4096 2.44 ·10−4 2.09 ·106

10-128 8192 1.22 ·10−4 1.05 ·106

Table 2.1. The table summarizes the four band intervals B with their own TF F T , frequency
resolution δf and number of frequency bins Nf [10].

with the side-by-side slices, with an overall number of frequency bins Nf that varies
in each interval due to the fact that the resolutions changes with the value of TFFT
as shown in Table 2.1. With the particular choice of TFFT and frequency intervals,
the last three Nf are the same.
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2.1.2 Peakmap

After the creation of the spectrogram from the SFDB, the following step is the
construction of the Peakmap which is a collection of peaks in the time-frequency
plane. For each of the N FFTs in the SFDB, the periodogram Sp;i(f), that is the
square modulus of the i− th FFT, and the auto-regressive average spectrum SAR;i(f)
are computed, see Fig. 2.4. Their ratio is

R(i, j) = Sp;i(f)
SAR;i(f) i = 1, 2, ...N

where the index i stands for the FFT taken into account and j for the j−th frequency
bin of the i− th FFT. For every (i, j), R(i, j) has to satisfy two conditions: being

Figure 2.4. A representation of the spectrum (blue) and the average spectrum (red)
from VSR4 data (Virgo detector). Image from Rome Frequency Hough review page,
https://wiki.ligo.org/pub/CW/RomeFrequencyHough/Peak_maps.pdf.

above a threshold θthr and a local maximum respect to its (j − 1, j + 1) neighboring
bins; every time this happens, the corresponding peak is selected and the surviving
bin contributes to the realization of the Peakmap. The choice of the threshold
θthr is critical because it influences the search sensitivity and its computational
weight whilst the addition of the local maxima condition gives to the criteria more
robustness against disturbances. Fig. 2.5 shows the ratio R and the selected local
maxima peaks above the threshold (magenta line).
The probability to select a peak in the case a noise is P (θ; 0) = p0 and has the form
of

p0 =
∫ +∞

θ
e−x(1− e−x)2dx = e−θ − e−2θ + 1

3e
−3θ

https://wiki.ligo.org/pub/CW/RomeFrequencyHough/Peak_maps.pdf
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Figure 2.5. Focus on a small frequency band for the Ratio R from VSR4 data. The
horizontal magenta line represents the threshold θthr whilst the orange circles are the
peaks which are also local maxima which are then going to be selected to form the
Peakmap. Image from Rome Frequency Hough review page at https://wiki.ligo.
org/pub/CW/RomeFrequencyHough/Peak_maps.pdf.

e−xdx is the probability of having a value of R(i, j) in [x;x + dx] and (1 − e−x)2

that this value is also a local maximum. With the same assumptions, for a signal of
amplitude λ instead of a disturbance that probability P (θthr;λ) = pλ is

pλ ≈ p0 + λ

2 θ(e
−θ − e−2θ + 1

3e
−3θ)

The probability of having m peaks in the Peakmap is binomial with µ = Ntotp0 and
σ =

√
Ntotp0(1− p0) with Ntot = N ·Nf , the total number of bins in the Peakmap.

With a sufficient high number of TFFT s, i.e. N , the binomial distribution can be
approximated to a Gaussian one [10].
The value of θthr can be obtained with the maximization of the expectation value of
the critical ratio

µCR(θ, λ) = N(pλ − p0)√
Np0(1− p0)

It has been seen that choosing θthr = 2.5 only produce small sensitivity loss of the
search and the local maxima condition avoids the disturbances in the data from
being selected because they spread in more than just one bin. Fig. 2.6 shows
how an uncorrected5 Peakmap appears if a real CW signal is present; in this case
it is an hardware injection (HI) in the Virgo VSR2 run called pulsar3 with the

5The correction regards mainly the Doppler effect.

https://wiki.ligo.org/pub/CW/RomeFrequencyHough/Peak_maps.pdf
https://wiki.ligo.org/pub/CW/RomeFrequencyHough/Peak_maps.pdf
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following characteristics at the reference time6 t0 at epoch MJD7 52944: frequency
f0 = 108.8572 Hz, spin-down ḟ0 = −1.46 · 10−17 Hz/s, right ascension α = 178.37°,
declination δ = −33.43° and strain amplitude h0 = 8.3 · 10−24.

Figure 2.6. The resulting Peakmap from the data in which HI pulsar3 has been injected.
The blank spaces that appear in the white background represent the positions of the
non-surviving bins of the threshold and local maxima conditions or missing data. The
(strong) CW signal varies in frequency due (mainly) to the lack of Doppler correction [10].

Sky grid

The constructed Peakmap has first to be Doppler corrected to be given as an input
to the Hough transform step. This correction is applied to each sky point of the
sky grid and it consists in a simple shifting of the Peakmap pixels thanks to the
initial request of the Doppler effect to be contained within a single bin. The sky
grid is produced as follows. It is taken into account the signal in Eq. 1.44 . If it is
satisfied the request ∆fmax = δf i.e. the maximum Doppler variation of the source
frequency corresponds to a frequency bin of the peak map, one can find the angular
resolutions of the sky grid

δλ = 1
NDcosβ

δβ = 1
NDsinβ

where the longitude resolution is δλ, the latitude resolution is δβ and ND

ND = f0ΩorbRorbTFFT
c

(2.2)

is the number of frequency bins interested by the Doppler band. The number of sky
points in a sky grid of a specific f0 is equal to

Nsky ' 4πKskyN
2
D

6The reference time is a time respect to which the values of the parameters are given.
7The Julian Day begins at noon on January 1, 4713 B.C. and the Modified Julian Day is MJD

= 240000.5 - JD.
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Hence, Nsky increases with the source frequency f0 whilst δλ and δβ decrease. With
this methodology, the sky grid formed is called optimal. A different grid in the sky
Hough is used due to the chance o use fastest computing algorithms and it’s called
rectangular with a number of points

Nsky = Ksky2π2N2
D

that has less sensitivity respect to the optimal one [8]. The over-resolution factorKsky

enhances the efficiency but also increase the number of artifacts (false candidates)
and it is set Ksky = 1. Fig. 2.7 shows the optimal coarse sky grid in ecliptical
coordinates for f0 = 200 Hz and Ksky = 1.

Figure 2.7. On the left: optimal coarse sky grid in ecliptical coordinates for f0 = 200 Hz,
TF F T = 1024 s and Ksky = 1. On the right: Number of sky points Nsky as a function
of the frequency (here fmax = 2048 hence TF F T = 1024 s) [10].

To conclude and summarize: for each point in the sky grid a Doppler correction is
computed, hence a single corrected Peakmap is generated and taken as input for
the Hough transform that will give a Hough map in return. Therefore, for Nsky sky
points there will be Nsky Doppler corrections, corrected Peakmaps and Hough maps.

2.1.3 Hough transform

The Hough transform is the core of the FH and is a function that provides a
linear mapping between the corrected Peakmap and the nominal frequency and
spin-down plane, i.e. (t, f)→ (f0, ḟ0). The action of the Hough transform can be
visualized as follow. Assuming the existence of two manifolds Σ and M , it exists a
function g : Σ→ C that provides a one-to-one association and where Σ is the pulsar
parameters plane (f0, ḟ0), M is the (t, f) plane and the collection of hypersurfaces
C lays in the manifold M . Given a set of observations {xi} in the manifold M of
coordinates (t, f), the Hough transform takes each observation from the manifold
M and describes a set of points Ui consistent with xi. If the collection {xi} comes
from a single hypersurface, then the observations belong all to the same source that
evolves during time, and it is true that

µ̂ ∈ ∩iUi
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Figure 2.8. The ideal case of infinite resolution. It is reported the action of the Hough
transform from the manifold M to Σ [21].

Where µ̂ is the source of coordinates (f0, ḟ0).
A real case has finite resolution, therefore the manifolds M and Σ are composed by
pixels of lengths (δt, δf) and (δf0, δḟ0) respectively. Thus, an observation assumes
the form of a pixel and the set of points U is a slice that touches several pixels in Σ.
This mapping has then the form of Fig. 2.9.

Figure 2.9. The action of the Hough transform from the manifold M to Σ. The shaded
pixels in Σ are the ones interested by the dashed Ui region [21].

Regarding the specific case of the FH pipeline, the manifold M is the Doppler-
corrected Peakmap and Σ the Hough map.
Due to the (electromagnetic/gravitational) energy emission, the proper - true -
frequency of the source decreases with time. For a slowly decreasing frequency, its
series expansion can be cut off at first order

f(t) = f0 + ḟ0(t− t0) + ... (2.3)

hence
ḟ0 = − f0

t− t0
+ f

t− t0
(2.4)

The real situation of finite resolution gives rise to the slice in the Hough map plane
(Fig. 2.9) identified by

− f0
t− t0

+ f − δfH/2
t− t0

< ḟ0 < −
f0

t− t0
+ f + δfH/2

t− t0
(2.5)
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where δfH = δf
Kf

is the width of the frequency bin in the Hough maps, from the δf of
the Peakmap and the Kf as frequency over-resolution factor. In order to determine
whether a source is present in the data or not, each time a slice touches a pixel of
coordinates (f0, ḟ0) the number count of that pixel increases of +1. A first approach
is simply

n =
N∑
i=1

ni

which is the final number count in that pixel and where ni can be 0 or +1. Hence
the Hough map is binomial because the pixel is or is not touched by the slice of Eq.
2.5. In the Hough map, one is interested in the pixel with an high number count
n respect to the average and, if in the input plane the reference time t0 is in the
middle of the observation time, the signal of the potential source reduces the slop
given by − 1

t−t0 in Eq. 2.5. The FH pipeline of this work makes use of the adaptive
number count that is

n =
N∑
i=1

wini

where wi are weights associated to the i − th pixel. The role of the weights is to
take into account non stationary noises and time-varying detector beam pattern
functions F+, F×. With this implementation, n is not a integer number anymore.
The adaptive Hough map of pulsar3 visible in Fig. 2.10 appears as a double cone
with high number count around the already known coordinates f0 = 108.8572 Hz,
ḟ0 = −1.46 · 10−17 Hz/s proving the validity of the adaptive Hough transform.

Frequency and spin-down grid

The Hough map is function of the intrinsic source frequency f0 and its spin-down ḟ0.
As aforementioned, the standard step of the frequency is δfH = δf/Kf in order to
reduce the digitalization loss. A good choice for the over-resolution factor Kf is 10
for the coarse grid. This choice increases the number of frequency bins Nf which is
equal to

Nf = Kf
TFFT
2δt = 1

2 · δt · δfH

For what concern the spin-down step δḟ its definition is

δḟ = δf

TobsKḟ

In the current analysis only the first order spin-down is taken into account (see
Eq. 2.3): this is acceptable depending on the value of a quantity called minimum
spin-down age τmin that has an impact on the computational cost of the analysis.
Generally, it is equal to

τmin = MIN(f0

ḟ0
) (2.6)

while the number of spin-down values of order j N (j)
sd is

N
(j)
sd = TFFT

δt

(
Tobs
τmin

)j
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Figure 2.10. Adaptive Hough maps of pulsar3. On top, the double light cone appears
sloping. On the bottom, the slope is gone because the reference time t0 is in the middle
of the observation time [10].

In Fig. 2.11 it is provided an example of the values of τmin. If one wants to stop
at the first spin-down order as it has been done in Eq. 2.3 then τmin = 2100 yr.
With these information, for the coarse grid Kḟ is set equal to 1 giving an amplitude
digitalization loss of ∼ 3.6%.

2.1.4 Selection of candidates, clustering and coincidences

After the Hough map has been computed, candidates are selected8. Each 1 Hz of
the Hough maps is divided into 20 sub-bands (each of 0.05 Hz) from which the
candidates with the highest number count n get selected; in most of cases there are
taken the strongest two. All of this is applied to one detector data, but the purpose
is to compare two sets of data from different detectors. Hence, the candidates of the
same detector are clustered and then coincidence between clusters occurs. Given
two candidates with parameters ~c1 = (λ1, β1, f1, ḟ1) and ~c2 = (λ2, β2, f2, ḟ2) their

8For more than one sky location, an equal number of Hough maps will be computed and then
for each of the maps, a selection will occur.
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Figure 2.11. An example of the value of τmin needed to adopt the first order spin-down
approximation. For TF T T = 1024 s (fmax = 2048 Hz), the minimum value of τmin giving
the lowest computational cost is 2100 yr [10].

distance is
d = ||~c1 − ~c2|| =

√
k2
λ + k2

β + k2
f + k2

ḟ
(2.7)

where kλ = |λ2−λ1|
δλ . The clusterization of candidates from a single dataset/detector

is composed by 4 steps 9. The first step is a preliminar clusterization based on the
frequency. Starting from the i candidate (i = 1, 2, ..., Ncand), it is checked on the
j = i+ 1, i+ 2, etc... candidates that are on the right of i the maximum frequency
distance imposed. Once this frequency distance is exceeded, the first cluster is
"complete" and a new cluster ci starts with the same request. The second step
works on the general distance computed with all the parameters of the candidates,
Eq 2.7, which is often imposed d = 2. This distance is checked only for the right
j candidates respect to the starting one i. All the candidates that satisfies d ≤ 2
with the first candidate i belongs to the cluster ci. What it may happen is that two
candidates from two separate clusters can have d ≤ 2. This is possible because in
step two the distance is computed only for the "first" candidate (progenitor) and
every candidate on its right. If two clusters are taken into account, the one of which
has only one element, and this one has d ≤ 2 from the last element of the first cluster
that is on its left, then the singleton gets incorporated, third step. The fourth step
is about the record of the numerosity of each cluster. After the clusterization, the
clusters of two different dataset go through the coincidences step. Candidates of
these different clusters are coincident if d ≤ 3 one from another. This value has been
chosen after studies with simulated signals: it reduces the false alarm probability
(the probability to select a candidate that is disturbance) and it is sufficiently robust
in the case of a signal with slightly different parameters in the two detectors.

9This can be found with further details in the Rome Frequency Hough PartTwo review at
https://wiki.ligo.org/pub/CW/RomeFrequencyHoughPartTwo/code_rev_clustering.pdf

https://wiki.ligo.org/pub/CW/RomeFrequencyHoughPartTwo/code_rev_clustering.pdf
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After this step, coincident candidates go through a ranking procedure. The rank
occurs every 0.1 Hz band for the Ncand coincidences candidates in it. It is divided
into two parts: number count and distance. For what concerns the rank for the
number count, the candidates of each dataset are separately ordered in descending
order (from the one with the highest n to the lowest) and there are ranked with ri,j
which is 1/Ncand for the highest and 1 for the smallest. The index i = 1, 2 stands for
the detector/dataset and j is the position of the candidate of the i-th dataset. The
ranking about the distance is done by ordering the candidates in ascending order
(hence from the nearest to the farthest). This rank is computed for each pair of
candidates and it is called rd,j , running over the j candidates of a single dataset,
where j is defined before the sorting; for the lowest distance it is 1/Ncand and for
the highest 1. The final rank is a combination of the two discussed above

rj = rd,j ×
2∏
i=1

ri,j

If the j is the highest in a dataset ri,j = 1/Ncand and (1/Ncand)2 if it is for both of the
dataset; for the nearest couple rd,j = 1/Ncand, then rj = 1/Ncand×(1/Ncand·1/Ncand).
Hence a lower value of rj implies, for the j candidate, an higher number count and
small distance from the other dataset candidate [25].
The last procedure consist in the Follow-up, described in [26]. An important step is
a consistency test based on the Critical Ratio, a random variable that measures the
statistical significance of the number count n of a pixel of the Hough map respect to
its expected value in presence of the noise alone.

CR = n− µ
σ

(2.8)

where µ = Np0 and σ2 = Np0(1− p0). The same discussion made in Section 2.6 is
valid here as well: when the number of TFFT s of the Peakmap N is sufficiently large,
the binomial probability of having n can be approximated with a Gaussian having
the parameters written above. The threshold for taking the coincidences candidates
to the next step of the Follow-up is usually set to CRthr = 5.

2.2 Band sampled data (BSD)
The Band sampled data (BSD) is a data framework given as new input for an
analysis pipeline; it has the advantage of opportunely combine sets of data for a
given purpose and easily optimize the choice of the parameters to use in a given
search. This flexibility translates into the possibility to increase the sensitivity which
makes the difference between a detected or a missed signal. This BSD collection can
be used for several types of searches like targeted, directed and All-sky for isolated
sources and binary systems. The same framework is well suited to the search of
unconventional CW signals like the one for dark matter candidates: namely boson
clouds formed around spinning BH or dark-photon dark matter. For what concern
the work of this thesis, the BSD database will be applied to the all-sky search for
isolated neutron stars.
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2.2.1 The construction of the BSD database

The construction of the BSD database starts from the SFDB of an half-overlapped
FFTs as the one used in the All-sky CW analysis and discussed in Section 2.1.1.

• (a) From the SFDB a band, for example of 10 Hz it taken;

• (b) This same band is hence extracted and the inverse Fourier transform (IFFT)
is computed, bringing the band from frequency domain into time domain.

• (c) It is created the time strain data of the sub-band of the i-th FFT.

• (d) As aforementioned, the FFTs are half-interlaced; in order to remove this
effect the first and last quarter of the time domain data are eliminated, keeping
only their central part.

This procedure is repeated for all the n-FFTs spanning a one-month data and then
the next 10 Hz band is taken into account. At the end, one has a collection of blocks
of dimensions "10 Hz/1 month" that is the BSD database with new sampling time of

1
∆fBSD with ∆fBSD = 10 Hz in this case. This satisfies the Nyquist theorem as will
be explained later. The Hz and time lengths are tunable parameters: for example,
one could choose to have blocks of "20 Hz/3 months". Hence, the BSD database
is composed by data in time domain rather than frequency domain: the coherence
time TFFT is not fixed but can be chosen accordingly to the type of source of the
search (targeted, directed, all-sky and isolated or binary system) [29].
Fig. 2.12 gives an optimal visualization of the construction technique while Fig. 2.13
of the resulting BSD database.

The analytic signal

The step of IFFT on the sub-sampled FFT identified by the letter (c) in Fig. 2.12
can be further discussed in order to understand its advantage. The time domain
data stored in the so called reduced-analytic signal format and it is different from
the classical analytic one. In the original SFDB only the positive part of each FFT
is stored, so the classical analytic signal requires to add zeros to the frequency part
of the FFT before the IFFT is performed, being sampled at f = 2fmax of the band
as required by the Nyquist theorem. The reduced one is still a complex time series
with only positive frequency, but it is obtained by discarding the negative and zero
component of the classical analytic signal sampled at f = fmax [30].
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Figure 2.12. The several steps that bring to the single "10 Hz/1 month" block. (a) First,
it is chosen the frequency length in Hz and (b) extracted, (10 Hz in the example); (c)
the IFFT is performed on this i− th FFT and (d) only the central part is taken. The
resulting analytical signal is a single piece of the BSD file that will be filled with all the
n-FFTs of the selected 10 Hz band [30].

Figure 2.13. The BSD file of Fig. 2.12 is a single block of the BSD database. The
extraction of sub-bands from the blocks can be performed respect to frequency or time
direction [30].
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2.2.2 Advantage respect to the standard four-bands method

As discussed above, the lengths of TFFT can be changed independently and can take
any value. This is a great advantage in gaining sensitivity at those frequencies that
are penalized in the standard four-bands division. For example, with following four
intervals [10−128] Hz (TFFT = 8192 s), [128−512] Hz (TFFT = 4096 s), [512−1024]
Hz (TFFT = 2048 s) and [1024− 2048] Hz (TFFT = 1024 s), for the frequency at the
begging of each interval the Doppler shift is over-estimated i.e. the frequency bin
could be smaller than the one from the standard TFFT . Thanks to the flexibility
of the BSD database, the sensitivity improvement is, for a semi-coherent search,
S ∝ 1

4√TFFT
where TFFT = T

(BSD)
FFT

T
(SFDB)
FFT

(see [10]).

Figure 2.14. The difference between the BSD and the four-bands of SFDB. It is clearly
visible the gain in sensitivity of the BSD database specially for the frequencies at the
beginning of each of the fours standard bands. For example, for the first SFDB [10−128]
Hz it is T (SF DB)

F F T = 8192 s whilst for the [10− 20] Hz band T (BSD)
F F T ∼ 16000 s [30].

Fig. 2.14 shows the difference between the two methods of interval subdivision in
function of the frequency.
Further examples will be provided in Chapter 4.
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Chapter 3

A new sensitivity estimation
method

In this Chapter I will discuss about a new sensitivity estimation method. The purpose
of this first part of my work was to obtain a quicker sensitivity curve starting from
the CR of the candidates in the standard four-bands FH pipeline rather than using
SIs which implies an higher computational cost of the operation. I firstly tested the
validity of the method by using the UL from SIs to make a comparison with several
other recalibrated curves in order to understand which one was the most similar to
the UL and which one could be accounted as new sensitivity curve, then I proceed to
apply this method to produce the upper limits for the all-sky search using O3 data.
With this idea, more computational resources can be focused elsewhere as for
example in the follow up of the candidates which would imply an higher chance of
detection. This method was included in the article All-sky search for continuous
gravitational waves from isolated neutron stars using Advanced LIGO
and Advanced Virgo O3 data of the LIGO-Virgo-KAGRA collaboration in the
Section of the FrequencyHough pipeline which reports the final results of the search.

3.1 The sensitivity curve
Several definitions of what "a sensitivity curve is" are possible, hence it is relevant
to tell precisely which one I am going to refer to in my work.
"The sensitivity, at a given confidence level Γ is defined as the minimum signal
amplitude which would produce a candidate in a fraction ≥ Γ of a large number of
repeated experiments." [10]
Γ is the confidence level expressed in % of recovering signals from the injected ones.
For example, Γ = 95% means that one will recover the 95% of the signals every time.
The probability of selecting a candidate that is above the Hough map threshold i.e.
n > nthr is Pn>nthr and it is imposed to be equal to Γ

Pn>nthr(λ) =
∫ ∞
nthr

Pn(θthr;λ)dn = Γ (3.1)

where Pn(θthr;λ) is the probability of having a signal of amplitude λ and above
the peakmap threshold θthr to have a n count number in a given pixel. Here it is
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assumed in its Gaussian approximation to the binomial distribution

Pn(θthr;λ) = 1√
2πσ2

e−
(n−µ)2

2σ2 µ = Nη σ2 = Nη(1− η)

where η = p0 in absence of signal and η = pλ if a signal is present. Thanks to this
approximation and considering the case of small signals, one is able to compute the
minimum detectable spectral amplitude λmin which is

λmin ≈
2
θthr

√
p0(1− p0)
Np2

1

(
CRthr −

√
ercf(2Γ)

)
= Λ1√

N
(3.2)

where p1 = e−θthr − e−2θthr + e−3θthr and N is the number of FFTs. The quantity I
recalibrated is the minimum detectable strain amplitude h0,min, hence some further
steps need to be done.
The relation between λ and h(t) is

λ = 4|h̃(f)|2

TFFTSn(f) (3.3)

where h̃(f) is the Fourier Tranform (FT) of h(t) and Sn the detector uni-lateral
noise spectral density. The GW signal in a detector takes the form

h(t) = F+h0+cos(φ(t)) + F×h0×sin(φ(t)) (3.4)

where φ(t) is the phase of the GW phi(t) =
∫ t
t0
πfGWdt, h0+ and h0× the two

polarizations h0+ = h0
1+cos2ι

2 and h0× = h0cosι with ι as the angle between the
rotation axis of the source and the line of sight , and F+, F× are the beam-pattern
functions. The purpose is to compute the FT of h(t) and substitute it in Eq. 3.3.
Regarding the cosine and sine function for a frequency f0, their FT are

Y1(f) = δ(f − f0) + δ(f + f0)
2

Y2(f) = −j δ(f − f0) + δ(f + f0)
2

Thanks to the request formulated for TFFT to have the Doppler shift of the frequency
within one bin, (Section 2.1.1), the signal frequency can be accounted as constant.
For a finite length signal, the FFT is the convolution of the FT of the signal and a
rectangular window of length TFFT i.e.

Z(f) =
∫ +∞

−∞
Y (f ′) · sinπ(f − f ′)TFFT

π(f − f ′) df ′ (3.5)

Referring to Eq. 3.4, the FT of the cosine part cosφ(t) for a frequency bin fk is

Z1 = h0
2
sinπ(f − fk)TFFT

π(f − fk)

while for the sine sinφ(t)

Z2 = −j h0
2
sinπ(f − fk)TFFT

π(f − fk)
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Hence, the FT h̃(f) of h(t) is

h̃(f) ≈ TFFT
(F+A+ − jF×A×)2

2
h0
2
sinπ(f − fk)TFFT
π(f − fk)TFFT

(3.6)

Making the square modulus of h̃(f) and averaging all the quantities,
< F 2

+ >α,δ,ψ=< F 2
× >α,δ,ψ= 1

5 , < F+ · F× >α,δ,ψ= 0
< A2

+ +A2
× >cosι= 4

5
1
δf

∫ fk+ δf
2

fk− δf2

(
sinπ(f−fk)TFFT
π(f−fk)TFFT

)2
df = 2.4308

π

the Eq. 3.3 has then the explicit form of

< λ >α,δ,ψ≈
4h2

0
Sn(f)

2.4308
25π TFFT (3.7)

By equating Eqs. 3.2 and 3.7 one obtains the minimum detectable strain amplitude

h0 ≈
4.02
θ

1/2
thr

(
p0(1− p0)

p2
1

)1/4 1
N1/4

√
Sn(f)
TFFT

√
CRthr −

√
2 ercf(2Γ) (3.8)

This equation can be generalized noticing that it composed by three main factors:
h0(Sn, CR) = A(θ)B(N,Sn)C(CR). A(θ) contains only constants values once the
θthr is fixed for the search1, therefore it isn’t directly included in the h0 expression;
B(N,Sn) can be different for the run and for the detectors, indeed N is linked to the
observation time (Tobs = NTFFT ) and Sn is different for each of the two run O2, O3
and, considering the same run, can be higher for the less sensitive detector; C(CR)
depends on the Critical ratio chosen, in particular if CR = CRthr the resulting h0 is
the minimum detectable strain amplitude for a given run and detector, also known
as sensitivity. If CR = CRmax, then h0 is more representative of the Upper limit,
i.e. the maximum detectable strain. Fig. 3.1 shows the two sensitivity curves for
both the LIGO detectors (Hanford and Livingston) for O2 (red) and O3 (blue) with
Sn for its own detector/run.

1θthr is the same for O2, O3 and both the detectors.
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Figure 3.1. The sensitivity curves for the two LIGO detectors Hanford and Livingston for
the second and third run called O2 (red) and O3 (blue), respectively.

3.2 On the validity of the FH sensitivity formula
In this part of the work I used the standard four-bands division of the FrequencyHough
pipeline as reported in Table 3.1 in a spin-down range of [−1 · 10−8; 1 · 10−9] Hz/s.
As already discussed in Section 2.1.4 the Hough map are selected 20 candidates per
Hz and Sky position with a maximum number of 40 candidates (if there are selected
second strongest ones too) for each detector. In the Ranking step, the number of
the candidates is reduced to 2 for each 1/4 sub-interval of the full spin-down range
written above, resulting in a total number of 8 candidates every 0.1 Hz. The last
choice consists in the selection of the strongest candidate in each 1 Hz band which
will be subjected to the Follow-up. The detailed scheme of the FH pipeline used in
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B [Hz] TFFT [s]
1024-2048 1024
512-1024 2048
128-512 4096
10-128 8192

Table 3.1. The table summarizes the four band intervals B with their own TF F T .

given in Fig. 2.2
The candidates I started with are the surviving ones from the Ranking step.
As first purpose of this Chapter, I will show the results of the recalibrated sensitivity
respect to the Upper limit (UL) curve obtained from SIs of the observation run
called O2; while in the second part I will apply this validated method to define new
UL and sensitivity curves for the run O3 without the use of SIs. The UL curve
which I am referring to is obtained by injecting in each 1 Hz several sets of signals
(SIs) with fixed amplitude and random parameters generated in the time domain
and then converted in FFTs. After this first step, a specific function is called to
perform an analysis in which the candidates are selected, then another one finds the
coincidences and a third one ranks the candidates.
In order to obtain these plethora of curves, I will make use of Eq. 3.8 that here
takes the precise form of

hdet,run0,rec = hdet,run0,min

√√√√CRmeasured −
√

2 ercf(2Γ)
CRthr −

√
2 ercf(2Γ)

(3.9)

where h0,min is the one of Eq. 3.8, det is the detector (Livingston or Hanford),
CRmeasured is the Critical ratio, in each sub-interval of frequency, which satisfies
some requests (this will explained in detail in the next Section) from the O2 and O3;
CRthr = 5 is the one used to compute h0,min with Γ = 95%, Eq. 3.8. For CRmeasured
in O3, it was set a minimum CR CRthr = 3 in [10 − 128] Hz and CRthr = 5 in
[128− 2048] Hz for both detectors.
h0 depends also on the detector spectral density Sn - which changes from O2 to O3
and for each detector - therefore, following Eq. 3.8, here I recalibrated for CR and
Sn.

3.2.1 Testing the new sensitivity formula with O2 data

Starting from Eq. 3.8, in the code I work with the parameter CR and Sn. This
brings to Eq. 3.9 in which I take the CR-depending factor and divide it by
1/
√
CRmeasured −

√
2 ercf(2Γ), producing different curves according to what CR

takes the place of CRmeasured. Three cases are possible: CRmax, CRmin and CRmean
of each sub-interval (0.1 Hz or 1 Hz) of the full frequency range [10; 2048] Hz. After
having computed this for both the detectors, their sensitivity gets recalibrated with
the three CR possibilities. For example, for LIGO Hanford in the case of CRmax it
is
...
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sens_combined(:,4)=sens_temp(:,2).*sqrt(CRmeas-AA)/sqrt(CRUSED-AA);
...

where sens_temp(:,2) is the input the sensitivity of LH, CRmeas=CR_min_H,
CRUSED=5 and AA=-

√
2ercf−1(2Γ).

The next step is the extraction of the max, min and mean of hdet0,rec amongst the
detectors det = LL,LH from the ones just computed. These final recalibrated
sensitivities take the name from the combination of CR and sensitivity that have
been chosen. In the case of selection of the best sensitivity value among the two
computed with CRmax (Livingston and Hanford) it is min(hdet0,rec(CRmax)). Further
details on the algorithm are provided in Appendix A.

Fig. 3.2 shows the full frequency range [10; 2048] Hz of the four curves that
have been selected: the UL with SIs is represented by the red curve, whilst the
blue, magenta and the black ones are the recalibrated ones. The blue curve is
max(hdet0,rec(CRmax)) and it is the most conservative choice because it is composed
by the worst sensitivity amongst the ones of LIGO Hanford and LIGO Livingston
obtained with the highest CR of the 1 Hz interval (CRmax). A less conservative one
is the magenta curve, i.e. min(hdet0,rec(CRmax)), due to the choice to take the best
sensitivity instead. The black curve, i.e. max(hdet0,rec(CRmin)), is the result of the
worst sensitivity between the two recalibrated with the lowest CR of the interval
(minCR).

Figure 3.2. A full view of the three recalibrated and the UL curves. The formers
are in blue i.e max(hdet

0,rec(CRmax)), magenta i.e. min(hdet
0,rec(CRmax)), and black i.e.

max(hdet
0,rec(CRmin)) while the latter is in red.

Several zooms of peaks are reported in the following figures in order to show
the behaviours of the three recalibrated curves. It can been seen how in the
most conservative approach (blue curve) the sensitivity lays over the UL curve
whilst correctly following the peaks. Concerning the last interval of the four bands
subdivision [1024−2048] Hz, the UL has not been interested by an adequate number



3.2 On the validity of the FH sensitivity formula 47

of SIs, therefore it has a wider uncertainty about the value of the curve: its position
is switched with the blue curve, indeed, whilst the peaks are still followed in an
appropriate way by the most conservative approach. This last observation is well
illustrated in Fig. 3.4, Fig. 3.5 and Fig. 3.6.

Figure 3.3. The four curves in the first two frequency intervals [10; 128] Hz and [128; 512]
Hz. The most conservative approach (blue curve) lays on top of magenta and red curve
while the black one is at the bottom.

Figure 3.4. Focus in the last part of the third frequency interval [512− 1024] Hz and the
beginning of the fourth one [1024− 2048] Hz that shows the switch between the blue
and red curves due to the lack of adequate number of SIs for the UL in the last interval.
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Figure 3.5. Further focus of the curves. The switch occurred in the third frequency interval
still persists in the fourth.

Figure 3.6. A last zoom of the recalibrated and UL curves. The blue one follows the UL
curves at the best whilst the magenta one doesn’t have the same peak amplitude in
several cases.

The magenta curve, while following most of the UL peaks, doesn’t have the same
peak amplitude making it the second best conservative curve taken from CRmax.
For what concern the black curve, it lays on the bottom of the two recalibrated ones
and the UL curve hence our inferior limit. Its peaks are often upside-down (Fig.
3.5) but not always in correspondence (Fig. 3.6) of the UL ones. This happens due
to the definition of the CR itself. Recalling Eq. 2.8, in the frequencies interested
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by the noise peaks, the values of µ and σ grow; this could brings µ to be higher
of the number count n, returning a negative CR. By taking the worst sensibility
from CRmin, the reversed peaks are enhanced. If CR is not negative, it is anyway
reduced and the resulting worst curve doesn’t show evident peaks.
In conclusion, the UL lays between the three displayed recalibrated curves. If one
prefers to remain conservative, then the blue curve of Fig. 3.2 assumes the role
of the new UL, making the discussed method a new path to obtain the UL curve
without spending computational power in the SIs analysis. Fig. 3.7 represents the
error in % between the max(hdet0,rec(CRmax)) curve and the original UL; this value is
always under 20% with some negative peaks due to disturbances.

Figure 3.7. Error in % between max(hdet
0,rec(CRmax)) i.e. the alternative UL, and UL from

SIs. The switch at 1024 Hz discussed in the text appears in this plot too and it is visible
due to the persistence in having negative values of the % error.

These are the results with a step frequency of 1 Hz, but smaller steps can be used
to have an even more accurate recalibrated sensitivity curve.
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3.3 Application of the new method to O3 data
A slightly change respect to O2 is the preliminary threshold concerning the CR.
For O2 there were followed every candidated without any threshold on CR, but
for O3 it depends on the frequency interval: CR=3 for [10 − 128] Hz and CR=5
for [128 − 2048] Hz. This choice is due to the minimum CR followed during the
Follow-up step; it would be pointless to select a candidate knowing in advance that
it is going to be discarded later.
After having proved that max(hdet0,rec(CRmax)) and
max(hdet0,rec(CRmin)) define the interval in which the UL lays and having defined
their new roles, the first interesting result to show in this Section is a comparison
between O2 and O3 with these exact same two curves, Fig. 3.8. Here are reported
the two selected ones of O2 and the four curves of O3 for the two different values of
the frequency step in which is done the CR selection.

Figure 3.8. In this plot there are shown six recalibrated curves for max(hdet
0,rec(CRmax))

and max(hdet
0,rec(CRmin)). For O2 the frequency step is 1 Hz (blue and red curves) whilst

for O3 it is 1 Hz and 0.1 Hz (orange, purple and green, cyan respectively).

In Fig. 3.9 it is provided a first zoom in frequency to focus on the lowest sensitivity
values.
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Figure 3.9. Focus on the frequency interval in which the lowest values of the sensitivity
are reached.

By following the same approach and conclusion of the previous Section, O3 curves
max(hdet0,rec(CRmax)) for 1 and 0.1 Hz are the Upper limits of their own frequency
step.
A further focus on just O3 curves is useful to show the behaviour around the
peaks. As example, Fig. 3.10 follows the curves in a small frequency sub-interval of
[512− 1024] Hz. As expected, both of the 1 Hz and 0.1 Hz most conservative curves
i.e. max(hdet0,rec(CRmax)) show a peak whereas the other two max(hdet0,rec(CRmin))
don’t. Hence, the UL recovered from SIs would have a peak around the same
frequency as shown in Section 3.2.1 with O2.
As mentioned at the beginning of this Chapter, the work I’m presenting here
has brought a little contribution to the non-yet-published article All-sky search
for continuous gravitational waves from isolated neutron stars using Ad-
vanced LIGO and Advanced Virgo O3 data of the LIGO-Virgo-KAGRA
collaboration. In this article it is included the approved result of Fig. 3.11 that
concerns themax(hdet0,rec(CRmax)) and max(hdet0,rec(CRmin)) curves with frequency
step of 1 Hz. Here, the max(hdet0,rec(CRmax)) curve (in yellow) takes the name of
Upper limit while the max(hdet0,rec(CRmin)) (in purple) is the new sensitivity, i.e. the
lowest value that can be recovered - hence detected - from the data every 1 Hz.
On the other hand, while they could have been even more accurate results, the two
curves with frequency step of 0.1 Hz cannot be adequately discriminated from each
other, Fig. 3.12, therefore it’s safer to use the 1 Hz resolution for the definition of
the new UL and sensitivity. In the case of SIs every 0.1 Hz, the comparison would
surely have had a better outcome.
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Figure 3.10. The behaviour of the curves satisfies the expectations that are based on the
result obtained with the UL for O2, especially max(hdet

0,rec(CRmax)) for what concern
the peaks.

Figure 3.11. The two approved curves for O3 and the frequency step of 1 Hz. The most
conservative one, in yellow, has been defined the new UL for O3 whilst the purple curve
is the new sensitivity.
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Figure 3.12. The two curves for frequency step equal to 0.1 Hz have been discarded in the
final results because they are not well separated i.e. the UL and sensitivity curves can’t
be properly defined.

Figure 3.13. The two curves for a frequency step of 1 Hz in the same frequency range of
Fig. 3.12. In this case, a precise distinction can be made.
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Chapter 4

A new algorithm

In the previous Chapter I used Candidates and sensitivities computed from the
FH pipeline with the standard four-bands division [10 − 128] Hz, [128 − 512] Hz,
[512−1024] Hz and [1024−2048] Hz. With this method, four SFDBs are created and
then fed to the pipeline as already discussed in Section 2.1. The aim of the current
Chapter is to switch from the database input SFDB to BSD while keeping the
remaining part of the FH algorithm unchanged. This would increase the sensitivity
of the code especially for the lowest frequency of each of the four intervals, who were
in fact penalized by the choice of the coherence time TFFT , Section 2.2.2.
In Section 4.1 I will discuss about how the BSD was implemented in the FH pipeline,
and show Hough maps after having applied different Doppler correction methods. In
Section 4.1.2 there will be faced the limits of the TFFT length respect to the optimal
one by showing the behaviour of the Critical ratio CR as its function.

4.1 BSD as new input in the FH algorithm
In this first part of the Chapter, the purpose was the implementation of the BSD
framework instead of the old SFDB. An important difference from this two database
is the tunability of the coherence time TFFT ; for SFDB it is fixed for a large interval
of frequency penalizing the lower frequencies of each band. The request for the TFFT
is that the Doppler effect has to be contained in a frequency bin δf : this suits the
higher frequency of each interval, but for the lower ones the bin is even too large.
Then, with an appropriate TFFT , which is greater that the standard one, δf would
be smaller with an improvement of the analysis for the aforementioned frequencies.
In this thesis the implementation was compared for three Doppler corrections: hfdf ,
heterodyne and in absence of correction (none). The first correction is the one
actually used in the FH pipeline also in the All-sky searches for which the second one
is inapplicable because it needs the frequency of the source to be known. Further
details on the code are provided in Appendix B.1.
The hfdf Doppler correction method has already been discussed in Section 2.1.2.
For what concerns heterodyne correction, it has the form of [30]

y(t) = [h(t) + n(t)]e−iΦcorr(t)
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where h(t) and n(t) are the GW signal and the noise, respectively, and Φcorr(t) is
the total phase correction (Doppler + spin-down)

Φcorr(t) = φd(t) + φsd(t)

where
φd(t) = 2π

∫ t

t0
f0(t′)~v · n̂

c
dt′ ≈ 2π

c
pn̂(t)f0(t) (4.1)

φsd = 2π
∫ t

t0

[
ḟ0(t′ − t0) + 1

2 f̈0(t′ − t0)2 + ...

]
dt′

As one would expect from the hfdf, after the heterodyne correction the signal should
appear monochromatic, except for residual modulations. In our case, only the φd(t)
Doppler correction is performed.

4.1.1 BSD and the Doppler-correction methods

In this Section I show and discuss the results concerning the two Doppler correction
methods, hfdf and heterodyne, thanks to the Hough maps computed with the BSD-
implementation in Section 4.1. It will be also provided the Hough map without any
correction (none) in order to show the impact of the corrections on the data. Some
examples will be provided by running the code for some known HIs whose TFFT still
belong to the standard four-bands division. From the HIs that are available, the
ones chosen as examples are, sorted by frequency: pulsar10, pulsar3, pulsar6 and
pulsar1. For each of the HIs, the Table 4.1 summarizes the frequencies computed in
the function together with the spin-down, the strain amplitude associated and the
TFFT of the SFDB. The two times at which the frequencies are calculated are the
BSD initial time tBSD and the Hough map initial time tH . It’s worth to notice that
the number of digits reported are not the same for all the HIs: this has been done
to underline the difference from f(tBSD) and f(tH) for each pulsar. Moreover, here
the initial time of the run and of the BSD coincide, hence only f(tBSD) is reported
to avoid redundancy; anyway, in general this is not always true. In this case, the
two times in the Table are: tBSD = 1/Apr/2019 00 : 00 : 00 and tH = 28/Sep/2019
20 : 22 : 15 (hence in the middle time of tBSD).

f(tBSD) [Hz] f(tH) [Hz] ḟ(tBSD) h0 TFFT [s]
pulsar10
pulsar3
pulsar6
pulsar1

26.332 26.331 -8.50·10−11 6.26·10−25 8192
108.8571593929 108.8571593927 -6.73·10−9 1.29·10−25 8192

145.445 145.340 -1.46·10−17 3.84·10−25 4096
848.937 848.932 -3.00·10−10 5.47·10−25 2048

Table 4.1. The pulsars with their frequencies at the BSD initial time f(tBSD) and Hough
map initial time f(tH) with. In the table are also reported the ḟ(tBSD) (since the time
of BSD coincides with the run initial time), the strain h0 and the standard TF F T for
the classic SFDB of the HI.

The first two HIs lie near the opposite extreme values of the first frequency band
which is [10 − 128] Hz; pulsar6 belongs to the second frequency band [128 − 512]
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while pulsar1 to the third one [512 − 1024] Hz. Here I present the pulsar Hough
maps for their standard TFFT , but the reason of their choice concerns specifically
the improvement that will be visible thanks to the gain in the CR with a different
TFFT , especially for the HIs with the lowest frequency of their own band.

(a) Hough map with hfdf correction. (b) x projection for the Hough map on the left.

(c) Hough map with heterodyne correction. (d) x projection for the Hough map on the left.

(e) Hough map without correction. (f) x projection for the Hough map on the left.

Figure 4.1. This collage gathers the three Hough maps for pulsar6. On the right of each
Hough map it is reported the projection respect to the Frequency axes. It’s clearly
visible the SI pulsar10 in the corrections thanks to the peaks in the number count whilst
it can’t be recognized in the last x projection.
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(a) Hough map with hfdf correction. (b) x projection for the Hough map on the left.

(c) Hough map with heterodyne correction. (d) x projection for the Hough map on the left.

(e) Hough map without correction. (f) x projection for the Hough map on the left.

Figure 4.2. This collage gathers the three Hough maps for pulsar3. On the right of
each Hough map it is reported the projection respect to the Frequency axes. The hfdf
correction gives the most clear signal while for heterodyne and the none corrections there
isn’t shown any dominant peak.
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(a) Hough map with hfdf correction. (b) x projection for the Hough map on the left.

(c) Hough map with heterodyne correction. (d) x projection for the Hough map on the left.

(e) Hough map without correction. (f) x projection for the Hough map on the left.

Figure 4.3. This third collage gathers the three Hough maps for pulsar6. On the right of
each Hough map it is reported the projection respect to the Frequency axes. Both hfdf
and heterodyne corrections shows a distinct color from the background that indicates
the pulsar6 coordinates. In hfdf it is clearly visible a peak in the x projection.
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(a) Hough map with hfdf correction. (b) x projection for the Hough map on the left.

(c) Hough map with heterodyne correction. (d) x projection for the Hough map on the left.

(e) Hough map without correction. (f) x projection for the Hough map on the left.

Figure 4.4. This last collage gathers the three Hough maps for pulsar1. On the right of
each Hough map it is reported the projection respect to the Frequency axes. As can be
seen from the none correction, the signal would be absolutely invisible and surrounded
in the background; but thanks to the two correction, an evident peak appears in the x
projection.

The collages of Figs. 4.1, 4.2, 4.3 and 4.4 show the Hough map on the left with
their x projection on the right for the three corrections: hfdf, heterodyne and none.
The x projection is an histogram. The red cross that is present in all the Hough
maps stands for the expected pulsar position if updated at the time of the Hough
map which is in the middle respect to the BSD initial time. It can be found in the
pixel with the highest number count or in the one next to it: this is due to the
absence of the spin-down correction which makes the Doppler correction less precise;
the choice to overlook this parameter was due to the computational weight of the
code, but it can be changed if requested.
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nhfdf nhet2
pulsar10
pulsar3
pulsar6
pulsar1

1434.62 1430.21
637.51 535.79
240.52 221.83
5340.72 5068.83

Table 4.2. Here are reported the number counts n of the HIs for the two corrections
methods.

4.1.2 Limits of the TFFT length

The previous results concerned the standard coherence time. The BSD improvement
is the opportunity to change TFFT with the aim of finding the optimal coherence
time. With optimal coherence time I’m referring to the TFFT that gives the highest
CR for the chosen HI. This is extremely useful for the signals with lowest amplitude
because with the standard TFFT they could be difficult to identify - or worse: they
could be missed - in the analysis.
The standard values of the four-bands division are the nearest numbers in power
of 2 to the TFFT defined in Eq. 2.1. For example, in the [10− 128] Hz band from
the aforementioned equation it is TFFT ∼ 9723 s and the nearest power of 2 is
TFTT = 213 = 8192 s. Instead, for the optimal TFFT more variables are involved.
The approximations concern the frequency modulation formula [9]

f(t) = f0 −Asin(Ωrott+ φa − α) +Bsin(Ωorbt+ φb) (4.2)

where Ωrot and Ωorb are the sidereal and the angular orbital frequency respectively,
φa and φb constant phases, α the right ascension of the source and f0 the GW
frequency at the source. The orbital amplitude is

A = f0REΩorbcosφcosδ/c

where RE is the Earth radius, φ is the latitude of the detector and δ the declination
of the source.
The maximum sideral contribution to the Doppler is

a =
∣∣∣∣dfrotdt

∣∣∣∣
max

= A · Ωrot · cos(Ωrot + φa − α)|max (4.3)

the maximum value that a cosine function can assume is 1, hence cos(Ωrot + φa −
α)|max = 1

a = A · Ωrot = (f0REcosφcosδ/c) · Ωrot (4.4)

For the orbital modulation the amplitude is

B = f0RorbΩorb/c

whilst the maximum contribution

b =
∣∣∣∣dforbdt

∣∣∣∣
max

= B · Ωorb · cos(Ωorbt+ φb)|max (4.5)
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and, like before, cos(Ωorbt+ φb)|max = 1

b = B · Ωorb = (f0RorbΩorb/c) · Ωorb (4.6)

In order to have the Doppler modulation confined within a frequency bin, it has to
be

1
TFFT

> TFFT (a+ b)→ TFFT <

√
1

(a+ b)
The optimal TFFT is defined as

T optFFT =
√

1
(a+ b) (4.7)

The value of the optimal TFFT changes along with a and b, therefore with the
approximations one makes for these Doppler contributions. For example, the
rotational shift a can be taken into account while neglecting b, or it can be considered
the reverse case by taking b but not a. Here I am discussing about a specific source
and detector, but even these parameters can be generalized by setting cosδ = 1 for
the former and cosφ = 1 for the latter; with cosφ = cosδ = 1 at the same time, it is
computed the lowest optimal TFFT due to the maximization of the cosine functions.
By putting both of the cosines equal to 1 in Eqs. 4.3 and 4.5, I am taking the
minimum value amongst the possible optimal times1. In our case it is sufficient to
set this condition, but in order to be more precise there should be verified the actual
values that Ωrott+ φa and Ωorbt+ φb can assume and then take the maximum of
the full-arguments cosines.
Here below it is reported Table 4.3 which summarizes the three TFFT approxmations
(rotational, orbital, both) together with the standard one i.e. the coherence time
that comes from the SFDB. From this same table it can bee seen that, for the chosen
pulsars, the coherence time in the orbital approximation, i.e. T orbFFT , is the longest
one for every pulsar due to the fact that in these cases b < a (anyway, this is not a
rule).

f [Hz] T stdFFT [s] T opt,rotFFT [s] T opt,orbFFT [s] T opt,rot+orbFFT [s]
pulsar10
pulsar3
pulsar6
pulsar1

26.36 8192 24825.38 43794.09 21596.78
108.86 8192 11447.63 21550.17 10109.75
145.44 4096 13872.89 18437.24 11085.32
848.95 1024 4012.64 7716.21 3560.04

Table 4.3. This table summarizes the principal TF F T s taken into account in the code for
each pulsar.

In order to have an adequate understanding of the CR respect to the TFFT , a
number of point equal to 80 has been computed in addition to the three values of
the approximations; in these 80 points it is included the standard TFFT . The overall
number of TFFT s computed is 83 TFFT .
Here in the followings are reported the results for the pulsars for both the corrections:
hfdf and heterodyne.

1cosδ and cosφ are not equal to 1 here.
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(a) CR computed for different TFFT s for hfdf correction.

(b) CR computed for different TFFT s for heterodyne correction.

Figure 4.5. CR vs TF F T for pulsar10.
f(tBSD) = 26.33 Hz and ḟ(tBSD) = −8.50 · 10−11 Hz/s.



4.1 BSD as new input in the FH algorithm 63

(a) CR computed for different TFFT s for hfdf correction.

(b) CR computed for different TFFT s for heterodyne correction.

Figure 4.6. CR vs TF F T for pulsar3.
f(tBSD) = 108.86 Hz and ḟ(tBSD) = −1.46 · 10−17 Hz/s.
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(a) CR computed for different TFFT s for hfdf correction.

(b) CR computed for different TFFT s for heterodyne correction.

Figure 4.7. CR vs TF F T for pulsar6.
f(tBSD) = 145.44 Hz and ḟ(tBSD) = −6.73 · 10−9 Hz/s.
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(a) CR computed for different TFFT for hfdf correction.

(b) CR computed for different TFFT s for heterodyne correction.

Figure 4.8. CR vs TF F T for pulsar1.
f(tBSD) = 848.94 Hz and ḟ(tBSD) = −3.00 · 10−10 Hz/s.

In this context it is confirmed how the choice of the pulsars in Table 4.1 is coming
useful: thanks to pulsar10 and pulsar3 a direct comparison between the two extremes
point of [10− 128] Hz can be performed while pulsar6 shows the improvement in
the second frequency band and pulsar1 in the third one.
Figs. 4.5, 4.6, 4.7 show the CR values respect to TFFT with empty blue circles;
the filled ones are the TFFT from Table 4.3 with T stdFFT in black, T opt,rotFFT in red,
T opt,rot+orbFFT in yellow and T opt,orbFFT in dark green.
Starting from the first pulsar, i.e. pulsar10, it can been seen how for the two
corrections the behaviour of CR respect to TFFT is similar: T stdFFT is the first value
of the plot and, respect to the three approximations, gives the lowest CR for the first
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half of the interval; for pulsar10 the maximum CR can be found near T opt,rot+orbFFT

and T opt,rotFFT with a clear improvement respect to the CR for T stdFFT . After the
peak, the value of CR slowly decreases due to the excessive length of the TFFT : as
aforementioned in the previous Sections, the frequency bin is δf = 1

TFFT
, with the

request of the confinement of the Doppler effect within a bin. If TFFT becomes too
long, this request breaks down and the signal is distributed in more bins making the
corresponding CR lower.
For pulsar3 the two corrections show slightly different behaviours: for hfdf there is
a slow slope from the first TFFT value whilst in heterodyne the CRs form almost a
plateau. Respect to the comments about pulsar10, here there isn’t a clear distinction
amongst the CRs from the three approximations and T stdFFT ; this is can be accounted
as a proof of how the improvement in the TFFT value concerns mainly the lower
frequencies of the SFDB intervals.
A similar behaviour of pulsar10 is found in pulsar6: this HI is at the beginning of
the second frequency band [128− 512] Hz. As before, the CR assumes higher and
higher values as it approaches a TFFT near T opt,rot+orbFFT and T opt,rotFFT after which it
decreases.
As last HI there is pulsar1. For the heterodyne correction of this pulsar, more points
have been computed (160) in order to have an adequate understanding of the CR
trend until TFFT ∼ 30000 s. In fact, while the CRs after TFFT ∼ 5000 s rapidly
decrease for hfdf correction, they keep an almost constant value until TFFT ∼ 15000
s in the heterodyne. The trend is therefore slower, with a smaller slope respect to
the other Doppler correction. This is due to the fact that the for the heterodyne
the HI keeps being contained in the frequency bin for more TFFT s also thanks to its
spin-down. This occurs also in the other two available pulsars in the third band, i.e.
pulsar2 and pulsar9.
From the collection of figures reported and discussed above, it appears clear the

f [Hz] CRstdhfdf CRopt,rothfdf CRopt,orbhfdf CRopt,rot+orbhfdf

pulsar10
pulsar3
pulsar6
pulsar1

26.33 53.17 75.29 41.52 68.56
108.86 10.64 8.15 8.99 11.31
145.44 10.81 18.91 16.63 18.14
848.95 59.05 105.59 129.92 94.67

Table 4.4. The CRs associated to the four TF F T s for the hfdf Doppler correction.

f [Hz] CRstdhet CRopt,rothet CRopt,orbhet CRopt,rot+orbhet

pulsar10
pulsar3
pulsar6
pulsar1

26.33 53.06 77.34 66.43 72.01
108.86 4.33 8.25 8.45 17.06
145.44 8.37 16.41 13.28 14.19
848.95 59.05 105.59 129.92 94.67

Table 4.5. The CRs associated to the four TF F T s for the heterodyne Doppler correction.

improvement regarding the BSD database thanks to its tunable TFFT respect to the



4.1 BSD as new input in the FH algorithm 67

standard ones from the SFDB.
It is useful to recall that the Critical ratio, i.e. CR, is a statistical parameter whose
meaning is, given a number N of FFTs, to weight the number count of the Hough
map n respect to the probability that the associated pixel contains noise, Section
2.1.4 Eq. 2.8.
The role of changing the length of the TFFT is then to improve the CR due to the
different number N of FFTs that are constructed. Hence, whilst the number count n
can diminish due to the redistribution of the noise with the TFFT associated to the
highest CR, this former parameter is the one to take into account in the following
step of the analysis; therefore it is not a case that the next step of the FH pipeline
selects candidates respect to a CRthr.

(a) Hough map for TCRmax
FFT for hfdf correction.

(b) Hough map for TCRmax
FFT s for heterodyne correction.

Figure 4.9. Hough map for the TF F T which gives the maximum CR for pulsar10
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nstdhfdf nmaxhfdf nstdhet nmaxhet

pulsar10 1434.62 1091.09 1430.21 1013.20
Table 4.6. This table summarizes the number count n for the two corrections. For T std

F F T

the data are taken from Table 4.2, while the others are from TCRmax

F F T which gives the
highest CR. As discussed in the text, the parameter to take into account for the following
pipeline steps is the CR not n; hence while nmax

hfdf,het<nstd
hfdf,het, the signal is improved

because of the CR.
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Conclusions

The work of thesis is divided in two communicating halves. The first accomplishment
of this work was the computation of a new Upper limit (UL) and sensitivity curves
with the purpose of saving computational power in the future. This was necessary due
to the heavy old procedure that injected 100 SIs every 1 Hz for a fixed amplitude, and
then again for more different amplitudes. Thanks to the encouraging results obtained
with the comparison with O2, I produced for O3 an alternative UL curve that was
slightly overestimated respect to the real UL but still a valid result. Moreover, I
was able to define a O3 new sensitivity curve as well.
The second half of this thesis was focused on the implementation of a new framework
called Band Sampled Data (BSD) instead of the standard SFDB as input database
in the Frequency Hough (FH) pipeline. This approach gave to the lower frequencies
of the SFDB the right Doppler effect estimation: in the old database this effect was
in fact over-estimated. After the implementation, thanks to Hardware injections
(HIs), the code was tested in two Doppler corrections and in absence of any frequency
modulation: hfdf, heterodyne and no correction (none). This lead to a first comparison
between the three cases with their Hough maps, where the hfdf is the method
actually used in the FH pipeline. After that, the code run for several TFFT s for both
the corrections in order to see which one of them would have given the maximum CR
respect to the ones computed for the standard TFFT s. Thanks to this, it has been
proved the gain in the value of the Critical Ratio of the injected pulsars, especially
for ones with low frequencies respect to the upper frequencies of the old four band
division. This result makes valid the conclusion that the introduction of the BSD as
input can make possible a detection of a low-CR signal due to the enhancement of
the Critical ratio. This is surely a starting point to have an improved sensitivity
curve of the detectors as well. Beyond the work of this thesis, the following step
will be a comparison between the old SFDB framework and the new BSD in the FH
pipeline in the All-sky search in order to understand the details of the amelioration.
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Appendix A

New estimation algorithm

In this Appendix I will describe in detail the algorithm used for the sensitivity
recalibration.
The function I wrote is named funz_sens with the following form

[sens_combined]=funz_sens(Cand_all,run,f_step,sens) (A.1)

the input (Cand_all, run, f_step, sens) are

• Cand_all: a {1 × 4} cell array in which each cell contains the full band
candidates of the selected detector, i.e. for LIGO Hanford and Livingston:
Cand_all={Cand_HO2, Cand_LO2, Cand_HO3, Cand_LO3}
in the form of a [9,N] matrix Cand=[frequency; λ; β; spin-down; amplitude;
CR; δλ; δβ; type];

• run: the two run that are available are O2 and O3;

• f_step: the frequency step for the candidate selection;

• sens: the sensitivity, i.e. h0,min used for the recalibration, for example
sens=[frequency sensHanford sensLivingston].

while the output is sens_combined i.e. the recalibrated sensitivity that is given
as a [N,12] matrix of columns sens_combined=[freq, newsensH_max, CR_Hmax,
newsensH_min, CR_Hmin, newsensL_max, CR_Lmax, newsensL_min, CR_Lmin,
newsensHmean, CR_Hmean, newsensLmean, CR_Lmean].
These elements will be explained and discussed in the followings.
For what concern O2, the input of the function are

[sens_O2_combined]= funz_sens(Cand_all_freq,’O2’,fstepO2) (A.2)

where fstepO2 = 1 Hz but it is tunable. The choice relays on the step interval used
in the UL. The code operates as follows.
First, it is checked the existence of the frequency step as input: if it is not present,
the standard value of f_step = 1 Hz is taken. After that, for run O2 the sensitivity
input is loaded even if not explicitly given.
The core of the algorithm is the selection of the candidates of each detector
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which are within the frequency interval. The for cycle starts with f=10 Hz and
ends at f=2048 Hz accordingly to the FH pipeline, with step f_step, i.e. for
freq=10:f_step:2048. If the interval [frequency frequency+f_step] doesn’t involve
any candidate, hence it is empty, the cycle simply skips to the next one. If at least
one candidate is present, these operations are performed:

• minimum CR amongst the candidates of the interval
CR_min_H=min(CR_Htemp(6,kkHL))
CR_min_L=min(CR_Ltemp(6,kkHL));

• maximum CR
CR_max_H=max(CR_Htemp(6,kkHL))
CR_max_L=max(CR_Ltemp(6,kkHL));

• mean of all the candidates CR of the interval to compute a CR mean
CR_mean_H=mean(CR_Htemp(6,kkHL))
CR_mean_L=mean(CR_Ltemp(6,kkHL));

where CR_Htemp(6,kkHL) and CR_Ltemp(6,kkHL) are the two temporary arrays of
the i-th step and kkHL refers to the index candidates that are taken into account.
All of this is saved in the odd columns of sens_combined as anticipated before, and
the frequency is shifted to the middle frequency of the interval i.e. freq+f_step/2,
in order to simplify the identification to which frequency interval the stored CR
belongs. The even columns of the matrix are filled with the recalibrated sensitivities
that are computed as follows.
For example, the resulting sensitivity of the LIGO Hanford (LH) detector if the
minimum CR is used is
...
sens_combined(:,4)=sens_temp(:,2).*sqrt(CRmeas-AA)/sqrt(CRUSED-AA);
...

where sens_temp(:,2) is the input the sensitivity of LH, CRmeas=CR_min_H, CRUSED=5
and AA=-

√
2ercf−1(2Γ).

The function funz_sens with input and output written in Eq. A.2 is called in the
DO_PLOTs_CRNEW.m file in which is also loaded the Upper limit (UL) computed with
software injections (SIs).
For what concern the results of O3, the procedure is analog. Function funz_sens
takes the explicit form of

[sens_O3_combined]= funz_sens(Cand_all_freq,’O3’,fstepO3) (A.3)

where fstepO3=1, 0.1 Hz.
A slightly change respect to O2 is the preliminary threshold concerning the CR. For
O2 the threshold was set to 0.1, but for O3 it depends on the frequency interval:
CR=3 for [10− 128] Hz and CR=5 for [128− 2048] Hz.
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Appendix B

BSD in Frequency Hough

B.1 Implementation
The core of the new algorithm is the function bsd_2_hough.m which has the following
form
[hmap, job_info_s, pout, sky] = bsd_2_hough(bh, direct, Tfft, sd_lim,
patchon, freq_start, freq_step, ploton).
The input are

• bh: is the BSD and one of the output of another function called bsd_lego; this
function gets access to the data once the path is given. One can choose the
period length and frequency interval to be extracted as it has been discussed
in Section 2.2.1;

• direct: a struct that contains information about the pulsar;

• Tfft: is the coherence time;

• sd_lim: is the spin-down interval to be taken into account;

• patchon: can assume three values: 1, 0 and -1.
patchon=1 the hfdf Doppler correction is used (peaks shift, Section 2.1.2),
patchon=0 implies heterodyne Doppler correction while patchon=-1 leaves
the data uncorrected;

• freq_start: is used to plot the Peakmap and Hough map if patchon=1;

• freq_step: the frequency step of the two plots mentioned above;

• ploton: if ploton=1 the two plots are computed, otherwise the aren’t.

For the output it is

• hmap: is the Hough map in gd21 format file that, if plotted, shows the 2D
histrogram in the (f0, ḟ0) plane with a side colored-bar indicating the number
count n;

1A gd is a group of data defined by an abscissa and a single value; the gd2 format, also called
Data Map, is a gd with a two dimension abscissa and it is used for bi-dimensional data like the
time-frequency spectrum.
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• job_info_s: is a struct including several typologies of information;

• pout: this Peakmap file is given in the form of a [5, N] matrix, pout=[time;
frequency; amplitude; wien-nois; wien-nois_radpat];

• sky: is a struct that contains information about the point of the sky that is
going to be analyzed. The direct data are assigned to it in order to look at
its position.

The first step of the function is to assign some parameters of the direct to the sky
struct. Among all the assignations, the most important ones are the sky coordinates
(α, δ) and the frequency f0; in the current analysis the correction regarding the spin
down df0 isn’t performed, therefore it is set equal to zero for sky.

...
sky.a=direct.a;
sky.d=direct.d;
sky.f0=direct.f0;
sky.df0=0;
...

Then is checked the value of patchon in order to compute the Doppler correction
that has been given in the input

...
switch patchon
case 1
disp(’Using peaks correction (hfdf)’)
case 0
disp(’Using heterodyne correction’)
sky
bh=bsd_dopp_sd(bh,sky); %heterodyne correction
case -1
disp(’No correction’)
end
...

The case patchon=0 corresponds to the heterodyne correction which is computed with
the function bsd_dopp_sd. This typology of correction is suitable if the frequency
and position of the source are already known, hence it couldn’t be applied to our
All-sky search. In fact, the heterodyne correction is used here only to compare its
results with the hfdf which is the method actually used in the FH All-sky pipeline.
For this value of patchon, the correction is performed at this point of the code and
not after the construction of the Peakmap like in the hfdf case.
After having checked the correction to be applied, the Peakmap is computed with
the bsd_peakmap function and saved in tfstr whose name stands for time-frequency
struct
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...
tfstr=bsd_peakmap(bh,Tfft/dx);
...

where Tfft/dx is the length of the FFTs, with Tfft as the FFTs time duration and
dx as the sampling time. In this function, θthr = 2.5.
The peaks are then extracted from the struct and saved in a new variable
...
peaks=tfstr.pt.peaks;
...

In order to obtain the velocities for the hfdf Doppler correction of the Peakmap,
the function interp1 is called thrice in the code. This function computes the three
components of the velocities vx_bsd_peaks, vy_bsd_peaks and vz_bsd_peaks
associated to the peaks of the Peakmap stored in tfstr.pt.peaks(1,:) from the
velocities sampled in job_info_s.bsdcont.v_eq(:,i) with i = 1, 2, 3 for the x, y
and z component at time t_mjd. By using a simplified notation, Vq = interp1(X,
V, Xq) one can say that, from the values of X and V, the function interp1 interpolates
the values Vq associated to Xq.
...
vx_bsd_peaks=interp1(t_mjd,job_info_s.bsdcont.v_eq(:,1),unique(tfstr.pt.peaks(1,:)));
vy_bsd_peaks=interp1(t_mjd,job_info_s.bsdcont.v_eq(:,2),unique(tfstr.pt.peaks(1,:)));
vz_bsd_peaks=interp1(t_mjd,job_info_s.bsdcont.v_eq(:,3),unique(tfstr.pt.peaks(1,:)));

Once the components are given, they are stored in the [3, N] matrix velpos and
assigned to the job_info_s struct
velpos=[vx_bsd_peaks;vy_bsd_peaks;vz_bsd_peaks];
...
job_info_s.velpos=velpos;

At this point of the code it is checked again which one of the correction method has
been given as input. If patchon=1 the function hfdf_patch is called and it returns
the peaks corrected (pout) after having taken the uncorrected ones (peaks) and the
velocities needed for the correction (job_info_s). In the case of patchon=0, the
correction has already taken place in the first switch patchon, hence the corrected
peaks pout are simply equal to peaks. If patchon=-1, pout corresponds to the
uncorrected peaks.
switch patchon

case 1
[pout,job_info_s_,checkD]=hfdf_patch(peaks,job_info_s,patch);

case 0
pout=peaks; %heterodyne correction

case -1
pout=peaks; %no correction

end
...
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It is now possible to compute the Hough map

hmap=bsd_hough_compile(4,pout,job_info_s,Tfft);

which is plotted if ploton=1 together with the corrected Peakmaps

if ploton==1

k=find(pout(2,:)>=freq_start & pout(2,:)<= (freq_start+freq_step));
plot_triplets(pout(1,k),pout(2,k),pout(6,k))

plot(hmap)

else
end

In order to make a comparison between the two Doppler correction and the none,
the function bsd_2_hough is called thrice The explicit forms of the two corrections
are
[hmap_hfdf,job_info_s_hfdf,pout_hfdf]=bsd_2_hough(bh,direct,Tfft,sd_lim,1,freq_start,freq_step)

[hmap_het2,job_info_s_het2,pout_het2]=bsd_2_hough(bh,direct2,Tfft,sd_lim,0,freq_start,freq_step)

[hmap_none,job_info_s_none,pout_none]=bsd_2_hough(bh,direct,Tfft,sd_lim,0,freq_start,freq_step)

The input sd_lim can be either given or not because it can be defined after having
taken the pulsar spin-down sd

...
T_obs=n_gd(bh)*dx_gd(bh);
df_bin=1/(Tfft*T_obs);

if ~exist(’sd_lim’,’var’)

sd_lim=[sd-51*df_bin sd+10*df_bin]

end

Where T_obs is the observation time and df_bin the spin-down length. The definition
of df_bin can be recovered from Section 2.1 in which δf = 1/TFFT therefore, by
having Kḟ = 1, it is δḟ = δf/Tobs = 1/Tobs · TFFT . The coefficients of df_bin are
chosen accordingly to a compromise between the length of the spin-down bin and
the time needed for the code to be run.
The two Doppler corrections get fed with the same input, except for patchon and
direct. hfdf correction doesn’t need any input frequency in order to correct the
Peakmap due to its simple shifting technique whereas the heterodyne does, hence
the pulsar frequency in the database has to be updated respect to the BSD initial
time t0: direct2 implies this additional step
...
cont=cont_gd(bh);
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t0=cont.t0;
direct2=new_posfr(direct,t0);
...

After that, the corrected Peakmaps and the Hough maps are returned as output.

B.2 CR for several TFFT

In order to find this optimal coherence time, I wrote another function named
comparison_hfdf_bsd called in a for cycle that runs over several TFFT values. As
already said in the main text, the optimal coherence time is the TFFT that gives the
highest CR for the chosen HI.
The function comparison_hfdf_bsd has the form of
[CR_hfdf, CR_het2, hmap_hfdf, hmap_het2, freq_hfdf, freq_het2,
cand_hfdf, cand_het2, direct2, direct_hough, sd_het2, sd_hfdf] =
comparison_hfdf_bsd(bh, pul, freq_start, freq_step, kcand, Tfft, sd_lim).
Several of the input have already been explained for bsd_2_hough; the only two
different are

• pul: corresponds to direct of bsd_2_hough;

• kcand: is the number of the divisions of the selected frequency interval.

The output are

• CR_hfdf, hmap_hfdf, freq_hfdf, cand_hfdf, sd_hfdf: as it will be ex-
plained later in detail, it is possible to select the strongest candidate (CR_hfdf)
in each sub-band of cand_hfdf defined by kcand and to save the corresponding
candidate frequency freq_hfdf together with its spin-down sd_hfdf. These
output are repeated for the heterodyne correction with _het2 instead of _hfdf;

• direct2: is the pulsar updated at the beginning time of BSD;

• direct_hough: is the pulsar updated at the beginning time of the Hough map.

The first lines of this function are the same as the ones written in the previous
Section: it is computed the sd_lim and the pulsar is updated to the BSD initial
time (direct2); then bsd_2_hough is called twice, once for each of the two Doppler
corrections.
The following step is the construction of the [9,N] candidates matrices (cand_hfdf
and cand_het2) thanks to the bsd_cand_compile

...
[cand_hfdf,job_info,checkF]=bsd_cand_compile(hmap_hfdf,job_info_s_hfdf,kcand);
[cand_het2,job_info,checkF]=bsd_cand_compile(hmap_het2,job_info_s_het2,kcand);
...
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The role of kcand can be explained with this simple example: if kcand=10, then
the frequency interval given as input will be divided in 10 sub-bands from which it
is selected the strongest candidate - or the strongest two.
The purpose is to recover the SI and store its corresponding CR, therefore it is
requested to find the nearest candidate i.e. the one with the minimum distance
respect to the frequency and spin-down of the HI. This is done with the pulsar
updated to the starting time of the Hough map which is called direct_hough be
cause the candidates are extracted from it
...
deltaf_hfdf=1/Tfft;
deltasd_hfdf=deltaf_hfdf/T_obs;
d_hfdf=[];
d_het2=[];
for i=1:length(cand_hfdf(1,:))

d_hfdf(i)=sqrt(((cand_hfdf(1,i) - direct_hough.f0)/deltaf_hfdf)^2+
((cand_hfdf(4,i) - direct_hough.df0)/deltasd_hfdf)^2);
end
[value_1,col_1]=min(d_hfdf(:));
CR_hfdf=cand_hfdf(6,col_1);
freq_hfdf=cand_hfdf(1,col_1);
sd_hfdf=cand_hfdf(4,col_1);

deltaf_het2=1/Tfft;
deltasd_het2=deltaf_het2/T_obs;

for j=1:length(cand_het2(1,:))
d_het2(j)=sqrt(((cand_het2(1,j) - direct_hough.f0)/deltaf_het2)^2+

((cand_het2(4,j) - direct_hough.df0)/deltasd_het2)^2);
end
[value_2,col_2]=min(d_het2(:));
CR_het2=cand_het2(6,col_2);
freq_het2=cand_het2(1,col_2);
sd_het2=cand_het2(4,col_2);

The differences d_hfdf and d_het2 have the same form of the one defined in Section
2.1.4 and they can be easily displayed in the generic form of

d =
√
k2
f + k2

ḟ
(B.1)

where

k2
f =

(
fcand − fdirect(tHough)

δf

)2

k2
ḟ

=
(
ḟcand − ḟdirect(tHough)

δḟ

)2
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The results of the previous Section regarded the standard four-bands division,
therefore the TFFT s in input were not optimized for the HIs. Hence, the purpose
here is to find the value of TFFT which gives the maximum CR, i.e. the higher
Signal to Noise ratio (SNR), for the pulsars chosen before.
In order to find the optimal TFFT value the comparison_hfdf_bsd function needs
to be called in a for cycle as aforementioned. This is done in the CRvsTFFT.m file.
First, it is asked which pulsar has to be taken as input in order to acquire its sky
coordinates (α, δ), the frequency and the spin-down. After that, the run and the
detector are selected. In the current case it is taken the O3 run of the LIGO Hanford
detector, i.e. run=O3LH. Moreover, the pulsar of the database has to be updated at
the detector initial and final observation time, the frequency interval [f_initial
f_final] and the step f_step are set soon after as the number of sub-division, here
called n_cand.
Several values of what is called tfft0_optimal are possible according to which
approximation one decides to consider. In the main text there have been explained
the different approximations used to define three principal optimal TFFT s. Here
more details on the code are given. In the function CRvsTFFT.m there are first
defined the constants useful for the approximation definitions

c=299792458; % light
R0orb=149597870700; % UA
Om0orb=2*pi/(365.256363051*86400); % 1/year
vc=R0orb*Om0orb/c;
R0=5.5e6; % rotational radius at Livingston (lower latitude)
SD=86164.09053083288; %sidereal day
Om0=2*pi/SD;

and then the detector plus the contributions of Eqs. 4.4 and 4.6

det=ligol;

A=frequency*R0*Om0*cosd(phi)*cosd(delta)/c;
B=frequency*R0orb*Om0orb/c;
a=A*Om0;
b=B*Om0orb;

The specific choice of det=ligol, that is the LIGO Livingston detector, corresponds
to take the worst latitude between the two LIGOs that is the the most pessimistic
situation.
The first possible T optFFT is the one obtained by considering only the rotational
contribution, i.e. a in Eq. 4.4.

tfft0_optimal_rot=1/sqrt(a);

This is equivalent to the TFFT computed for the pulsar frequency in [12] in which it
is also found the equivalence between the definition used in the code and the one of
Eq. 2.1, i.e.

TFFT = TE

√
c

4π2fRE
≈ 1.1 · 105

√
f

[s] (B.2)
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here Ωrot = TE√
4π2 and cosδ = cosφ = 1.

The second possibility is the orbital contribution only, i.e. b in Eq. 4.6

tfft0_optimal_orb=1/sqrt(b);

The third and last one includes both contributions

tfft0_optimal_rotorb=1/(sqrt(a+b));

Other 79 values of TFFT s are generated in order to have an adequate understanding
of the CR trend
...
upper_interval=max([tfft0_optimal_rot,tfft0_optimal_rotorb,tfft0_optimal_orb]);
tfft_step=linspace(T_FFT,2*upper_interval,80);
...

Even if it has been proved that for the HIs chosen T opt,orbFFT >T opt,rotFFT ,T opt,rot+orbFFT , the
interval is computed from T stdFFT to the double of the highest amongst the three
approximations just in order to be sure to have a sufficient number of points after
the resulting maximum TFFT for a generic signal.
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