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Abstract

In this thesis I present a new approach to the search data analysis for continuous
gravitational waves from asymmetrical rotating neutron stars, using the high parallel
computing efficiency and computational power of the modern GPUs. Porting
the Hough transform (core of the continuous waves analysis) on the high-level
TensorFlow framework, I tested the new code on real data from the O2 run of the
LIGO gravitational interferometers. It has been carried out an analysis directed
on the Galactic Center region, where a large population of unseen neutron stars
is expected. I performed the same procedures of an all-sky search with similar
parameters and thresholds, and using a single GPU I obtained results with a factor
20 speed-up with respect to an analogue CPU multicore system. This demonstrate
that the GPU programming with a general purpose high-level framework grants
a significant improvement of the performance of the analysis done, opening new
perspective on the search sensitivity on future analysis with a wider parameter
space.
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Introduction

In September 2015 the first gravitational-wave signal has been detected by the
two LIGO gravitational interferometers. It was a transient signal from a binary
black-hole coalescence, and since then other signals of the same class have been
detected, with the birth of Multi-messenger astrophysics.

Another important class of signals are the continuous waves from compact stars
which rotate asymmetrically with respect to the rotation axis. The search of such
signals is even more challenging mainly because they are much fainter than the
coalescences. Moreover, if the sky position of a sources is unknown, one has to face
that the continuous nature of the signal means that the characteristic frequency
is modulated by the Doppler effect due to the motion of Earth. Indeed, while the
number of neutron stars observed by electromagnetic emission is lesser than three
thousands, in our galaxy it is expected a population of about 109 unseen objects.
Since, in principle, a fraction of them could emit gravitational waves within the
sensitivity band of the detectors, the search for continuous waves is split in two
main classes (plus some intermediate cases): coherent searches on known neutron
stars and “blind” searches over the whole sky, where the parameters of the sources
are unknown.

The main challenge in the all-sky search for continuous gravitational waves
is the need, trying to extract a signal from the data, to face the extremely high
computational cost necessary to inspect the source parameters. For this reason
hierarchical analysis pipelines are developed, with the intent to reduce the compu-
tational cost trying to contain the search sensitivity loss. Nevertheless, the analysis
still are very challenging from a computational point of view, and for this reason the
fast evolution of the parallel computing on GPU appears promising, with devices
more and more powerful and frameworks which show an increasing efficiency in the
use of such devices.

The work I present in this Thesis is then organized as follows:

In chapter 1 the fundamentals of the theory of gravitational waves are summa-
rized, explaining how the non-linear Einstein field equation is approximated
using a perturbative approach: a variation of the field is seen as a little
perturbation of the background metric and a tensorial linear field equation is
extracted for the propagating wave. We’ll see then how a gravitational wave
induces a geodesic deviation, which results in a variation of the coordinates
separation between two points in the manifold according to the wave polar-
ization, suggesting how to detect a gravitational signal. Finally some classes
of sources are treated, presenting the respective characteristic waveform and
the amplitude we expect.

v



vi INTRODUCTION

In chapter 2 we’ll discuss the detection of gravitational waves. At first are
presented how a gravitational interferometer works, referring to the current
Earth based detectors, explaining how the sensitivity curves are formed.
Subsequently we’ll see the data analysis procedures used to see faint signals
in a large noise. A particular focus is dedicated to the analysis pipeline used
to the continuous waves search.

In chapter 3 I show the focus of my Thesis work, describing firstly the fundamen-
tals of the GPU computing and presenting a very efficient high level framework,
usable for a wide variety of purposes with the GPUs: TensorFlow. Afterward
I explain in details the Frequency-Hough transform, which represents the
heavier computational part of the continuous waves pipeline analysis. Indeed,
i have used TensorFlow to port the Frequency-Hough transform on GPU. A
full comparison between the original and the GPU implementation of the soft-
ware has been done, showing a significant speed-up of this part of the analysis,
around a factor of 20. To probe the actual parallelism efficiency of the GPU
code i performed a series of benchmark varying the search parameters. Finally,
to apply the developed code, I used the data from the O2 run of the LIGO
gravitational interferometers to perform an analysis over an interesting region
of the sky around the Galactic Center, where a large population of unseen
neutron star is expected to exist. This is the first Galactic Center search done
with LIGO O2 data and the resulting upper limits are significantly better
then the past searches. With the reduced computational cost obtained, it is
possible to expand the parameter space of the analysis, in order to increase
the probability of a detection.



Chapter 1

Theory of gravitational waves

Gravitational waves are a phenomenon described by Albert Einstein within Gen-
eral Relativity theory (Einstein, 1916, Einstein, 1918) as perturbations of space-time
generated by a non stationary gravitational field. According to Einstein’s equations,
the tensor that describes the gravitational field is the metric, then gravitational
waves are metric waves: they propagate geometry variations in spacetime, and
consequently the proper distance between spacetime points changes in time.

A way to describe the propagation of gravitational waves is the perturbative
approach, which starts from a known exact solution of Einstein’s equations. For
this reason it is necessary a brief exposition of some useful elements in the theory
of General Relativity (Ferrari and Gualtieri, 2014).

1.1 Riemann tensor

The Riemann tensor, called also Curvature tensor, describes the geometry of a
curved manifold. A gravitational field is a metric that changes the flat geometry of
the spacetime, expressed by the Minkowky metric, into a curved one. The Riemann
tensor is then an useful tool to describe that curved geometry. To define it we need
to know the equations of motion of a free particle in a gravitational field and how
the concept of parallel transport changes in a curved geometry.

1.1.1 Geodesic equations

Geodesic equations describe the motion of a particle under the exclusive action
of a gravitational field, when it is observed in an arbitrary reference frame.

For the sake of simplicity, we can write it as a consequence of the equivalence
principle mI ∝ mG. An equivalent statement of the principle is that in any point
of the spacetime, subject to an arbitrary gravitational field, we can always define,
at least locally, an inertial frame where physical laws take the same form prescribed
by Special Relativity, i.e. the form in absence of gravity. This frame is called
locally inertial frame, where the distance between two points must coincide with
the distance in the Minkowky’s metric:

ds2 = ηµνdx
µ
Mdx

ν
M ; ηµν = diag(−1, 1, 1, 1)

1
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In a locally inertial frame the equations of motion of the particle, subject only
to gravity, has to be d2xµM/dτ

2 = 0, with τ as the particle proper time.
Now let’s move in a frame which coordinates are expressed by an arbitrary

coordinate transformation in the Minkowsky metric: xµ = xµ(xµM). In this frame
the new distance can be expressed as

ds2 = ηαβ
∂xαM
∂xµ

dxµ
∂xβM
∂xν

dxν = gµνdx
µdxν ,

being gµν = ∂µx
α
M∂νx

β
Mηαβ the new metric tensor, and the equations of motion of

the particle, or geodesic equations become

d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0, (1.1)

where

Γαµν =
∂xα

∂xλM

∂2xλM
∂xµ∂xν

are called affine connections.
The additional term in 1.1, proportional to Γαµν , expresses how the gravitational

field acts on the particle motion, as seen by a frame different from the locally
inertial one.

1.1.2 Covariant derivatives

Let us consider a vectorV = V µe(α). Its derivative with respect to the coordinate
xν is

∂V

∂xν
=
∂V µ

∂xν
e(µ) + V µ∂e(µ)

∂xν
.

In a Minkowky spacetime we can impose that each basis vector in a point is equal
to the same basis vector in any other point, then it will be ∂νe(µ) = 0.

In a general spacetime, for the equivalence principle we can choose in any point
of the manifold a locally inertial frame, where the laws of physics are those of
Special Relativity, like in a Minkowky spacetime. Then the basis vectors in that
frame are constant.

Consider a certain point p of the manifold. When we make a coordinate
transformation Λ in p, from a general reference frame to the locally inertial one,
the old general basis vectors eα can be expressed in terms of the new Minkowskyan
basis vectors eMα′ , with the equation e(α) = Λα′

α e
M
(α′). Since eM(α′) are constant, then

∂βe(α) = (∂βΛα′
α )eM(α′); since ∂βe(α) is a vector, for any β, it can be shown that we can

express it as a linear combination of the basis vectors with the affine connections as
coefficients: ∂βe(α) = Γµαβe(µ). So Γµαβ expresses how the basis vector α changes,
with respect to the change of the coordinate β in a general non-Minkowskian
spacetime.

Then we can define the covariant derivatives of the components of the vector V :

∂βV = ∂βV
αe(α) + V αΓµαβe(µ) =

= (∂βV
α + V σΓασβ) e(α) =

= DβV
α · e(α)

(1.2)
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with DβV
α := ∂βV

α + V σΓασβ the covariant derivative of V α, which are then the
components of the vector ∂βV. Note that, since ∂µeM = 0, if we are in a Minkowsky
spacetime or in an inertial frame of a general spacetime, it will be DβV

α ≡ ∂βV
α

and then Γαµν ≡ 0.
If we have, for example, a (0 2) tensor Tµν , its covariant derivative will be

DαTµν = ∂αTµν − TσνΓ
σ
αµ − TµσΓσαν . It is useful to note that, since for the

principle of equivalence it is always possible to chose a coordinate system where
gµν ≡ ηµν , then

Dαgµν = Dαηµν = ∂αηµν − ησνΓσαµ − ηµσΓσαν .

But affine connections and the derivative of the metric tensor are always zero in
a flat metric, so we have Dαgµν = 0. We can solve this equation with respect to
Γαµν to explicit the relation between affine connections and metric tensor:

Γαµν =
gσα

2
(∂νgσµ + ∂µgνσ − ∂σgµν) (1.3)

1.1.3 Parallel transport

Parallel transport is defined as a translation where, for each infinitesimal dis-
placement, the displaced vector must be parallel to the original one, and must have
the same length.

In a flat space the displaced vector keeps the same direction, any path chosen.
Conversely in a curved geometry, e.g. on a sphere, when we parallel transport the
vector, it must always be tangent to the sphere. This means that in a closed path
a vector can change direction. Then on a curved manifold the parallel transport of
a vector depends on the path along which is transported and it is impossible to
define a globally parallel vector field.

To formalize this concept let us consider, in a locally inertial frame, a curve
with a function of the proper time parameter τ , describing for the sake of simplicity
the wordline of a massive particle. Let V be a vector field defined at every point of
the curve and U the vector tangent to the curve with components dxµ/dτ . If we
translate V parallel to itself its components do not change (dV µ/dτ = 0), but

dV µ

dτ
=
∂V µ

∂xνM

∂xνM
∂τ

= Uν∂νV
µ

and since we are in a inertial frame it holds Uν∂νV
µ = UνDνV

µ and we have the
covariant equation UνDνV

µ = 0. Covariant means that it holds in any reference
frame and we can explicit the invariant expression of the parallel transport of a
vector:

UβDβV
α =

dxβ

dτ
(∂βV

α + ΓαβνV ν ) =
dV α

dτ
+ ΓαβνV

νUβ = 0. (1.4)

We can note that when we parallely transport V along a curve in flat space we
have dV µ/dτ = 0; instead in a curved space the components of the vector change,
and the change is given by

dV µ

dτ
= −ΓµναV

αUν
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Now let us express the geodesic equations using covariant derivatives. Consider
a particle, subject at most to gravitational forces, with worldline xµ(τ) and four-
velocity (i.e. tangent vector to the worldline) Uµ = dxµ/dτ . Then geodesic equations
become

UαDαU
µ = 0

In this form geodesic equation is the equation of the parallel transport of the
tangent vector U along the geodesic. This means that geodesics are those curves
which parallely transport their own tangent vectors.

1.1.4 Curvature tensor

For the equivalence principle we can always find a reference frame where at
least locally gµν → ηµν and Γαµβ = 0. Consequently, since Γαµβ contains the first
derivative of the metric tensor (Equation 1.3), the latter will vanish. In order to
know if we are in the presence of a gravitational field, we need the second derivative
∂α∂βgµν .

The Curvature tensor, or Riemann tensor, is defined by the formula

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα − ΓµρβΓρνα + ΓµραΓρνβ (1.5)

Its definition comes from the idea that the information about the curvature of the
space must be contained in the second derivatives of the metric, and therefore in
the first derivative of the affine connections Γαµβ.

Using the concept of parallel transport, R tells us how does a vector change
due to the curvature of the spacetime, when it is parallely transported along a loop.
Consider an infinitesimal rectangular closed loop between the four points

(x1, x2) =


(a1, a2)

(a1 + δa1, a2)

(a1, a2 + δa2)

(a1 + δa1, a2 + δa2)

with δa1, δa2 → 0, and a generic vector V. When we transport it along the loop,
variation of its components δV µ will be

δV µ = δa1δa2 (∂2Γ
µ
ν1 − ∂1Γµν2 − Γµρ1Γ

ρ
ν2 + Γµρ2Γ

ρ
ν1)V

ν .

In the above formula, δa1 and δa2 are respectively the non vanishing components
of the displacement vectors δ~x(1), δ~x(2) along the direction of the basis vectors ~e(1),
~e(2). If we chose an orthonormal basis (~e(1,2) = δµ1,2) we can write the components
δxµ1,2 = δa1,2δ

µ
1,2 (δµν is the Kronecker delta). More generally, the equations of δV µ

are:

δV µ = δxβ(1)δx
α
(2) (∂αΓµνβ − ∂βΓµνα − ΓµβρΓ

ρ
να + ΓµαρΓ

ρ
νβ)V ν =

= δxβ(1)δx
α
(2)R

µ
ναβV

ν

We can recap now some properties of the Curvature tensor useful to understand
its meaning in the following sections of this chapter:
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• it gives information on the curvature of the spacetime, telling us how the
curvature affect the parallel transport of a four-vector;

• in flat spacetime δV µ = 0 along any closed loop (parallel transport doesn’t
change vectors in flat geometry), so Rµ

ναβ = 0 in any reference frame;

• as we said in section 1.1.2, in locally inertial frame the affine connections will
vanish, and if we use equation 1.3, Riemann tensor components will become

Rµ
ναβ =

1

2
gµρ (∂ν∂αgρβ − ∂ν∂βgρα + ∂ρ∂βgνα − ∂ρ∂αgνβ) .

Lowering the index µ:

Rµναβ = gµρR
ρ
ναβ = ∂ν∂αgµβ − ∂ν∂βgµα + ∂µ∂βgνα − ∂µ∂αgνβ.

That means in a locally inertial frame the non linear part of the Riemann
tensor will vanish;

• Rµ
ναβ is antisymmetric with respect to the exchange of β and α indices. In

fact interchanging δx(1) and δx(2), δV µ changes sign, because we change the
direction of the loop, e.g. from “clockwise” to “counterclockwise”. This means
that the sign of Riemann tensor can be chosen arbitrarily. Similarly since
Rµναβ = Rαβµν then Rµναβ = −Rνµαβ. Moreover, by symmetry properties, it
can be shown that Rµναβ +Rµβνα +Rµαβν = 0;

• Differentiating R in a locally inertial frame with respect to xρ one can obtain
the tensor equation

DρRµναβ +DβRµνρα +DαRµνβρ = 0. (1.6)

1.1.5 Geodesic deviation

By the Principle of equivalence, we can always choose a locally inertial frame
where affine connections Γαµν vanish and the metric is flat. Conversely, if the
spacetime is flat we can always define a coordinate system which reproduces in a
local frame the same effects of an arbitrary gravitational field. We can study the
motion of a single particle and gather information about the fictitious gravitational
field, but these measurements can’t allow to know whether the force is real or not.
This can be understood only by comparing the motion of close particles, or more
precisely comparing the behavior of close geodesics.

Let us consider two particles moving freely in a gravitational field respectively
along the geodesics xµ(τ) and xµ(τ)+δxµ(τ). If we define a set of geodesics xµ(τ, p),
with τ proper time or an affine parameter, and p the label of different geodesics, we
can write δxµ = ∂xµ/∂p. Defining the tangent vector to the geodesic uµ = ∂xµ/∂τ ,
it follows ∂uµ/∂p = ∂δxµ/∂τ .

Using these relations, we can compute the covariant derivatives of u along the
curve τ = const, whose tangent vector is δx:

δxµDµu
α =

∂uα

∂p
+ Γαµνu

νδxµ;
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similarly, the covariant derivatives of δx along the curve p = const (i.e. along the
geodesic) are

uµDµδx
α =

∂δxα

∂τ
+ Γαµνδx

νuµ.

If we use the second covariant derivatives of the vector δx along the curve
p = const, writing its first derivatives as Dτδx

α = uµDµδx
α, we can obtain the

equations of the geodesic deviation:

D2
τδx

α = Rα
βµνu

βuµδxν . (1.7)

It shows that the relative acceleration of nearby particles moving along geodesics
depends on the curvature tensor. Since Rα

βµν vanishes only when the gravita-
tional field is zero or uniform and stationary, the geodesic deviation contains the
information on the gravitational field in a given spacetime.

1.2 Einstein’s field equations

The equations of gravitational field are more complicated than the equations of
the electromagnetic field. The reason is that electromagnetic interaction is linear,
gravitation is not. For example, electromagnetic waves comes from the motion of
charged particles but the four-momentum isn’t source for the field.

With gravitational force, since E ∝ m, mass and energy can transform one into
another, so they are manifestation of the same physical quantity. Therefore if the
mass is source of gravitational field, so must be the energy: for example a mass
distribution in motion can irradiate gravitational waves, which carry energy which
is in turn source of gravitational field . This means that energy must appear in the
field equations as a source too. The field equations then can’t be linear.

However, for weak gravitational field and non-relativistic particles we shall
require that the new equations must reduce to the Poisson equation ∇2Φ = 4πGρ,
with ρ the mass-density distribution and Φ the Newtonian potential. Let’s start
then analyzing equations of the motion in the weak field limit.

1.2.1 Geodesics in weak field limit

Let us consider a non-relativistic particle in motion in a weak and stationary
(but not uniform) gravitational field. Be τ/c the proper time. Since vi = dtx

i � c,
then dτxi � cdτ t = dτx

0. Then we can write geodesic equations for Γµ00 as

d2xµ

dτ 2
+ Γµ00

(
dx0

dτ

)2

= 0.

The field is stationary, so ∂0g0ν = 0 and Γµ00 become

Γµ00 =
gµν

2
(2∂0g0ν − ∂νg00) = −g

µν

2
∂νg00

We have assumed a weak field, then we can choose a coordinate system such
that we can write the metric tensor as a small perturbation of the flat metric:
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gµν = ηµν + hµν , (|hµν | << 1)1. Retaining only the terms up to first order in hµν

Γµ00 ∼ −
ηµν

2
∂νh00

and the geodesic equations take the form

d2xµ

dτ 2
− ηµν

2
∂νh00

(
dx0

dτ

)2

= 0.

Since the field is stationary, then ∂0h00 = 0 and the temporal component of
the geodesic equation become d2x0/dτ 2 = 02. Regarding the spatial part, we
can rescale coordinates such that cdt = dτ ⇒ τ = ct and the equations become
d2~x/dτ 2 = ∇h00/2, where ∇ = (∂1, ∂2, ∂3).

The corresponding Newtonian equation is d2~x/dt2 = ∇Φ. Then we have
h00 = −2Φ/c2 and for a spherical field:

• h00 = −2GM/c2r ⇒ g00 = −(1 + 2Φ/c2)

• being Tµν the stress energy tensor, within the non-relativistic approximation
it becomes T00 ∼ ρc2, reproducing the Laplace equation and we can write
∇2g00 = −8πG/c4 · T00

The latter equation is a useful tool to build a Lorentz-invariant equation of the
field: it shows the form that the equation should have and gives a relation that the
field equation must satisfy in the weak field limit.

To build a covariant tensorial equation, we need then to construct a tensor Gµν

for arbitrary (non-stationary) energy-matter distribution described by Tµν , using
only gµν and its derivatives, such that the field equations takes the form

Gµν =
8πG

c4
Tµν . (1.8)

1.2.2 The field equation

In order to explicit the expression of the field equation, Gµν must satisfy a series
of requisites:

• like Tµν it must be a symmetric 2nd degree tensor and must satisfy a covariant
conservation law DµG

µν = 0;

• must contain only second order derivatives of the metric tensor, such that
the scale invariance of the Laplace equation is preserved, so must be linear in
second derivatives of g and must contain products of first derivatives up to
second order;

• must reduce to G00 ∼ −∇2g00 in weak field limit.
1In this approximation we consider only first order terms, so we can raise or lower indices

using the flat metric: e.g. hµν = gµρhρν ∼ ηµρhρν +O(h2µν).
2Remember that choosing ν = 0, the only non-zero component of the flat metric is η00.
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We have already seen a tensor that gives information about the gravitational
field and with the same linearity features with respect to gµν , the Riemann tensor.
But Rα

βµν is a (1 3) order tensor and doesn’t satisfy the covariant conservation
law. In order to obtain a 2nd order tensor from Rµ

ναβ we can contract it with the
metric, defining the Ricci tensor

Rµν := gρσRρµσν = Rρ
µρν ; (1.9)

contracting again we can obtain a scalar, the scalar curvature R = Rρ
ρ.

G is therefore defined as Gµν := C1Rµν + C2gµνR, which C1,2 coefficients have
to be determined. We have already satisfied linearity and symmetry conditions.

To satisfy the conservation condition we put DµG
µν = C1D

µν
R +C2gµνDµR = 03

and using Bianchi identities we obtain that the condition is satisfied if C2/C1 = −1/2,
so that Gµν becomes

Gµν = C(Rµν −
gµν
2
R)

We can find C using the weak field limit: since g ' η, we have Rii ' R/2 and
G00 ' C2R00. Computing R00, it must be C = 1 in order that G00 reduces to
−∇2g00. Therefore the Einstein field equations are those in Equation 1.8, with Gµν

called the Einstein tensor:
Gµν = Rµν −

gµν
2
R (1.10)

If we explicit Gµν using only the Ricci tensor, Einstein’s equations become

Rµν =
8πG

c4

(
Tµν −

1

2
gµνT

ρ
ρ

)
. (1.11)

In vacuum Tµν = 0⇒ Rµν = 04.

1.2.3 Gauge

Einstein tensor has 10 independent components, then Einstein’s equations are
10, one for each component. But these equations are not independent, because the
Bianchi identities imply DµG

µν = 0, which in turn implies 4 relations that G must
satisfy. So we have only 6 independent equations with 10 unknown functions.

This means that we have 4 degrees of freedom, which derive from the freedom
in the choice the coordinate system. This means that the solution gµν of the
Einstein’s equation isn’t uniquely determined, but only up to an arbitrary coordinate
transformation xµ

′
= xµ

′
(xµ). When we choose a gauge, the four degrees of

freedom are bounded and the symmetry disappears. While in the electromagnetic
interaction we have only one gauge degree of freedom, in gravity instead we can
have 4 independent gauge choices.

The harmonic gauge is an useful example: Γρ = gµνΓρµν = 0.

3Remember that Dµg
µν = 0, always.

4Note that while Ricci tensor vanishes in vacuum, Riemann doesn’t, unless gravitational field
is null, or constant and uniform.
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1.3 Perturbative approach to gravitational waves
Be gµν a (constant) known exact solution of Einstein’s equation. Let us assume

that at least in a certain reference frame exists a small perturbation hµν such that
|hµν | << |gµν | for each µ, ν. So we have a metric tensor gµν = gµν + hµν . With
this metric, the stress energy tensor too will be the sum of an unperturbed term
and a perturbation: Tµν = T µν + T pertµν .

Computing Γαµν for the perturbed metric, with terms up to order O(h2) we
have

Γαµν(g) = Γαµν(g) + Γαµν(h) +O(h2),

with
Γαµν =

1

2
gσα (∂νgσµ + ∂µgνσ − ∂σgµν)

and, keeping only the terms at first order in h,

Γαµν(h) =
1

2
gσα (∂νhσµ + ∂µhνσ − ∂σhµν) +

+
1

2
hσα

(
∂νgσµ + ∂µgνσ − ∂σgµν

)
+O(h2)

We assumed g to be an exact solution of Einstein’s equation in vacuum: Rµν(g) =
8πG/c4

(
T µν − gµνT/2

)
. Therefore when we substitute Γαµν(g) = Γαµν(g)+Γαµν(h)

described above we have

Rµν(g) = Rµν(g) +Rµν(h),

where Rµν(g) is known and where the Ricci tensor for the perturbation, Rµν(h),
retaining only first order terms, reduces to

Rµν(h) =
8πG

c4
(T pertµν +

1

2
gµνT

pert). (1.12)

These are the Einstein’s equations for gravitational waves, described as small
perturbations of the background metric. Note that they are linear in hµν .

This approach works well in many situations, since gravitational waves are often
very faint. Nevertheless, it can’t fit in strong gravity conditions, when gravitational
waves can’t be treated as a small perturbation.

1.3.1 Propagation of metric as a wave

Let us consider a perturbed metric gµν . Defining the unperturbed one gµν ≡ ηµν
and the small perturbation hµν , we can write gµν = ηµν + hµν . Since Γαµν(gµν =
ηµν) = 0, the affine connections are

Γαµν =
1

2
ηαρ(∂µhρν + ∂νhµρ − ∂ρhµν) +O(h2).

The wave equations will be then:

Rµν(g) = Rµν(h) = ∂αΓαµν − ∂νΓαµα =

= −1

2

[
�flathµν −

(
∂λ∂µh

λ
ν + ∂ν∂λh

λ
µ − ∂µ∂νhλλ

)]
=

=
16πG

c4

(
T pertµν −

ηµν
2
T pertλ
λ

)
,

(1.13)
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where �flat = ηµν∂µ∂ν is the D’Alambertian in flat spacetime.
The solutions of this equations are not uniquely determined. By the gauge

symmetry any coordinate transformation on a metric tensor, solution of the equa-
tions above, is still a solution. But since we are in the weak field limit (i.e. small
perturbations of the flat metric), we can make only transformations which preserve
the condition |h′µν | ∼ |hµν | � 1.

It’s convenient then to choose a coordinate system such that the harmonic gauge
condition is satisfied (gµνΓρµν = 0). In this way the Einstein’s equation for the
gravitational waves can be simplified: the harmonic gauge condition is equivalent
to the expression ∂µhµν = ∂νh

µ
µ/2, and if we impose it in this form in Equation

1.13, we’ll get a relation in the form of a wave equation (to hereafter T = T pert):

�flathµν = −16πG

c4
(Tµν −

ηµν
2
T λλ ),

If we define the tensor h̃µν := hµν − ηµνhλλ the two conditions will become{
�flath̃µν = −16πG

c4
Tµν

∂µh̃
µ
ν = 0

(1.14)

and as outside the source (i.e. in vacuum) Tµν = 0, then �flath̃µν = 0.
Since propagation of gravitational waves in vacuum is linear, it can be expressed

as superposition of plane waves. The simplest solution is a monochromatic plane
wave h̃µν = <[Aµνe

ikx], with the polarization tensor Aµν and the wave vector
k = (ω/c,~k). In this form we can see that the harmonic gauge condition implies a
transverse wave. In fact if we substitute this solution in the gauge condition we
have

ηµα∂µAανe
ikx = 0⇒ ηµαAανkµ = 0⇒ kµA

µ
ν = 0.

This means that the wave vector is orthogonal to the polarization tensor, then the
wave is transverse.

If we instead substitute the solution in the wave equation we get that the wave
vector k is a null vector

kµk
µ = 0⇒ ω = ck0 = c

√
kiki.

Thus a perturbation of a flat spacetime propagate as a transverse wave travelling
at speed of light. We have seen how Einstein’s theory of gravity predicts the existence
of gravitational waves.

1.3.2 TT-gauge

Consider a wave travelling on the x direction. Since gravitational waves are
transverse, equation 1.14 will be (∂2t /c+ ∂2x)h̃

µ
ν = 0. This implies that, respectively

for forward/backward waves, h̃µν = h̃µν (χ = t∓ x/c) and ∂µh̃µν (χ) = 0. If we explicit
and compute the derivatives with respect to t and x we’ll obtain h̃tν = ∓h̃xν .

Harmonic gauge condition is not sufficient to determinate the gauge uniquely.
It can be shown that it’s always possible to find an infinitesimal vector εµ, solution
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of the wave equation, whose four components can be used to set to zero four
components of h̃µν : {

h̃ti = 0 (i = x, y, z)

h̃yy + h̃zz = 0.

But we said that components along propagation direction are, in absolute value,
equal to the time components, so if the temporal components are 0 then the x
components will be zero too. The surviving components will be then h̃yy = −h̃zz,
and h̃yz = h̃zy because the symmetry of the metric tensor. Moreover, in this gauge
h̃µν = hµν , so we can write the metric tensor:

hµν =


0 0 0 0
0 0 0 0
0 0 h+ h×
0 0 h× −h+


If we write hµν as a superposition of two plane waves, we’ll get the two polariza-

tion tensors, which describe the two polarization states, called + and ×:

A+
µν ∝


0 0 0 0
0 0 0 0
0 0 +1 0
0 0 0 −1

 , A×µν ∝


0 0 0 0
0 0 0 0
0 0 0 +1
0 0 +1 0


In conclusion, a gravitational wave has only two degrees of freedom, which

correspond to the two possible polarization states. The gauge in which this is
clearly visible is called TT-gauge, where TT refers to the fact that in this gauge
the metric tensor is traceless and has non-zero components only in the transverse
directions with respect the propagation direction.

1.3.3 Effects of GW on motion

For the equivalence principle, it’s not possible to study the effect of a gravitational
wave on the motion of a single particle (i.e. in a local frame attached to the particle).

Let’s study then the relative motion of two particles induced by a gravitational
wave. Initially they are at rest in neighbour positions with coordinates respectively
xµA and xµB; let’s assume that at time t = 0 they are reached by a plane gravitational
wave in TT-gauge, propagating along the x axis (i.e. with non-zero components
only on the y-z plane). The metric is

gµν(t− x/c) = ηµν + hµν(t− x/c)

Since hTT00 = 0, for all t and x, then g00 = η00 = −1 and we can assume that
both particles have proper time τ = x0 = ct. When the wave arrives, the metric
changes, from the unperturbed η, with a perturbation h, and the proper distance
ds2(t− x/c) = gµν(t− x/c)dxµdxν will change as well.

The coordinate separation four-vector δxµ = xµB − xµA satisfies the geodesic
deviation equation
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D2
τδx

α = Rα
βµνu

βuµδxν ,

with uµ = ∂xµ/∂τ the tangent vector to the geodesic for a proper time τ .
Now, let us consider a local inertial frame with coordinates {xµ′} centered on the

geodesic of the particle A (i.e. x0 = τ = ctA, x
i′
A = 0). In the neighbourhood of A

the metric is ds2 = ηα′β′dx
α′dxβ

′
+O(|δx|2), so the interval differs from an interval

with Minkowky’s metric by terms of order |δx|2 5. So the spatial coordinates of B
will be the spatial components of δx: xi′B ≈ δxi

′ . From now on, we’ll stay in the
local inertial frame attached to A, but we’re dropping the colon ′ symbol.

We can now compute the geodesic deviation at time t = 0: d2t δxi = Ri
00jδx

j.
We’re considering the gravitational wave as a small perturbation of the flat metric,
then in the Riemann tensor every term with Γαµβ will vanish:

Ri
00k = (∂20h

i
k + ∂i∂kh00 − ∂0∂khi0 − ∂i∂0h0k)/2 =

= ∂20h
i
k/2 = ηji∂20hjk/2

At t ≤ 0 the two particles are at rest with separation vector δxj = δx
j

= const.
When the wave arrives, the relative position will change to δxj(t) = δx

j
+ δxjt>0(t),

with δxjt>0(t) << 1 since h is a small perturbation.
The equation of the deviation will be then

d2t δx
j
t>0 =

ηji

2
∂2t h

TT
jk δx

k +O(h2)

and integrating, it will become

δxj
(
t− x

c

)
= δxj0 +

1

2
ηjihTTik

(
t− x

c

)
δxk (1.15)

The wave travels along the x direction, then in TT-gauge we have δx1 = δx
1

=
const, while the two other components will have a deviation{

∆δx2 = (h+δx
2

+ h×δx
3
)

∆δx3 = (−h+δx
3

+ h×δx
2
)

I.e. particles will be accelerate respectively only on the plane orthogonal to the
propagation direction, as we already said.

If we impose that h is linearly polarized along + or × polarization direction,
then

h(+
×)

= 2<
[
A(+
×)
eiω(t−xc )

]
= 2A(+

×)
· cos

(
ω
(
t− x

c

))
(assuming the amplitudes A as real functions). Then if we imagine a ring in vacuum
(Figure 1.1), it will be distorted to form an ellipse, with major semiaxes along the
axes or rotated of 45◦, depending on if we have a + or × polarized wave respectively.

5 This means that in the region neighbor A, it will be
(

Γα
′

µ′ν′

)
A
≈ 0.
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h+=h
0
sin(ωt), hx=0 h+=0, hx=h0

sin(ωt)

ωt=nπ

ωt=(4n+3)π/2

ωt=nπ

ωt=(4n+1)π/2

ωt=(4n+3)π/2

ωt=(4n+1)π/2

Figure 1.1: The effect of a linearly polarized TT-gauge gravitational waves, travelling
along the x direction, on a ring in vacuum, as snapshots at four quarters of a period of
the incoming wave. It can be seen the reason of the name of the two polarizations.

1.4 Quadrupole formalism
The quadrupole formalism is an useful approach to compute the waveform

emitted by an evolving physical system, described by the stress-energy tensor.
We’ll solve the equation of the wave with the harmonic gauge condition satisfied,

under the slow-motion approximation6: the source is confined in a region much
smaller than the wavelength of the emitted radiation. This means that Tµν 6= 0 in
a region with spatial coordinates |xi| < ε, with ε such that λ = 2πc/ω � ε. This
implies that εω � c, so we are considering processes with typical velocities much
smaller than c.

The Fourier transforms of metric h̃µν and Tµν tensor have both the form
fµν(t, x) =

∫ +∞
−∞ f(ω, xi)µνe

−iωtdω. Therefore we can write equation 1.14 in fre-
quency domain as (

∇2 +
ω2

c2

)
h̃µν(ω, x

i) = −16πG

c4
Tµν(ω, x

i) (1.16)

Now we need to solve this equation inside and outside the source, imposing that
the two solutions have to be the same at the boundary of the source.

Outer solution In vacuum, equation 1.16 is(
∇2 +

ω2

c2

)
h̃µν(ω, x

i) = 0

and the simplest solution is a spherical wave with ingoing and outgoing terms:

h̃µν(ω, r) =
1

r
Aµν(ω)ei

ω
c
r +

1

r
Zµν(ω)e−i

ω
c
r.

We are interested only in the wave emitted by the source, so we’ll hold only
the outgoing term in the equation and set to zero the other. We need to find
the amplitude Aµν solving the equation inside the source.

6Remember that we’re still using the wave equation with the weak field approximation.
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Inner solution Here Tµν 6= 0 and we’ll consider the full wave equation 1.16.
Integrating both members over the source volume, using the divergence
theorem on∇2hµν = div(grad(hµν)), at first order approximation the equation
gives the amplitude Aµν as integral of Tµν over the source volume:

Aµν(ω) =
4G

c4

∫
V

Tµν(ω, x
i)d3x

If we join the two solutions we’ll have respectively in frequency and time domain:{
h̃µν(ω, r) = 4G

c4
· 1
r
ei
ω
c
r
∫
V
Tµν(ω, x

i)d3x

h̃µν(t, r) = 4G
c4
· 1
r

∫
V
Tµν(t− r

c
, xi)d3x

(1.17)

Note that the solution in time domain automatically satisfies the harmonic
gauge condition, but we still have to project h̃ on the TT-gauge.

1.4.1 TT-gauge choice

First of all we notice that by conservation of four-momentum ∂0
∫
V
T µ0 = 0⇒

P µ =
∫
V
T µ0d3x = const. This means that, in the equation 1.17, h̃µ0 = const,

and since we’re interested in time variation of the field, we can impose that these
components are h̃µ0 = 07.

Moreover, if we use the Virial Theorem, we can write the spatial components of
the stress-energy tensor as

2

∫
V

T ijd3x =
1

c2
∂2t

∫
V

T 00xixjd3x,

where the right-hand side is the second time derivative of the quadrupole moment
tensor of the system: ∫

V

T ij(t, xk)d3x =
1

2
d2t q

ij(t)

To see the physical degrees of freedom, we can project the solution h̃ij (h̃0µ = 0)
and the quadrupole moment qij to the TT-gauge with respect an observer, using
the proper projector

Pijkm = PikPjm −
1

2
PijPkm,

where Pij = δij − ninj with ~n the unit vector orthogonal to the wavefront. We can
define then hTTij := Pijkmhkm = Pijkmh̃km and QTT

ij := Pijkmqkm. The solution of
the wave equation in TT-gauge, expressed with the quadrupole moment is:{

hTTµ0 = 0

hTTij (t, r) = 2G
c4r
d2tQ

TT
ij (t− r/c)

Indeed the gravitational radiation has a quadrupolar nature, and not dipolar.
In fact an isolated system of masses, with a gravitational dipole momentum ~dG =

7Note that we obtained the same result of the TT-gauge for the temporal components, but
from conservation principles prior to the gauge choice.
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∑
imi~ri must satisfy the law of conservation of the total momentum, so dt~dG =∑
imidt~ri = const: the second derivative will be 0 and the gravitational flux too.
The quadrupolar momentum instead can have non-zero time second derivatives.

For a stationary and spherical symmetric distribution of energy-matter, quadrupo-
lar momentum is constant, even if the distribution rotate around an axis (here
cylindrical symmetry is enough). Therefore the time derivative will be zero with no
gravitational flux. To produce gravitational wave we need then a certain amount of
asymmetry, in fact we can consider the quantity Q̈ as a measure of the asymmetry
of the source.

1.4.2 Gravitational flux

Let us consider the spatial components of the solution of the wave equation

hTTjk =
2G

c4r

[
Q̈TT
ij (t− r/c)

]
.

Flux is defined as energy emitted for unit time and surface: dLGW = dEGW
dtdS

.
We can compute it from the difference between the stress-energy tensor in a

generic frame, T µν , and the same tensor expressed in a local inertial frame. In the
latter every first derivatives of the metric vanish, so it is possible to write it as a
four-position derivative of a quantity υµνα, antisymmetric in µ and α: T µνlif = ∂αυ

µνα.
We can define this difference as δT µν := ∂αυ

µνα − T µν .
This difference is obviously zero in an inertial frame, moreover we can use

the symmetry property of υ to demonstrate that the quantity ∂µ (δT µν + T µν) =
∂µ (∂αυ

µνα) = 0. We have then a conservation law analogue to the four-momentum
conservation. We can interpret then δT µν as the entity that contains information
on the energy and momentum carried by the gravitational field.

It’s possible to explicit the expression of δT µν and then to compute the gravi-
tational luminosity emitted by a source integrating the flux over the whole solid
angle:

LGW =

∫
dEGW
dtdS

dS =

=

∫
cδT 0kr2dΩ =

=
G

2c5
1

4π

∫
dΩ
∑
ij

(...
Q
TT

ij

)2
.

Solving the integral, the sum and the projectors will elide and we can get the
expression

LGW =
G

5c5
...
Qij(t− r/c)

...
Qij(t− r/c) (1.18)

where Qij := qij − 1/3 · δijqkk is the reduced quadrupole momentum, which is
traceless by definition, then in TT-gauge QTT

ij = Pijkmqkm = PijkmQkm.
If we consider, as an example, an asymmetric rotating object, for the sake of

simplicity an ellipsoid with major axis a (much greater than the two others axes),
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y

r1

r2

m1

m2

x

Figure 1.2: Scheme of two orbiting masses.

mass M rotating on the plane normal to a with pulsation ω, the gravitational
luminosity will be

LGW ≈
G

c5
M2a4ω6.

Since the constant G/c5 ∼ 10−53 is very low, it is immediately clear that an
observable signal requires very high asymmetries, mass or frequencies. Moreover,
only a small fraction of a signal can be seen by a detector, due to very low typical
cross sections.

1.5 Sources

As we said before, to produce gravitational waves we need systems with big
masses (on the order of some solar masses at least) rotating asymmetrically. Such
systems are mainly binaries or non-axisymmetric rotating stars. Other sources
can be asymmetrical supernovae core collapse, or phenomena occurred in the early
stages of the Universe, just after the Big Bang. Despite this Thesis focuses on
research of continuous signals from rotating stars, one can not avoid to mention
the only kind of gravitational wave signals detected so far: the coalescence of black
holes or neutron stars binaries.

1.5.1 Binary sistems

Let us consider a binary system composed of two stars, with mass respectively
m1 and m2 and same radius R∗, orbiting together around the center of mass of the
system. We can consider circular orbits with radius respectively r1, r2 and the two
stars as point masses (it’s a good approximation when r � R∗). Let us define:
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• total mass M = m1 +m2 and reduced mass µ = m1m2/M ;

• proper length of orbital separation l0 = r1 + r2 (then r1,2 = m1,2l0/M);

• orbital pulsation (from Kepler’s law) ω = ωK =
√
GM/l3;

• coordinates of the mass m1,2 (x1,2, y1,2) (i.e. the motion is on the x-y plane)
with x1,2 = m1,2l0/M · cos(ωt) and y1,2 = m1,2l0/M · sin(ωt));

• the 00-component of the stress-energy tensor in slow motion approximation

T 00 =
2∑

n=1

mnc
2δ(x− xn)δ(y − yn)δz

The amplitude tensor then will be the rotation matrix in the x-y plane. In fact,
if we compute the quadrupole moment tensor qij, the time varying part of the non
vanishing components will be{

qxx = −qyy =
µl20
2
cos(2ωt)

qxy = qyx =
µl20
2
sin(2ωt)

.

Note that the time variation of the quadrupole moment, then also of the gravitational-
wave, is periodic with frequency twice the orbital frequency.

If we define the matrix

Aij =

cos(2ωt) sin(2ωt) 0
sin(2ωt) −cos(2ωt) 0

0 0 0


we can write qij = µl20/2 · Aij and, using ω = ωK , in TT-gauge the gravitational
wave will be

hTTij = h0(−ATTij ),

with h0 = 4µMG2

rl0c4
and ATTij to be determined using the projectors Pijkm, depending

on the inclination between the line of sight with unit vector n̂ and the orbital plane.
For example, with a wave seen face-on, the two polarizations have the same

squared module components, so we see a circularly polarized wave; conversely, a
wave seen face off is linearly polarized transversely to the propagation direction. In
both cases, as we can see in the arguments of the cosine and sine functions, the
wave emitted has a frequency doubled with respect the orbital one.

The flux emitted is

L =
32

5

G

c5
µl40ω

6

Substituting µ and ω we obtain L ∝ M3/l50. That is, more massive and closer
systems will emit stronger signals.
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Orbital evolution and coalescence

Even if the system doesn’t radiate electro-magnetic waves, it loses energy by
gravitational waves emission, so the orbit will become closer with time. In adiabatic
approximation, that is with orbital parameters varying slowly enough, the orbital
energy lost by the system will be Ėorb = −LGW . With keplerian orbits ω = ωK ,
Eorb = K + U is

Eorb =
1

2

GµM

l0
− GµM

l0
= −1

2

GµM

l0(t)

⇒ Ėorb = −Eorb
dtl0
l0

Since ωK =
√
GM/l30 = 2π/PK we have that the orbital period evolution, due

to gravitational wave emission, is

Ṗ =
3

2

P

Eorb
LGW

where P and Eorb are period and orbital energy measured.
From this equation we can obtain the time evolution of l0 with the time derivative

l̇0 =
l0
Eorb

LGW ;

integrating this equation over times, with l0(t = 0) = l0 we have

l0(t) = l
4

0

(
1− t

tcoal

)
, (1.19)

with the coalescence time tcoal = 5
256

c5

G3

l
4
0

µM2
8

Waveform

We supposed an adiabatic regime; this means that, for both objects of the
binary system, we can approximate every pseudo-orbit of the inspiral motion as a
stationary circular orbit with ω = ωK . Consider the binary system at a time t with
l0 = l0 and ω = ω = ωK(l0). Using equation 1.19, the time evolution of ωK , at a
time t sufficiently small to preserve adiabatic approximation, is

ωK(t) =

√
GM

l30(t)
= ω

(
1− t

tcoal

)− 3
8

. (1.20)

Then, since the frequency of the emitted gravitational-wave is twice the orbital
frequency, it will follow a time evolution νGW (t) = ωK(t)/π.

8Remember that we have considered point masses. For real objects coalescence will start before
tcoal. Moreover, approaching to the coalescence, slow motion and weak field approximations will
fail.
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Figure 1.3: Example waveform of a gravitational wave signal emitted by a binary system.

Knowing the frequency temporal-function of the emitted signal, we can write
its amplitude time evolution as

h0(t) =
4µMG2

rc4
1

l0(t)
=

4πµMG2

rc4

(
πν2GW (t)

GM

) 1
3

(1.21)

Therefore the amplitude grows with νGW in time. Because this peculiar behavior,
this waveform is called chirp. Rearranging the formula we can write

h0(t) =
4π2/3G5/3M5/3

c4r
ν
2/3
GW (t)

whereM = µ3/5M2/5 is called chirp mass. It is an important parameter because
it’s the only direct measure of the mass of the system achievable using only the
gravitational-wave signal detected.

1.5.2 Asymmetrical rotating star

As we said in chapter 1, emission of gravitational-waves from an object is
intrinsically linked to its symmetry: the quadrupole moment, so the amplitude of
the emitted wave, is much higher as much the object is far from symmetry in its
time evolution. To describe how a single rotating object can emit gravitational
waves, we can consider an ellipsoid with the following characteristics:

• equation (x1
a

)2
+
(x2
b

)2
+
(x3
c

)2
= 1

with semiaxes a, b, c;

• uniform density ρ and total mass M ;

• inertia tensor
Iij =

∫
V

ρ
(
r2δij − xixj

)
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Figure 1.4: Scheme of a rotating ellipsoid.

• quadrupole moment

qij =

∫
V

ρxixjdx
3 = −Iij + δijq ⇒

Qij = qij −
1

3
δijq = −

(
Iij −

1

3
δijI

)
(1.22)

where q = qii and I = I ii

In the co-rotating frame

I ′ij =
M

5

b2 + c2 0 0
0 c2 + a2 0
0 0 a2 + b2

 =

I1 0 0
0 I2 0
0 0 I3

 ,

with I1,2,3 the principal moments of inertia;
If we see the ellipsoid in an inertial frame where it rotates around one of its

principal moments of inertia, e.g. I3, with angular velocity ~ω = (0, 0, ω), its rotation
matrix will be

Rij =

cos(ωt) −sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 .

Then the Iij tensor in the inertial frame is Iij = (RI ′RT )ij. Computing it and
substituting its component in the equation 1.22 we can write the varying part of
the quadrupole moment as
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Qij =
I2 − I1

2

cos(2ωt) sin(2ωt) 0
sin(2ωt) −cos(2ωt) 0

0 0 0

 =
I2 − I1

2
Aij.

Note that again the wave frequency will be twice the rotational frequency of
the star; moreover, if I1 = I2, i.e. a = b, the ellipsoid will preserve its axisymmetry
around its rotation axis and won’t emit any gravitational wave.

It’s useful to express the quadrupole moment using the ellipticity

ε := 2
a− b
a+ b

≈ I2 − I1
I3

⇒ Qij =
1

2
εI3Aij;

Once again, if we project the wave in TT-gauge we’ll have hTT (t, r)ij =
h0(−ATT )ij(t− r/c), where the result depends on the direction of the observer with
respect to the rotating axis. The coefficient h0 is

h0 =
4Gω2

c4r
I3ε (1.23)

and the gravitational wave flux will be

LGW =
32Gω6

5c5
ε2I2,

If we suppose a ∼ b, then I ∼ MR2
∗ and ω ∼ ωK . Therefore L ∝ (M/R∗)

5ε2.
Thus we can say then that more massive, compact and oblate stars will emit sensibly
stronger signals.

Waveform

In the non relativistic approximation the rotational energy of a rotating object
is Erot = Iω2/2 and its time derivative Ėrot = Iωω̇. Now let us suppose a stationary
rotating compact star, which loses energy mainly via gravitational waves, then
LGW ≈ −Ėrot and the frequency will decrease in time. But if the frequency
decreases, rotational energy will do too and with it the emitted gravitational flux.
So the spin-down ν̇ of the star will fade in time.

If we explicit both members of the equation LGW ≈ −Ėrot we get

32G

5c5
(2πν)6ε2I2 ≈ I4π2ν|ν̇|

⇒ ε ≈
(

5c5

512π4G

|ν̇|
ν5I

) 1
2

,

and the corresponding amplitude, using the above formula in equation 1.23, is

h0(ν) =

(
5G

2c3r2
I
|ν̇|
ν

) 1
2

. (1.24)
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We have then a relation between the dynamics parameters of a gravitational
waves emitting system and its ellipticity 9.

For the well known pulsars like those in Crab and Vela nebulae we have upper
limits on the amplitude h0 ≈ 10−25 − 10−24 and on the ellipticity ε ≈ 10−5 − 10−4

(Aasi et al., 2015b), and the last all-sky searches using the data from the O1 LIGO
run gave similar limits (B. P. Abbott et al., 2017a).

Wobbling star

In principle it can be possible that the asymmetry of the rotating star don’t
lays on the plane orthogonal to the rotation axis. In this case we can define a
wobble angle θ between the rotation axis and I3. If we put, for the sake of simplicity,
I1 = I2 and θ � 1, the rotation matrix from the co-rotating frame to the inertial
frame is

Rij =

cos(ωt) −sin(ωt) −θsin(ωt)
sin(ωt) cos(ωt) θcos(ωt)

0 −θ 1


and the quadrupole moment

Qij = (I1 − I3)θ

 0 0 −sin(ωt)
0 0 cos(ωt)

−sin(ωt) cos(ωt) 0

 .

The wave amplitude will be

h0 =
2Gω2

c4r
(I1 − I3)θ

Note that a wobbling star emits gravitational wave at the rotation frequency
(not doubled as the non-wobbling case).

1.5.3 Other sources

Another couple of classes of sources of gravitational waves have quite opposite
characteristics: very fast bursts from a core collapse supernova and the continuous
and stochastic cosmological background from the early stages of the Universe.

Bursts

In the definition of “burst” fall a high number of different phenomena that, in
principle, can emit gravitational waves as long as they happen asymmetrically. An
important class of sources of this kind are Type II supernovae, for which exists a
large literature about modeling the core collapse and the subsequent explosion.

9If the compact star loses energy from any other sources, e.g. electromagnetic waves emitted
by pulsating neutron stars, the ε estimation is an upper limit: in realistic cases the gravitational
contribution at the spin-down is only a fraction of the total energy loss, the real ε will be lower
than the value measured from the observed spin-down.
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Figure 1.5: Some simulated waveform using four models of core collapse supernova, with
a 10kpc far 15M� progenitor star (20M� for the bottom right plot) (Powell, Szczepanczyk,
and Heng, 2017).

Briefly, when the iron core of an old star, where no thermonuclear process
can happen anymore, reaches a mass above the Chandrasekhar limit 1.4M�, the
electron degeneracy pressure is no more sufficient to support the core against the
gravitational attraction of the core itself. At this point it rapidly collapses until
the density is enough to start a massive electron-capture process that turns the
most part of the matter in the core in neutrons, which degeneracy pressure can
sustain more mass than the electron one, unleashing a huge amount of neutrinos.
Neutrinos interact with the outer layers of the core causing a big explosion that
involves the rest of the dying star. At the center of the supernova, depending of
the dynamics and masses involved, a neutron star or a black hole may form.

If the collapse is not spherically symmetric, the bounce subsequent to the
collapse, due to the release of neutrinos, will have a high quadrupole moment,
causing a burst of gravitational wave emission.

In figure 1.5 some example waveforms for some of the many models existing are
shown, as summarized in Powell, Szczepanczyk, and Heng, 2017.

Cosmic background

A very interesting kind of sources has a cosmological nature. Similarly to the
Cosmic Microwave Background, it is a incoherent superposition of waves from
phenomena acting in the early moments of Universe. The detection of the cosmic
gravitational stochastic background would have great consequences in our knowledge
of the early Universe and its evolution.

The main reason is that particles (e.g. photons, gravitons) that decouple from
the primordial plasma at a time tdec, when the Universe had a temperature Tdec,
give a snapshot of it at that time. The weaker is the fundamental interaction of the
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particle, the higher was the energy scale when they lost the thermal equilibrium with
the plasma, then earlier in the Universe life they decouple from the plasma. Since
the gravitational interaction is far weaker than the others, detecting gravitational
waves can probe very deeply in the primordial Universe: the graviton decouple
before the Planck energy scale EP ≈ 1019GeV , giving then informations on the
physics at very high energies. Gravitational waves produced at that time will
preserve typical frequencies, spectrum and intensity, giving informations on the
production conditions.

The form of the spectrum of the cosmic gravitational-wave background is strongly
model dependent, involving quantum gravity and beyond standard model physics,
but from general considerations it can be modeled as a power-law ∝ να, with α
between 0 and 3 and a cutoff at frequencies of the GHz order (Maggiore, 2000).



Chapter 2

Detecting gravitational waves

The hunt for gravitational waves detection was finally accomplished in September
2015, when for the first time the LIGO gravitational interferometers detected the
waves generated by a binary black holes system coalescence (B. P. Abbott et al.,
2016b). In the following months, other black hole coalescences were detected(B. P.
Abbott et al., 2016a, B. P. Abbott et al., 2017b). In August 2017 the Virgo
and LIGO interferometers had their first triple detection (B. P. Abbott et al.,
2017c), bringing an impressive contribution to parameters and source sky position
identification.

Just three days later (B. P. Abbott et al., 2017c) Virgo and LIGO detected for
the first time a neutron stars coalescence, identified through the characteristic chirp
signal in the gravitational interferometer. Around 1.7 seconds later a large number
of telescopes and observatory covering the whole electromagnetic spectrum detected
a gamma-ray burst and on a longer time scale the electromagnetic afterglow in the
same region of the sky. Being the first GW observation which has been confirmed
by non-gravitational means, it gave birth to the multi-messenger astrophysics.

Current gravitational waves detectors use interferometry to measure the geodesic
deviation caused by a gravitational wave. For this reason we’ll explain the funda-
mentals of how a gravitational interferometer works.

In Chapter 1 we saw the theoretical mechanisms that bring to the production
of gravitational waves from some kind of sources. Now we’re going to show the
instrumental and analysis fundamentals of the gravitational wave research. When
we’ll have a clear picture of the problems we face, we can explain why is still such
hard to find continuous waves, and how people search for a signal trying to overcome
the higher difficulties of this kind of signals.

2.1 Interferometric GW detector

Since the fifties of the 20th century it was proposed and developed the use of
light signals between two free masses in a gravitational field, able to characterize
the metric and eventually its variation (Pirani, 1956). This idea has various
applications such as pulsar timing, planetary ranging, spacecraft Doppler tracking
and gravitational interferometers (Ricci, 2017).

The the first idea of interferometric detection of gravitational waves was due

25
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beam splitter

Figure 2.1: Scheme of a Michelson interferometer.

to the independent works of Weber, Forward and Gertenshtein, Pustovoit in the
’60s (Wolf, 1998, Saulson, 2017,). In the ’70s, Weiss (Weiss, 1972) treated the
technical problems of the realization and operation of a gravitational interferometer;
in the meantime, Forward was working independently to the development the first
operating prototype (Forward, 1978), based on the Michelson configuration.

The gravitational interferometers Virgo and LIGO share many key features.
Starting from the basic Michelson setup we’ll show briefly how the modern gravita-
tional interferometers work. For the specifications of the two detectors we’ll refer to
the respective literature (B. P. Abbott et al., 2009, Aasi et al., 2015a, Caron et al.,
1997, Acernese et al., 2014).

2.1.1 Michelson interferometer

Let us consider a collimated, coherent, monochromatic electromagnetic source:
a laser. In the Michelson configuration of an interferometer, the light beam is split
by a semi-transparent mirror (the beam splitter) between two orthogonal arms, with
mirrors at each end. The reflected light will come back to beam splitter, such that
the two beams can join and interfere together, e.g. constructively or destructively.
The final beam hits a detector, usually a photodiode, where the light power is
measured (fig. 2.1).

The mirrors of the interferometer are the test-masses. Let us suppose that they
are in free fall, i.e. the only force that acts on them is gravity and their motion is on
geodesics. As we said in Section 1.1.5 we can’t have informations on the variation
of the metric using, for example, an accelerometer on a single mirror. Instead, if
we use photons traveling between mirrors we can have informations on how the
optical path changes by geodesic deviation: being the speed of light a constant
in every frame, the time of flight will change if a gravitational wave crosses our
interferometer.
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Figure 2.2: Earth based gravitational Michelson interferometer (Pitkin et al., 2011).

Let us consider a plane, linearly + polarized gravitational wave in TT-gauge1

propagating along the z direction, and the arms of the interferometer with same
length respectively on the x and y direction. The interval will be

ds2 = (ηµν + hµν(t))dx
µdxν = c2dt2 − (1 + h(t))dx2 − (1− h(t))dy2.

In a real interferometer on Earth the test-masses (our beam splitter and the
two mirrors) can’t be in free fall and they are hung to form pendulums. Using the
geodesic deviation, the action of a gravitational wave on a test-mass n, as seen
by an inertial frame, can be expressed as an acceleration field with respect to the
center of mass of the system:

a
(n)
j (t, r(n)) =

1

2c2
∂2t hjkr

(n)
k ,

where r(n) = (x(n)−xCM , y(n)−yCM , z(n)− zCM ) is the position of the test-mass
n. If we set the reference frame like in Figure 2.2, with the origin on the beam
splitter, we can write the equation of geodesic deviation separately for the three
masses, using the relaxing time tr and characteristic pulsation ωp of the pendulums
(we are supposing they have the same mass and same dissipation)

ẍ
(n) + ẋ(n)

tr
+ ω2

px
(n) = 1

2c2

[
ḧ11(x

(n) − xCM) + ḧ12(y
(n) − yCM)

]
ÿ(n) + ẏ(n)

tr
+ ω2

py
(n) = 1

2c2

[
ḧ21(x

(n) − xCM) + ḧ22(y
(n) − yCM)

] .

Supposing that the interferometer has both arms with length L, the length
difference caused by a gravitational wave is the solution of the differential equation

d2t∆L+
dt∆L

tr
+ ωp∆L =

1

c2
d2th11L (2.1)

1In this section we’ll set every time in TT-gauge, so the superscript “TT” will be omitted.
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and depends on the functional form of the second time derivative of h11(t).
The phase variation due to a length difference of the arms ∆L is ∆φ = ωγ∆L/c,

with ωγ/2π the frequency of the light emitted by the laser. For a sinusoidal wave
h(t) = h0cos(ωGt) with amplitude h0 and pulsation ωG2 the phase variation acquired
by a photon, in a 2L long round trip from the beam splitter to the mirror and back,
will be

∆φ ≈ 2ωγL

c
h0cos(ωGt). (2.2)

When a signal crosser the interferometer, the photodiode will see an oscillation of
the light power at the same frequency of the gravitational wave, with an amplitude
∝ h0.

This is indeed the case of the Virgo and LIGO interferometers, with the pre-
scription that between the laser and the beam splitter there is an Electro-Optical
Modulator, which modulate the frequency of the light with a ∼MHz carrier, such
that the sidebands generated by the modulation couple with the gravitational signal
crossing the interferometer. In this way the signal will stay, in the light spectrum
of the beam, in two symmetrical modulation components aside from the carrier,
and the latter is insensitive to the action of a gravitational wave.

With this configuration the output power is

Wout = Wincos
2(∆φ), (2.3)

then the output of the detector is a direct measure of h(t).
From equation 2.3 we can also see that the amount of power variation dWout/d∆L

is function of ∆φ and he maximum is reached when Wout = Win/2.
This means that we have a maximum power variation when light interference is

halfway from both constructive and destructive. This is called half fringe condition.
However, we neglected phase differences caused by the noise: in real interferometers
noises play an important role, and the half fringe is not the best condition, because
despite it gives the highest signal output, it doesn’t return the best signal to noise
ratio.

As we said, when we modulate the light beam, only the two sidebands contain
informations on the signal. Choosing an operating point such that, in absence
of gravitational signal, the rejoining beams interfere perfectly destructively (dark
fringe), we can exclude the carrier component and allow to pass one of the sidebands,
excluding in this way a big part of the noise sources, except to the ones which
couple with the allowed band similarly to the gravitational signal. For example, in
addition to the laser frequency noise removal, we are less vulnerable to its power
fluctuations, since in dark fringe the operating point neglects the power of the light
source in no-signal conditions (Saulson, 2017).

We can interpret qualitatively the choice to work with a null instrument with
the fact that it’s easier to work with null measurements setting the no-signal state

2Note that are valid both the approximation of geometrical optics and small antenna limit.
The first because the frequency of the laser is much higher than the gravitational wave frequency.
The second is valid for the present day interferometers, for which the time of a complete travel
of a photon in a ∼ km arm length is much smaller of the period of a gravitational wave. Both
approximations simplify the response equation of the interferometer.



2.1. INTERFEROMETRIC GW DETECTOR 29

to W = 0 and waiting for a gravitational signal, instead to search a very small
power variation in a large noisy optical power.

However, until now we considered ideal mirrors with a perfect reflectivity Rx,y.
In real interferometers the mirrors have a contrast C = 2RxRy/(R

2
x + R2

y) < 1
and the best signal to noise ratio is achieved imposing in equation 2.3 cosφ ≈
−1 +

√
2(1− C). Anyway, the mirrors have a high reflectivity, then C is near 1

and the interference is very close to the dark fringe.
To set an operating point it is sufficient to introduce a length difference in the

arms of the interferometer, prior to the one induced by the gravitational wave, to
obtain a ∆φop such that Wout with no signal has the value we want.

2.1.2 Fabry-Perot Cavity

As we showed in Equation 2.2, the sensitivity of an interferometric detector
depends on the length of the optical path. It’s possible to increase this length putting
a semi-transparent mirror between the terminal mirror and the beam splitter, such
that the light beam travels many times along the arm, then is extracted and directed
to the splitter where interfere with the light from the other arm. In this way we form
a Fabry-Perot resonant cavity. In resonant conditions, the light inside a Fabry-Perot
cavity with length L has n normal modes at frequencies νn = (n + 1/2)c/L, and
the difference between two consecutive resonance frequencies is defined free spectral
range ∆νFSR = c/2L.

A parameter that strongly characterize a Fabry-Perot cavity is it’s finesse F ,
defined as:

F = π

√
R1R2

(1−R1R2)

(R1,2 are respectively the reflectivity of the entrance and terminal mirror of a single
arm). It is a “quality” factor that says the precision to resolve his resonance lines.
In fact, while with an input light at ν = νn the electromagnetic field inside the
cavity has certainly a maximum gain, the resonance peak can’t be a delta-function
because the imperfections of the mirrors. The width of the resonance peak is
inverse-proportional to the finesse of the cavity. The full width at half maximum of
the resonance peak is therefore defined as ∆νFWHM = ∆νFSR/F

An imperfection on the reflectivity of the mirrors means that there are losses
which set a limit on maximum light power achievable in the cavity. From the
particle point of view, it means that finesse defines how many times the cavity is
able to bounce a photon between the two mirrors, before absorbing it in the system
losses. The effective number of bounces will be Neff = 2F/π and the relative
effective arm length NeffL.

Knowing the effective path length of a photon in the cavity, we can define
the storage time τs = NeffL/c = 2FL/πc. The inverse of the storage time is the
frequency cut-off of the cavity 2πωc = 1/τs. The expression of the effective cavity
optical length is then function of the frequency of the incoming gravitational wave:

Lopt =
2FL

π

1

π
√

1 + (ωG/ωc)2
. (2.4)
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this means that with a Michelson-Fabry-Perot interferometer the phase variation
depends on the signal frequency.

2.1.3 Noise

Since the amplitude of gravitational wave signals is very small, knowing and
managing the instrumental noise is the key to detect them. We can classify the
total noise of the interferometer in various components.

Quantum noise

The quantum noise is a source of error in the measured output optical power,
which will give an uncertainty on the positions of the mirrors, and then on the
gravitational waves amplitudes. It is generated by vacuum fluctuations of the
electromagnetic field entering in the interferometer. These fluctuations interfere
with the light circulating in the arm cavities and produce random phase differences
on the photons: This generates the shot and radiation pressure noise. A complete
quantum discussion is outside the purpose of this work, but we can expose an
effective semi-classical approach which can describe correctly the expected quantum
noise power spectrum of an interferometer.

Let us firstly consider the random fluctuation on the photon counts in the
detector. It follows a Poisson statistics, with an average count n and the standard
deviation σn =

√
n. It depends directly on the power of the light beam: the greater

is the number of photons n, the smaller will be
√
n/n = 1/

√
n and the signal to

noise ratio will be better.
Let us suppose that the measure is done in a sampling time ∆t , the output

power is Wout and the laser pulsation ωγ . The energy carried by a single photon is
~ωγ, then the energy associated to n photons in the detector will be n~ω = Wout,
with a power standard deviation σWout =

√
n~ω. The output counts standard

deviation will be then

σn =
√
n =

√
Wout∆t

~ωγ
From this relation we can derive the error σL on the length variation. From

statistics, we know that σWout = dWout/dL · σL, since we related σWout with σn, we
have

σL =
1√
n
· 1

Wout

dWout

dL
.

The error on Wout will give then an error on the length variation: the fluctuation
on the number count of photons will produce a fluctuation on the measured position
of the mirrors and therefore on the measured wave amplitude σh = σL/L. This is
the so-called shot noise.

Let us suppose to be in half fringe, then Wout = Win/2 and the shot noise
amplitude spectral density will be√

Shshot(ωG) =
c

ωγL

√
~ωγ
Win

, (2.5)
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with Shshot the power spectral density. It is useful to note that, in a Michelson
interferometer, the shot noise spectrum doesn’t depend on the frequency.

As we said in section 2.1.2, with Fabry-Perot cavities in the arms, the equivalent
strain spectrum given by the shot noise will be no longer a white noise, but it is
function of ωG; in particular the sensitivity falls down for ωG ≥ ωc.

When the interferometer is in the dark fringe condition and the light is modu-
lated in the way described in Section 2.1.1, the carrier reaches a minimum at the
interferometer output and the light power reflected back toward the laser reaches
a maximum. Inserting a mirror between the laser and the beam splitter, we can
send back in the cavities the reflected light, building another Fabry-Perot cavity
formed by the power recycling mirror and the rest of the interferometer. In this
way we can amplify the light power circulating inside the interferometer, depending
on how many times in average a photon can be recycled before it will be absorbed,
and the shot noise contribution will be smaller. Another optimization is to add
another recycling mirror between the beam splitter and the photodiode. This is
called signal recycling and it’s purpose is to amplify the signal sidebands produced
at the detector’s output by the gravitational waves.

Nevertheless, adding light power in the interferometer has the drawback of an
increase of the radiation pressure on the mirrors. In the semi-classical approach, we
can describe the effect of the momentum transfer of the photons using the statistical
fluctuation of the number of photons hitting the mirror in a certain time ∆t.

When a photon bumps on the surface of the mirror, transferring a part of its
momentum, induces oscillations on the pendulum. More power of the beam means
more photons that will exert a higher radiation pressure, adding a fluctuation to
the position of the mirrors. Considering, for the sake of simplicity, the standard
Michelson configuration with perfect mirrors, the force due to a radiation pressure
with power W is W/c. The fluctuation on the power will produce then a fluctuation
of the force on the mirror, with standard deviation

σF =
σW
c

= ~ωγ
σn
∆t

=
1

c

√
~ωγWin

2∆t

and amplitude spectrum
√
SF (ωG) =

√
~ωγWin/c.

The mirror will be displaced by the radiation pressure force by an amount

x(ωG) =

√
SF (ωG)

Mω2
G

=
1

Mω2
G

· 1

c

√
~ωγWin.

The respective fluctuation on the two arms are anti-correlated: if an arm has an
additional photon, in the other arm there will be a missing photon. For this reason
the length difference between the two arms will be twice x(ωG). The radiation
pressure noise spectrum is then

√
Shrad =

2x(ωG)

L
=

2

MLc

√
~ωγWin

1

ω2
G

(2.6)

A way to reduce radiation pressure noise without an increase of shot noise is
surely to use mirrors with higher masses. Things are not so easy if we want to use
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a light beam with less power: comparing equations 2.6 and 2.5 we can easily see
that the power dependence of the two noises is exactly inverse.

Both sources are related to the quantum nature of electromagnetic waves, and
the maximum precision achievable measuring the output light beam is bounded by
the uncertainty principle. For this reason the two quantum noise sources are treated
together as a common source of optical readout noise Sqn(ωG) = Sshot(ωG)+Srad(ωG)
.

For each frequency value, exists an optimal power such that Sshot = Srad and√
Sqn has a minimum. This is called standard quantum limit :√

SQL(ωG) =
2

ωGL

√
~
M
. (2.7)

It is important to remind that, although the above results are correct, there are
fundamental conceptual differences between the semi-classical approach and the
formal quantum behavior.

For example, we considered a fluctuation on the number of photons in the
entrance of the interferometer, and we assumed that the contributions of the noise
from the two arms anti-correlated, obtaining a maximum in the quantum noise.
In a complete quantum mechanical discussion, the vacuum fluctuations as already
mentioned generate the shot and radiation pressure noise.

We can demonstrate that the only significant contribution to the quantum noise
comes from the vacuum fluctuations at the interferometer output, which generate
photons that enter in the arms through the beam splitter and interfere with the
circulating beams, in fact the fluctuations at the interferometer input are correlated
in the two arms and they cancel each other.

Furthermore, it has been shown there are no contribution from the quantization
of the test-masses, or from the uncertainty principle associated with the test-mass
state (Braginsky et al., 2003). This means that the quantum noise is associated
only to the light and the uncertainty principle regards the amplitude-phase errors
on the outcoming beam. Indeed, still in Braginsky et al., 2003 is demonstrated that
as a complementary fact the output photon numbers detected by the photodiode
can be thought as classical quantities, and then these outputs measurements can
be returned back at the input expressing them as anti-correlated length variations
of the interferometers arm. This is why the semi-classical approach is correct.

External sources

Basically, the main noise source outside the experimental apparatus is the
seismic activity of Earth’s crust.

The absolutely most significant source is the noise from the continuous micro-
seismic activity. In a reasonable quiet site on Earth it follows a spectrum ≈
10−7− 10−6 · ν−2 (m/3000m) · 1/

√
Hz in all spatial dimensions (Pitkin et al., 2011).

This means that at ∼ 100Hz where LIGO and Virgo detectors have a quantum noise
around 10−23Hz, the seismic noise is twelve orders of magnitude higher, tearing
down any probability to detect gravitational waves. It is mandatory then to isolate
the mirrors both from the horizontal and the vertical components of the seismic
vibrations.
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Figure 2.3: Plot of the quantum noise with various configurations of a Michelson
interferometer with a λγ = 1064 nm laser and 40Kg mirrors. Top: L = 4000m, W =
4000W ; mid: L = 4000m, W = 4, 4000W ; bottom: equipped with Fabry-Perot cavities
with F = 450, the frequency cut on Lopt (Equation 2.4) increases the noise at higher
frequencies.
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The way to solve the problem is to build a chain of pendulums where the lower
mass is connected to the higher mass with one or more thin strings attached to a
spring. In this way each pendulum attenuate the horizontal vibration by a factor
(ωp/ωG) and each spring attenuate the vertical vibration by a factor (ωs/ωG), where
ωp and ωs are respectively the characteristic pulsation of the pendulum and the
spring.

Another source of noise is the presence of seismic waves near the surface of the
Earth, which cause density fluctuations of the Earth surface, producing gravity
gradients changing in time: when a wave of gravity gradient passes nearby the test-
masses of the interferometer, they experience a variation of gravitational attraction.
It is then closely related to the seismic noise, but it is far more difficult to reduce,
because it acts directly on the mirrors.

There are two ways to manage this noise: the first is to use an array of
seismometers distributed around each test-mass, to monitor density variations
expected to be coupled to local gravity fluctuations; the second is to build the
detector underground, where the seismic surface waves cannot exist.

Thermal noise

Another important noise class is the one caused by the thermal fluctuations of
the test-masses. Supposing that the masses and the last stage suspension pendulums
has the same temperature T at thermal equilibrium, to each vibration mode of the
mirror or oscillation mode of the pendulum is associated an energy fluctuation kBT ,
with kB the Boltzmann constant. Each of these modes can be seen as an armonic
oscillator that causes an oscillation on the position on the mirror.

Considering the vibration mode i, being tri its relaxing time, the power spectral
density of the stochastic force that causes the fluctuation is SFi = 2kBTMi/tri ,
where Mi is the effective mass of the harmonic oscillator that describes the mode.
In turn, the spectral density of the displacement of the mirror will be the spectral
density of the force, multiplied the squared absolute value of the associated harmonic
oscillator transfer function:

Sx(ωG) =
2kBT

tri

1

Mi

1

(ω2
G − ω2

i )
2

+ (ωG/tri)
2
,

with ωi the ith mode characteristic pulsation.
Considering the thermal noise of the pendulum, for a typical sensitive band of

a ground based gravitational interferometer ωG & ωi, with ωi = ωp, tri = tr from
Equation 2.1 and Mi = M of the mirror. Then the associated amplitude spectrum
has an upper limit √

Spendhth
(ωG) >

1

ω2
G

√
2kBT

M

∑
i

1

tr
(2.8)

and will affect mainly the low frequency part of the detector band.
The thermal vibration modes of the mirror instead have ωG . ωi and we have√

Smirrhth
(ωG) =

1

L

√
2kBT

∑
i

1

MiQiω3
i

(2.9)



2.1. INTERFEROMETRIC GW DETECTOR 35

where Qi are quality factors that express the energy dissipation associated to the
mode i, similarly to the relaxing time of a damped oscillator.
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Figure 2.4: Plot of a thermal noise
resonance with νi = 10 Hz, for a
M = 40Kg terminal mirror in an in-
terferometer arm long 4km, showing
the different power-law dependence
of the left and right tails.

From this formulae we can see that, to reduce
the thermal noise, one can use more massive
mirrors improving their inertia, cooling systems
to reduce T , improving the quality factors of the
test-mass system. The main reason of the latter
is that, while we have assumed in Equation 2.9
that Qi does not depend on frequencies, this
is true only near the resonance frequencies: far
from there Qi ∝ ωG, then the spectral amplitude
of the mirror mode i will be

√
Shi ∝ ω−1G for

ωG << ωi, and for ωG >> ωi we have Qi ∝
ω5
G ⇒

√
Shi ∝ ω−5G (see Figure 2.4).

Looking left plot on Figure 2.5, it can be
seen that at low frequency the most significant
source of thermal noise are the suspensions of
the mirrors. The thermal noise from the mirrors
has a resonance above the operating range, so
the left power-law tail affect the sensitivity of the
detector in the most sensitive frequency band.

To achieve a noise thermal spectrum ≈
10−23 1/

√
Hz with a test-mass system at room

temperature it should be Qi ≈ 106, and this
requires a lot of effort. In particular, the ther-
mal noise associated with the mirror coatings,

required to have high reflectivity, limits the sensitivity of the present-day second
generation detectors in the most sensitive frequency band. For this reason it’s very
promising the development of cryogenic techniques for the upcoming gravitational
detectors (e.g. KAGRA, Somiya, 2012).

Setup imperfections

As for any real experiment, there are a number of uncertainties when we setup
and use the instruments. There are three main sources of noise caused by these
imperfections:

• the laser power fluctuations, as we already mentioned, give an additional term
to the quantum noise, since the latter depends on the light power of the beam.
As we said, to reduce the readout fluctuations the interferometer uses dark
fringe and phase modulated beams ;

• misalignment, error on lengths of the cavities, differences in the geometry
of the spherical mirrors (e.g. curvature radius), differences in the optical
characteristics of the cavities (reflectivity, losses) will cause imperfection in
the setup of the operating point, causing an imperfect best SNR and an
amplification of fluctuations on the laser frequency;
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Figure 2.5: Left: recap of all the main noise sources (Aasi et al., 2015a). Right: the
sensitivity curves of the LIGO detectors.

• to avoid light diffusion, every part of the interferometer is in high vacuum
with P ∼ 10−7 − 10−9Pa. Nevertheless, the residual gas pressure P cause
fluctuations due to scattering of beam photons which power spectrum can be
approximated as

Shvac & 7 · 10−25
(

P

10−7Pa

)− 1
2

Hz
1
2

2.1.4 Antenna pattern

As we said in Section 1.4, a TT-gauge gravitational wave is seen in different ways
depending on the wave polarization and direction between the observer and the
source rotational axis. Since an interferometer doesn’t have a spherical geometry,
similarly the geodesic deviation induced by a gravitational signal to the arms of the
detector will cause different response, depending both on the polarization of the
wave and the propagating direction of the incoming wave, with respect the plane
where the arms lay. This means that the detector has different sensitivity to signals
coming from different directions: an interferometer in a certain position on Earth
“watches” different sky positions more or less well at a time t, as can be seen in
figure 2.6.

2.2 Searching signals in the data
Up to this point we depicted two sides of the big challenge for the detection

of gravitational waves: which form we expect from the signal for various source
types and how the detectors work. Now we need to join these two different but
complementary aspects, trying to explain how we can extract a possible signal from
very noisy data.

First of all let’s consider how we manage the data. The raw output of the
photodiode of an interferometer is a sampled measure of light power, this is called



2.2. SEARCHING SIGNALS IN THE DATA 37

Figure 2.6: Top: antenna pattern for a Michelson interferometer, in the small antenna
approximation, for +, × and averaged polarization. The beam splitter is at the origin
of the pattern and the arms orientation are indicated by the solid black lines. Bottom:
antenna patterns represented as colorbar plots on a Mollweide projection of the Earth,
for LIGO and Virgo interferometers. The plot shows at a fixed time how at different
position on Earth a detector can respond to a gravitational wave signal, in function of the
incoming direction in the sky.

time series. A time series from our detectors is then basically a long stream of
digital random voltage measurements, with discrete times (ti+1 − ti = sampling
time), where a subset of the series with duration T will be different to the next
one. Conversely, the expected signal are deterministic well defined functions of time
(stochastic background excepted).

A useful way to study fluctuations and oscillations is to work in frequency
domain via the Fourier transform. Being s(t) the series or the signal function, we’ll
express its Fourier transform as S(ν). Since the time dependence is discrete, the
Fourier transform is computed via Fast Fourier Transform (FFT) algorithms.



38 CHAPTER 2. DETECTING GRAVITATIONAL WAVES

2.2.1 Data characterization

With a set of data in a certain time or frequency interval, key tools for data
analysis are operations that relate pairs of function. Considering for example two
functions of time s1(t) and s2(t). We can define then3

Cross-correlation (s1 ? s2)(t) :=
∫ +∞
−∞ s1(τ)s2(t+ τ)dτ . This is a way to express

the degree or relatedness of s1 and s2 with a certain offset t. An immediate
example of use is the cross-correlation between the time series from two
interferometers, with a offset t = D/c, where D is the 3D Euclid distance
between the two detectors.

Auto-correlation (s?s)(t) :=
∫ +∞
−∞ s(τ)s(t+τ)dτ , setting s1 = s2 = s in the above

definition. Chosing various time lags ti, this is a measure of the relatedness
of a function with itself at different offsets. Obviously for t = 0 (and t = kT
for periodic functions with period T), the autocorrelation has a maximum. It
could be a good tool when we see a “bump” in a time series and we want to
know if and how often this bump occurs again. The zero-lag autocorrelation
is quite useful because (s ? s)(0) ≡ 〈s2〉, that is the squared mean over the
sample. If the function has zero time average, then 〈s2〉 = σ2 and (s ? s)(0) is
the variance of the function, giving us the magnitude of the noise. So if s(t)
is a random time series, the power spectrum of s is the Fourier transform of
its autocorrelation function

Ps(ν > 0) :=
2√
2π

∫ +∞

0

(s ? s)(t)e−i2πftdt,

where there is a factor 2 because we don’t define power spectral density at
negative frequencies. The amplitude spectral density is in turn defined as
s(ν) :=

√
Ps.

Convolution (s1 ∗ s2)(t) :=
∫ +∞
−∞ s1(τ)s2(τ − t)dτ . The different sign of the time

offset in the definition changes the meaning of the integration, since while the
correlation is a measure of similarity of a function with respect to another
function, the convolution is an operator that modifies a function using a
defined template. It is well suited, for example, for filters: a function that
firstly matches the the end of the filter with the time series start, then slides
on it changing its shape. Defining the impulse response f(t) of the filter as
the output due to an impulsive input applied at t = 0, the output v(t) for a
generic input s(t) will be the convolution v(t) =

∫ t
−∞ s(τ)f(τ − t)dτ . By the

convolution theorem, the transfer function F (ν) of the filter, defined as the
Fourier transform of f , is simply the ratio of the Fourier transforms of output
and input : F (ν) = V (ν)/S(ν).

3To avoid annoying repetitiveness we assume only continuous functions, so the definitions are
in integral form. Nevertheless, when we manage data, they are usually discrete time series. The
conversion to continuous to discrete definitions is straightforward.
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2.2.2 Data analysis with a single detector

As we saw, the cross-correlation gives an estimate of the similarity of two
functions. If we consider a signal template h(t) and the output time series from our
detector o(t), the cross-correlation between them will give us informations about
the presence of the signal h in the data. Let us suppose, for the sake of simplicity,
that the noise follows a Gaussian distribution uniform in frequencies. Then at
each t the cross-correlation (o ? h)(t), with no signal in the data, has a Gaussian
probability distribution too, with a certain average that we can set 0 and a variance
σ2 that, in the chosen hypothesis of white noise, will give our noise amplitude.

If at the time t there is a signal sufficiently strong, then we expect (o ? h)(t)
returns an unlikely high value with respect to the variance of the noise σ2

n. Defining
a threshold on the cross-correlation, in terms of signal to noise ratio SNR, higher
values at certain times will label signal candidates with a certain confidence:
in hypothesis of Gaussian noise, a certain SNR value n, will correspond to a
confidence of nσn. So we can interpret the signal to noise ratio as an estimation of
the probability of the no-signal hypothesis. We can use the idea of a match between
data and a template to filter out the noise and improve SNR. This is the basic
concept of the so-called matched filter.

Optimum filter

Let us consider the convolution between o(t) and the chosen signal template
h(t). It can be shown that in the white noise hypothesis this is the filter that
maximizes the signal to noise ratio. When the noise isn’t white the filtering is a bit
more complicated, because we need firstly to whiten the noise.

It is convenient to work in frequency domain. Being f(t) = h(−t) our impulse
response in white noise hypothesis, and o(t) the non-white noisy output of the
detector, therefore the Fourier transforms will be F (ν) = e−i2πνt0H∗(ν) and O(ν).
To whiten the noise is sufficient to apply another filter before the matched one with
transfer function W (ν) = 1/N(ν)2, where N is the noise power spectrum. Once the
data are whitened, by linearity we can apply F . The optimum filter for non-white
noise will be then

M(ν) ∝ (F ◦W )(ν) =
e−i2πνt0H∗(ν)

N(ν)2
.4 (2.10)

As we can easily imagine, a precise definition of the template of the searched
signal is crucial. For this reason, it is mandatory to model the correct functional
form and, since we can’t know a priori the function parameter values, to define a
bench of templates of the same function, varying the parameters within a likely
parameter space.

4Keep in mind that the proportionality holds because the filters are defined up to a constant
in the templates.



40 CHAPTER 2. DETECTING GRAVITATIONAL WAVES

2.2.3 Coincidences between multiple detectors

In the search for gravitational wave signals, in many cases it is fundamental the
presence of at least two independent detectors. In fact, in principle one could use
only one detector and look for “excess” power in the spectrum, as said before, but
we do not know well enough the noise to exclude that a certain candidate signal is
an artifact due to a disturbance in the noise.

A fundamental way to exclude that case is to use a detector network: different
detectors can exclude internal sources of noise. Moreover if they are in different
places we can exclude external sources5. In this way, fixed a false alarm probability
on every detector, a network candidate signal will be far more unlikely a fake.

There are basically two ways to manage the data coming from two gravitational
detectors. The first is to see coindicences: if we have a candidate signal on a
detector, for example an online matched filter algorithm returns a signal to noise
ratio above a certain threshold for a binary coalescence, then the same template
is searched in the other detectors within a coincidence window depending on the
respective distance. Another way to exclude from data any local features is to
cross-correlate two detectors, using the time series or their Fourier transform and
taking into account the relative distance and orientation. This approach is crucial,
for example, for the search of the stochastic gravitational wave background, since
it is indistinguishable from the noise of a detector (Romano and Cornish, 2017,
B. P. Abbott et al., 2017e).

2.3 Continuous waves search

The search for continuous gravitational waves, both targeted from known pulsars
or blindly over the whole sky, is far more challenging with respect to the case of
transient signals from coalescing binaries. The first difference is the strain amplitude
of the signal: directed searches on known neutron stars gave upper limits on the
ellipticity such that a possible gravitational signal is below ≈ 10−24-10−25 (Aasi
et al., 2015b), 4-5 orders of magnitude lower than detectable binary coalescences.

If we don’t know the sky position of the source, as happens with blind searces,
detecting continuous waves is more difficult also because the dimension of the
parameter-space. In fact, despite we know ∼ 3000 neutron stars from their electro-
magnetic emission, though there may be around a billion of undetected neutron
stars in our galaxy. Since we don’t know anything of such objects, apart for the
many unknown intrinsic parameters of the systems, they can stay at every direction
on the sky. The Doppler modulation due the Earth rotation and orbital motion
with respect to the source will spread the monochromatic signal from a neutron star
in many small peaks in the power spectra. Unable to properly correct the Doppler
effect, in blind searches we use appropriate precautions, preventing the Doppler
spread at the cost of a limited time integration in the Fourier transform of the time
series. Doing this, we can use the characteristic path in the frequency/time plane
of the Doppler modulation to recognize candidate sources.

5Up to disturbance of Earth size scale, like fluctuations of the Earth magnetic field (Izabela
et al., 2017).
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If we had an isolated detector freely traveling in space, in principle one could
simply think to gather a time series with length T and search for a sinusoidal signal
from a rotating system in an extremely high (the signal to noise ratio will be ∝

√
T )

and narrow peak of the power spectrum. With this idea one could want to integrate
over the longest possible time series.

However, our detectors are on Earth and the Doppler modulation is unavoidable,
causing the fact that a sinusoidal peak is spanned with time on various frequencies,
with a significant loss of signal significance. In the spectrum there will be indeed,
instead of the single peak of a monochromatic signal, the characteristic carrier plus
the sidebands corresponding to the modulation. For a modulation with frequency
νm, the number of sidebands at a frequency ν is δ(ν) ≈ ν/νm and each sidebands
peaks have an amplitude ≈ 1/

√
δ (Saulson, 2017).

So we have a situation where the spectrum peak should grow as the square root
of the integration time, but the frequency resolution of the Fourier transform goes
as 1/T , letting soon the sidebands to be resolved. With a sufficiently short time
series, the Fourier transform will not suffer the modulation because the spread will
be less wide than the resolution in frequencies, and every sideband will fall in the
same frequency bin.

For the daily modulation (νm = 1.2 · 10−5Hz) there are ≈ 10 sidebands, causing
a factor 3 amplitude loss; with the annual modulation (νm = 3.2 · 10−8Hz) there
are ≈ 106 sidebands and the spectral peak will be reduced by a factor of 103.

To solve the problem, we must Doppler correct the detector data: if we know the
sky position of a candidate source we can easily recover the original peak removing
the sidebands. The precision on the sky position needs to be quite fine anyway, since
with a better resolution in frequency domain we need as much a precise correction
of the Doppler effect. In all-sky searches this become unmanageable, since we have
to correct the data for any sky position.

These considerations are in the hypothesis of a stationary detector noise and
a perfectly coherent signal from the source. In reality we have disturbances and
glitches both in the instrumental noise and in the signal from the source, adding
more difficulties to the described picture.

For these reasons research groups in the Virgo and LIGO collaborations have
developed algorithm and hierarchical procedures to try to extract the signal from
the data of the gravitational interferometers (B. P. Abbott et al., 2017a), trying
to reduce the computational cost with small sensitivity loss. In the following we’ll
summarize the Frequency-Hough pipeline analysis (Astone et al., 2014), which core
is an implementation of the Hough transform (Hough, 1962). In the next chapter
we’ll describe in details how the Hough transform works and why has a central role
in the analysis method.

2.3.1 Analysis pipeline

In this section we will focus on the data analysis of a wide-band all-sky search
for gravitational waves emitted by asymmetrical rotating neutron stars, using the
data from the LIGO and Virgo detectors. It is structured in hierarchical procedures,
developed to allow large computational cost reduction trying to minimize the loss
in sensitivity with respect to a directed or targeted search.
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The procedure uses data time series from the detectors to compute a database
of short fast-Fourier transforms (FFT ) at various frequency bands with length,
depending on the chosen band, from ∼ 15 to ∼ 120 minutes. Every FFT is whitened
and from each one the most significant peaks are selected, building a frequency/time
map of the selected peaks and correcting the frequencies removing the daily and
annual Doppler effect. The heaviest part is then the computation of the Hough
transform, looking for a straight pattern of peaks that could suggest a sinusoidal
signal with a certain frequency and spin-down. For every possible pattern found
by the Hough, signal candidates are selected and matched with the candidates
selected by the same procedure in the data from the other detectors. The coincident
candidates are then subject to various verification steps and to a follow-up analysis
in order to confirm or reject them. Let’s give a few more details on every step.

Short Fourier transforms

The Fourier transforms are obtained with FFT algorithms, using detector
calibrated data divided into chunks interlaced each other by half. The time series
are cleaned, removing identified disturbances before the FFT computation and
putting to zero every data collected during non-science times.

It has been chosen to use different data chunk durations TFFT to compute the
Fourier transforms in different frequency bands, following a criterion according
which a possible signal is spread by the Doppler effect lesser than a frequency bin.
Since the resolution of the Fourier transform goes as the inverse of the integration
time, the frequency bin is 1/TFFT . Choosing TFFT of the order of minutes or
hours we are sensible to the daily modulation, then the maximum FFT duration
and the maximum frequency of the Fourier transform are related by the equation
TFFTmax ∼ νm/

√
νmax s , where νm = 1.2 · 105Hz is the daily modulation frequency

and νmax is the chosen maximum frequency of the FFT.
In order to satisfy in a practical way this criterion is enough to choose four

different TFFT corresponding to four frequency bands:

ν(Hz) TFFT (s)

10-128 8192
128-512 4096
512-1024 2048
1024-2048 1024

Given Nt chunks of the selected time series, the unit time is the TFFT of the
frequency band chosen, and the single FFT is identified by a time kTFFT/2, with
k = 0, ..., Nt (the factor 1/2 is due to the interlace of the FFTs). In a FFT, the
frequencies are identified by a frequency j/TFFT , where 1/TFFT is the width of the
jth bin.

Peakmap

Once we have the full FFT database in the chosen time and frequency intervals,
a good way to have informations on the ith FFT Si(j) over the frequencies νj =
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j/TFFT , is to compute the ratio between the periodogram SPi(j) = |Si(j)| and the
auto-regressive average spectrum SARi :

Rij =
SPi(j)

SARi(j)
.

In the Rij matrix we select elements, in the time-frequency plane, for which
both the conditions are valid:

• Rij is higher than a threshold θ,

• it is a local maximum,

and they are called peaks. The full set of peaks forms a peakmap, which is then a
binary image on the time-frequency plane.

The double conditions choice lowers significantly the number of peaks selected,
reducing the computational cost, and most importantly makes the pipeline less
vulnerable to spectral disturbances, increasing the robustness of the research at a
price of a relatively low sensitivity loss (Astone et al., 2014).

It’s important to estimate how many signal peaks can be missed and how many
noise disturbances are instead selected in the peakmap, because both affect the next
step of the analysis. Assuming gaussian noise, given the size of Rij as N = NtNν ,
the probability to select n peaks by random fluctuations of the noise follows a
binomial distribution, with expectation value Np0 and variance Np0(1− p0). The
probability p0 to have a local maximum above the threshold θ due to the noise is

p0 = e−θ − e−2θ +
1

3
e−3θ. (2.11)

If we have a signal with spectral amplitude λ, the probability to select a signal
peak is instead

pλ ≈ p0 +
λ

2
θ(e−θ − e−2θ + e−3θ). (2.12)

Then we have that both false dismissal probability (1 − pλ) and false alarm
probability p0 depend on the threshold θ.

Doppler correction and Hough map

The Hough transform will be treated in details in the next chapter (Section 3.2)
but, shortly, it is a method to recognize patterns in images (Hough, 1962). In its
simplest implementation, it identifies straight lines in the image, returning their
parameters as coordinates in the parameters space.

Besides we didn’t correct the Doppler effect from the data so far, it is still
necessary to remove it, because with the Hough transform it is simpler to search
for a straight line than a double modulated signal by daily and annual frequencies.
In order to do this, remember that we chose the FFT length such that the signal
power by the Doppler effect remains in the same frequency bin. For this reason it is
just necessary to shift the frequency values in the peakmap for each FFT, for every
sky position we want to analyze, according to the velocity vector of the detector
during the FFT sum time. In this way a double sinusoidal pattern in the peakmap,
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Figure 2.7: An example of a peakmap before the Doppler correction. It can bee seen
the hardware injection of a pulsar modulated by the annual Doppler effect.

due to the superposition of orbital and rotational Doppler-shifts, becomes a straight
line. A good correction is crucial, since with the Hough transform we look exactly
for a straight line, and a deviation from the equation 2.13 causes a heavy loss in
sensitivity.

After the Doppler correction we look in the peakmaps for characteristic patterns
of emitting neutron stars. We expect a frequency that varies over time according
to the spin-down parameter ν̇0, assuming the second order spin-down contribution
can be neglected:

ν(t) = ν0 + ν̇0(t− t0) (2.13)

where ν0 is the source reference frequency at time t0. So the patterns we look for
in the peakmap are straight lines over the whole observation time, with a reference
frequency ν0 and the spin-down ν̇ as slope.

The Frequency-Hough transform is an implementation of the Hough transform
from the observed frequency/time plane in the source reference frequency/spin-down
plane: every point (t− t0, ν) in the peakmap is transformed in a straight line with
slope −1/(t− t0). In this way we obtain that every collinear peak of a signal will
form straight lines with different slopes in the Hough map, generating a family of
lines intersecting in the same point of the parameters space. The coordinates of
the incidence point give the parameters of the signal straight line in the peakmap:
ν0 and ν̇0.

This is the core of the analysis, since it is the part where actually the data are
inspected to search signals, and represent also the heaviest computational stage of
the pipeline.
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Candidate selection and coincidences

When we have computed, for the observation time and the frequency band
chosen, the full set of Hough maps for every sky position of interest, a certain
number of candidates N are selected from each Hough map. There are several
possible selection criteria, but the one used in the Frequency-Hough pipeline aims
for robustness using a maximum selection, in order to avoid to be overwhelmed by
disturbances in a similar way to the peak selection criteria. The selection indeed
is done splitting it in N frequency belts and searching in each belt for the pixel
with the highest amplitude n. For every candidate selected, its parameter-space
coordinates and critical ratio are stored. The latter is defined as

CR =
n− 〈n〉
σn

(2.14)

with 〈n〉 the average amplitude in the belt and σn its standard deviation. The
second highest candidate in the belt is chosen if it is above the stripe average
amplitude and far enough from the primary one (Astone et al., 2014).

Actually, the presence of disturbances in the data, both in time and frequency
domain cause the Gaussian noise hypothesis fall. In this situation the average
amplitude suffers the presence of a long tail in the distribution, and a median results
to be more robust (Astone et al., 2014). Using the median it is possible to define
an estimator of the dispersion parameter, to use instead the standard deviation.
Calling m(x) the median of a random variable x, the dispersion parameter is defined
as

s(x) =
m(|x| −m(x))

C
,

where C = 0.6745 is a normalization factor such that s(x) = σx is x follows a
Gaussian distribution. The CR definition become then straightforwardly

CR =
n−m(n)

s(n)
.

Once we have selected N candidates for every sky position, using the data from
one detector, they are stored all together. We expect that most of the selected
candidates faked a signal, then we have to do a deeper analysis in order to reduce
the false alarm rate.

The first and most important step is the search for coincidences comparing the
candidates gathered from two detectors. Since many candidates can be sons of the
same signal or disturbance, before the coincidence step it is useful to cluster similar
candidates.

Given two datasets, each one with N1,2 candidates, the discrete parameters
space coordinates of two candidates chosen from the respective dataset are c1,2 =
(λ1,2, β1,2, ν1,2, ν̇1,2), with λ, β sky position in ecliptic coordinates. The distance
d is defined as the Euclid norm between them, and the coincidence of a couple
of candidates from the two datasets is established if they have a distance in the
parameter space below a certain value, e.g a few bins for every dimension. When
this condition is satisfied, the coincidence is set and the candidates are stored for
further analysis.
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Both choices on the number of candidates for each dataset and the number
coincidences to select Ncoin, depend on a compromise between computational cost
and search sensitivity.

Verification and follow-up

To further reduce the number of false candidates is useful to do some verifi-
cation on the coincident candidates, in order to have a further reduction on the
computational cost of the last step of the analysis: the follow-up.

Firstly we remove any candidate associated to known calibration or resonance
line, then we check whether the candidate couple has compatible amplitudes, since
we expect that the signal amplitude estimation from the Hough map should be the
same in different dataset.

The last step of the selection is to impose a critical ratio threshold on the
coincident candidates. This is a delicate step, because both the computational
power and the search sensitivity depends on the CRthr chosen.

Surviving candidates are subject to a follow-up analysis. It consists in a deeper
analysis of a small portion of the parameter space of each candidate, using new
longer FFTs with a longer integration time and a new Hough transform stage.

This last step do not change the research sensitivity, which depends on the
thresholds and selections explained above. In other words, a signal discarded before
can’t be recovered. However we still need to reduce the false alarm probability to
increase the detection confidence.

2.3.2 Sensitivity estimation

The amplitude of a pixel in the Hough map, in the hypothesis of only noise data
follows a binomial probability distribution, with average number count 〈n〉 = Np0
and standard deviation

√
Np0(1− p0), with N the number of FFT of the peakmap

and p0(θ) the probability in equation 2.11. The critical ratio of a pixel with count
n will be then

CR =
n−Np0√
Np0(1− p0)

. (2.15)

Both θ and the threshold on CR influences the sensitivity of the research. In the
following we’ll assume the noise fluctuation follow a random Gaussian probability
distribution. The sensitivity obtained will be a good optimistic approximation of
the true research sensitivity.

Choice of θ

A criterion for the choice of the threshold θ in the peakmap construction should
reduce considerably the computational power with a low sensitivity loss.

We can define the spectral amplitude of a signal with the square module of
its Fourier transform H(ν), in units of equalized noise expressed in terms of the
detector noise spectral density Sn(f):
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Figure 2.8: Plot of the function Φ for various signal amplitude values. Blue continue
curves correspond to local maxima above threshold peaks, red dashed to only above
threshold peaks condition.

λ =
4|H(ν)|2

TFFTSn(f)
.

A good criterion to the choice of θ can be then the maximization of the expec-
tation value of CR when a certain signal with spectral amplitude λ is present:

µCR(θ, λ) =
N(pλ − p0)√
Np0(1− p0)

=
√
NΦ(θ, λ)

As can bee seen plotting Φ (Figure 2.8), with a low signal amplitude the value
of the function varies weakly with θ ∈ [1, 3]. For this reason, since we expect faint
signals, a good choice can be θ = 2.5 for any λ. Fixing this threshold the sensitivity
loss is negligible (∼ 1%) with respect to a threshold set at the maximum of the
function Φ , with the advantage of a heavy peaks number reduction in the peakmap,
thus reducing a lot the computational cost of the Hough transform.

Moreover, the gain in sensitivity we could have selecting every peak above
threshold in a FFT, instead the local maxima, carries a sensitivity improvement
of ∼ 5% with the drawback of ∼ 9% computational load increase (Astone et al.,
2014). Most importantly, the selection of only the maxima gives more robustness
to the analysis. In fact, often a disturbance in the data affects a group of neighbor
frequencies, generating a high number of peaks in the FFT spectrum. If we select
only the maximum one, the risk to be blinded by a disturbance is far lower.

Choice of CRthr

Let us suppose to have a set of candidates selected from the Hough and that, in
the frequency band chosen for the analysis, TFFT is constant and that the number
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of selected candidates isn’t frequency dependent.
Typically the amplitude of a pixel in the Hough map in a long time analysis is

quite high (& 102), then we can use the Gaussian approximation to the binomial
distribution to give the probability of n counts:

Pθ,λ(n) =
1√

2πσ2
e

(n−µ)2

2σ2 ,

with µ = Np and σ2 = Np(1− p) where p is p0 in the only noise hypothesis or pλ
in presence of a signal.

If we define CRthr = CR(nthr) with fixed N and p0, using the above approx-
imation the probability to select candidate in the no-signal hypothesis (i.e. the
candidate is due only to a fluctuation of the noise) can be computed easily with
the complementary error function

Pfa(nthr) =

∫ ∞
nthr

Pθ,0(n)dn =

=
1

2
erfc

(
nthr −Np0√
2Np0(1− p0)

)

=
1

2
erfc

(
CRthr√

2

) (2.16)

Since we selected candidates with the highest CR, in the no-signal hypothesis
we have that Pfa = Ncand/Ntot, where Ncand is the number of fake candidates and
Ntot is the total number of points in the parameter space of our analysis. Then the
threshold on CR can be written as

CRthr =
√

2 erfc−1(2Pfa) =
√

2 erfc−1
(

2
Ncand

Ntot

)
(2.17)

We can choose a CRthr such that the false alarm probability is below a certain
value, remembering however that in this way we can exclude a true signal candidate.
Indeed, the threshold on CR is an important parameter of the sensitivity of the
research, as much as of its computational cost.

2.3.3 Search sensitivity

The sensitivity with a confidence level Γ is defined as the minimum signal
amplitude which would produce a candidate in a fraction ≥ Γ of a statistical
ensemble of the experiment. It does not depend on the result of the analysis, i.e.
the actual candidates chosen and verified.

The probability to select a candidate with a count above a chosen threshold, for
a given signal spectral amplitude λ, is

Pn>nthr(λ) =

∫ ∞
nthr

Pθ,λ(n)dn.

We can obtain the sensitivity value imposing Pn>nthr(λ) = Γ, and we’ll get
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Figure 2.9: Left: plot of λmin vs CRthr with Γ = 95%, θ = 2.5 and NFFT ≈ 3400.
Right: dependence of Pfa with CRthr.

erfc

(
nthr −Npλ√
2Npλ(1− pλ)

)
= 2Γ.

Solving the equation in the small signal approximation, we have the minimum
detectable spectral amplitude, function of θ, CRthr and Γ

λmin ≈
2

θ

√
p0(1− p0)
Np21

(
CRthr −

√
2 erfc−1(2Γ)

)
, (2.18)

with p1 = e−θ − 2e−2θ + e−3θ. The corresponding minimum detectable strain
amplitude, given the detector spectral power Sn(f), is

h0min ≈
4.02

N1/4θ1/2

√
Sn(f)

TFFT

(
p0(1− p0)

p21

) 1
4
√
CRthr −

√
2 erfc−1(2Γ) (2.19)

It’s important to point out that λmin is linearly dependent on the critical ratio
threshold, while the sensitivity loss dependence on θ showed in figure 2.8 is always
weaker in the small signal hypothesis. However, the false alarm probability relation
with CRthr is much stronger since is driven by the complementary error function:
if we choose a lower CRthr the computational load of the follow-up will raise much
more than the sensitivity improvement (see Figure 2.9).





Chapter 3

Continuous waves with the GPU
Hough transform

In this chapter we’ll focus on the programming and computational part of the
search for continuous waves.

One of the main objectives of this Thesis work is to study and demonstrate the
feasibility of a complete continuous waves analysis with GPGPU (General-Purpose
computing on Graphics Processing Units), using a high level programming code.
From the many existing libraries and frameworks, I chose the younger one developed
by Google and released with an open source license: TensorFlow (2017).

TensorFlow works with CUDA Toolkit libraries from NVIDIA and it is based
on Python, with a symbolic programming paradigm and a syntax similar to high
level scientific programs/languages such MATLAB, or numeric Python libraries like
Numpy. Despite it has been originally developed for machine learning and neural
networks, TensorFlow fits well for a wide variety of purposes and, specifically, for
scientific data analysis. The main reasons of this choice are:

• high GPU efficiency;

• high level programming, which implies fast development of new codes and
relatively low steep learning curve;

• linked to the above point, but very important to deserve a dedicated one,
high level programming implies high portability: a developed code can run on
every CUDA GPU, without the need to force the user to heavy customization,
memory management, cores management.

Once we have summarized the main characteristics of GPGPU, in the rest of this
chapter it will be explained how the Hough transform works and why is important
a GPU version with efficient parallelization. At last, the new algorithm will be
applied in a semi-directed analysis of the sky region around the galactic center, with
a setting similar to the all-sky searches (Aasi et al., 2016, B. P. Abbott et al., 2017a),
in order to extract a set of continuous signal candidates to be further analyzed
successively. As I’ll show, this first version of the GPU algorithm goes 20 times
faster, on a single Tesla K20, than the original MATLAB code on a Xeon CPU
with twelve 2.40GHz cores. An all-sky search works on a huge parameter space,

51
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Figure 3.1: Scheme of joined CPU-GPU computation: the sequential part of a program
is more efficiently managed by the CPU, while the GPU manages the massive parallel
computations which on CPU would cause a much higher total computation time (image
from nvidia.com).

requiring millions of core hours, a GPU parallelism could bring to a significantly
higher computation efficiency, allowing to run much deeper analysis.

3.1 GPGPU

In the last years the need for higher and higher computational power collided
with the increasing physical difficulty and cost to obtain faster CPUs with higher
clock rate. With the end of the so-called Moore’s law, it has become crucial to
apply more and more parallelization on the computing systems. While the first
obvious practice is to parallelize CPUs, the cost of a CPU cluster is still quite high
and performances difficult to manage.

Since the ’70 of the last century, the videogame development needed a high
performance (for the time) dedicated computing hardware, to compute at a high
rate images describing 2D scenes. In the ’90s, with the birth of 3D graphics, it
became mandatory to use dedicated devices to render 3D scenes, and the 2D
rendering was brought on CPU, since new technologies allowed to manage the latter
directly in the central processor of the host system.

These devices are the Graphing Processing Units, structured as integrated
circuit on a board with various components: mainly interfaces, memory and graphic
processors. From the beginning the GPUs are designed to split the task of draw a
scene on different core types: one manages the shaders, i.e. small programs which
describe the physical aspect of an object with respect to light, shadows, colors, able
to simulate a 3D object; the second type manages texture mapping, that means
that deforms a 2D image and applies it on the 3D model; the last type collects the
informations coming from the other processors to render the image we see on the
screen. Despite the first GPUs had substantially the same number of cores for each
type, the shaders processors are the most important because carry the heaviest
part of the work: they basically build the 3D scene.

The typical problem a GPU solves is to compute which different pixels of a
monitor should show something, taking into account the user interaction, the
neighbor pixels and the physical dimensions of the scene. Everything has to be done

http://www.nvidia.com/object/GPU_Computing.html
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Figure 3.2: Left: trend of GPU and CPU FLOPS capability in the last ten years. Right:
a simple benchmark on the device used for the Frequency-Hough analysis, based on the
generation of two random arrays and a matrix multiplication on them. Looking the green
dots, it can be seen how the performances both in computational time and memory usage
are worst using 64 bit data: at ∼ 2 · 108 pixels the GPU went out of memory. The devices
used for the test are a NVIDIA Tesla K20m, with ∼ 2500 cores at 706MHz and 5GB
memory, in an host system with 60GB RAM and an Intel Xeon CPU E5-2620 v3, with
12 2.40GHz cores, 2 threads each one.

at a high rate (around the refresh rate of the screen, 60Hz usually). To manage
such computations, it is useful to have a high number of processors, which take care
of different tasks and image pieces, communicating each other in a very efficient
way with shared memories. Indeed this is the basic description of the structure
of a GPU: a device thought and developed in time to do, with the best possible
efficiency, computations with an extremely high parallelism.

The challenge between the ever-increasing demand of realistic graphics and the
very fast technology evolution, brought to have at present days GPUs with hundreds
and even thousands of cores and various GB of dedicated RAM. In Figure 3.3 are
shown three images which can give an idea of the difference in computational power
needed to reproduce an image from 2D to 3D videogames, and from the first 3D to
present days. Nowadays, a 3D scene is a real detailed physical simulation with a
high level of complexity and likelihood.

Despite the single core of a typical GPU has a lower clock rate than a common
CPU core, it is far more efficient to work in parallel with the others, while CPUs
are still the best option to do sequential calculations. A good approach is then
to demand serialized operations to the CPU and reserve the GPU only or well
parallelizable problems, where it gives far more computational power than a single
multi-core CPU of similar cost (see Figure 3.1 and right panel in Figure 3.2).

Thanks to the GPUs technology, the processing power for floating point calcula-
tions exploded in the last ten years (Figure 3.2, left), and the use of GPUs in many
different fields, from scientific research to economics and so on, gave birth to the
general purpose GPU computing. The most fascinating thing of this evolution is
that, at a low cost, most people have a multi-core system for highly efficient parallel
computing in their own personal computers.

In this contex, with the creation of CUDA (2007) and OpenCL (2009) libraries,
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Figure 3.3: An example on how the video rendering evolved from the ’80s to present
days in videogames industry. It’s easy to imagine how much more computational power it
has been necessary to develop, in order to pass from 2D to 3D rendering, and at present
days, to add physical simulations at displayed scenes and interactions of the user.
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it has been established the development and production of GPUs dedicated to
scientific massive calculations.

The two main competitors AMD and NVIDIA can be considered, with exchang-
ing fortunes in time, at the same level from the point of view of reliability and
computational power of their respective products. However, the latter has expanded
in the GPGPU market thanks to well documented APIs together with a high degree
of optimization on the relative architecture in its GPUs.

Since a GPGPU software developer in principle wants to optimize his/her
codes to run them as fast as possible on a device, the most natural programming
languages to work with CUDA are of low-level type (C, C++, Fortran). This made
the approach to GPU programming very steep, because of the need to manage at
low level every piece of the data and instruction flow in the various part of the
device. For this reason in 2015 Google developers released, under Apache 2.0 open
source license, a new high-level framework for GPGPU programming, based on
Python. It uses the full set of CUDA libraries and it allows to work with a general
compilation of the package for Python, or compile it specifically for a given GPU,
to obtain a higher level of optimization.

3.1.1 Fundamentals of GPU computing

Figure 3.4: Schemes of three differ-
ent programming paradigms (image
from arstechnica.com).

The difference between serial and parallel
computation consists in the application of in-
structions to a set of data together (Single In-
struction on Multiple Data), instead of applying
them once at a time (Single Instruction on Sin-
gle Datum). GPU parallelization as a slight
different paradigm called stream processing, well
suited for big data.

In the stream processing paradigm the data
are organized in blocks, often called batches ; in
a similar way the instructions are grouped to-
gether in kernels. Under the hypothesis that
the instructions are completely non-sequential,
the kernels are roughly inner loops where a set
of operations are applied to all the data in a
batch. Each invocation of a kernel is indepen-
dent, allowing for the parallel execution on N
different threads uniformly. Kernels and data
of a single batch are then distributed over the
core/memory topology of the GPU, where each
core works with SIMD paradigm.

When the data of a batch passed on, the next
one will be loaded on the GPU and instructions
in kernels are ran on the new data. As one can

easily understand, this approach mixes sequential and parallel computing. It is
necessary since very often the data to manage from the storages are orders of
magnitude greater than the memory capability of the used devices. In this context

https://arstechnica.com/gadgets/2006/09/7763/
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it’s important to manage in an intelligent way the input/output pipeline and the
memory allocation.

Both in OpenCL and CUDA the kernels have to be defined separately and
successively called in the code, with a proper assignment of memory and cores for
the data computational needs, depending on the device used. High level libraries
have pre-compiled kernels for their functions. For example, the application of a
TensorFlow function on a set of data means that a kernel is invoked and ran on
the data, with automatic assignment of the computations on the topology of the
specific GPU(s) used.

In GPU programming, both high and low level, it’s important to keep in mind
that:

1. Every operation has to be thought intrinsically non-sequential. The GPU
hardware is optimized to work with uniform streaming, introducing sequential
instructions will be strongly sub-optimal;

2. The memory has to be managed wisely. If the code doesn’t exploit well the
GPU topology, every data transfer could hide bottlenecks in the bandwidth ,
with the outcome that only a little portion of the cores of the GPU are used
together, while the big part of the device awaits new data.

From the big-data point of view, a good memory management is of primary
importance. A GPU has several kinds of memory, but for numerical work the most
useful ones are the shared and global memories. The GPU cores are organized in
blocks each one with a shared memory, and every block communicates with the
global memory (a common dynamic RAM module). The shared memory is 100
times faster in data transfer than the global memory but it is very small (only
48 kB) and it’s used for tiny and very fast operations.

This is only for what concern the GPU memories, but we often need to load
data from the storage or the host system memory to the GPU and vice versa. Every
data transfer of this kind is a big bottleneck of the code execution, because of a
bandwidth usually far smaller than the inner bandwidth of the GPU. Moreover
it involves the CPU and slows the graphic units work in the continuous data
synchronization.

Within the memory capability of the GPU system, the data should be loaded
in the global memory, every needed operation has to be performed and the results
stored, only once per batch. With multi-GPU systems the above prescriptions are
quite similar; in addition one has to consider the communication between different
GPUs, relaxing some optimization conditions if they are directly linked with a
common memory.

At the end of this section it should be clear why the availability of a high level
programming language that works on GPU is a great advantage. A single device
has three different kinds of cores (shaders, textures, rendering), each one linked in
different ways by two different kinds of memory (e.g. global, shared) with different
size and, as we said before, different bandwidth. A code optimized for a device
could be totally a mess with another device, and if one has various systems with
different models, it would be necessary to manage the optimizations differently
from board to board.
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1 import tensorflow as tf
2

3 N = 100
4

5 # Build a graph with:
6 # two matrices with random gaussian values;
7 matrix1 = tf.random_normal((N,N))
8 matrix2 = tf.random_normal((N,N))
9

10 # a matricial product between them.
11 product = tf.matmul(matr1, matr2)
12

13 # Launch the graph in a session,
14 sess = tf.Session()
15

16 # evaluate the tensor ’product’
17 sess.run(product)

Listing 1: Example of a TensorFlow code.

3.1.2 TensorFlow

TensorFlow, developed originally for machine learning, has become a complete
framework for numerical computation with its release, and now it is quite general
to be used in various areas.

As previously mentioned, the main characteristic of TensorFlow is the high-level
structure. The way it works in the execution of codes follows the natural operation
of the GPUs with the stream processing mentioned above, and takes advantage of
it with a full symbolic programming frame. It uses the dataflow paradigm, which
is an equivalent definition of stream processing, where a program is modeled as a
graph of operations, where the data flow through.

The central unit of data in TensorFlow are N -dimensional arrays called tensors.
Operations on the tensors are represented by nodes in the graph (displayable by the
TensorBoard visualizer, see figure 3.9), while the edges are the input/output tensors
which link the operations of the flow. The graph is then a series of operations
interchanging tensors: every instruction of the code is a symbol and acts logically
as a function. It is not runned until it is specifically called by the interpreter.

A simple example can be the code used for the benchmark in Figure 3.2 (see
Listing 1). When one wants to execute a code, it is necessary first to open a
TensorFlow session (row 14) which will build the graph defined by the instructions
before. The above code is represented with the graph showed in Figure 3.5

Subsequently it is possible to call the instruction that returns the values in-
terested (row 17). When product is called, matrix1 and matrix2 are generated
and the data are used by the next command: the two 100 × 100 edges go from
the matrix1 and matrix2 nodes to product. On the evaluation the interpreter run
in series every command in the graph which serves to evaluate the chosen node,
like a chain of functions, using the GPU kernels already included in the built-in
TensorFlow functions definitions.
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Figure 3.5: TensorFlow graph of the example code.

This is useful because in this way one can define and create tensors directly on
GPU, or run instructions using only the GPU memory once the data are loaded
there, involving the least possible the CPU, with the least possible data transfer
between the GPU and the host system memory. If a TensorFlow code is well
written, it will manage with high efficiency memory and core topology, with no need
by the user to manage every low-level aspect of the computation. Moreover, the
same Tensorflow code ran on a single GPU, with a few more code lines and little
extra effort, can be extended on multiple GPUs very naturally. In fact TensorFlow
is developed to work efficiently with multiple GPUs, thanks to the big-data and
neural-network original purpose of the framework.

It’s important to remark that in TensorFlow there are two kinds of tensors:
constant and variable. The one used so far is the constant kind. When it is defined
it becomes an uneditable node in the graph, which remains and occupies memory
until the session is closed. Moreover, every operation on a constant is a new
node. For example, an instruction on a loop cycle will open a new node at every
iteration, filling the GPU memory. For this reason, when it is unavoidable a certain
serialization there exists the variable tensors. A variable is still a node in the graph,
but can be modified and updated. While a constant is thought for a direct single
calculation which occupies at most the whole GPU memory at once, variables can
be used for more complex tasks.

Despite it is surely young and sometimes unripe (version 1.0 was released in
February 2017), it is experiencing a very fast development with exciting improve-
ments and extensions, thanks also to the community contribution granted by the
open source approach.

3.2 Hough transform

The so-called Hough transform is a method patented by Hough, 1962, for patterns
recognition in pictures. It was conceived for the study of subatomic particle tracks
in bubble chambers. At the time, to see the tracks of charged particles in the
bubble chamber medium, they were photographed at each event, and a human
trained observer used to spend hours analyzing each picture to distinguish the
various tracks of an event. When the event rate became too high, it was necessary
an automation system for the tracks recognition. The one proposed by Hough was
to split the image of an event in sufficiently small sectors such that a curved track
is divided with good approximation in line segments. For each sector he built an
electronic device able to detect and store parameters of the straight lines.
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Figure 3.6: A Hough transform of two straight lines with different slope.

Considering an image where the line is formed by a series of colinear black points
with a pure white background, the detection of a track using the Hough transform
consists in the transformation of the bubble track picture in another picture (we
can call it the Hough map), where single black points with coordinates (x, y) are
converted in straight lines with slope and intercept given by the points coordinates
in the input picture. If we take a sequence of points along a straight track with
equation y = mx+ q, they will be represented in the Hough map by straight lines
changing slopes and intercepts and, by simple Euclid geometry consideration, they
will form an intersecting family of lines. The coordinates of the incidence point, in
the Hough space, will be the parameters values (m, q) of the line in the coordinate
space (see Figure 3.6 for an example).

We can identify then the Hough transform space as the parameter space,
according to the parameters of the pattern we are looking for in the input image.
A problem working in the continuum is that, if we have a noisy and disturbed
image, we have to inspect in the Hough map every couple of intersecting lines, to
distinguish the intersections due to noise points from the actual signal colinear
points in the input image. The computational effort will be unmanageable since it
goes as n2, with n the number of points inspected in the image. It is then necessary
to impose a certain discretization in the parameter space (Duda and Hart, 1972).

In practice we always work with digitized images, then the parameter space is
already discretized: using images with many non-zero valued pixels, the transform
will return a Hough map with a certain resolution. The Hough map will be then a
2D histogram, where many lines may be binned in the same pixel and the pixel will
have a count depending on how many lines entered in that parameter space region.
Then a given pixel in the map records the number of lines passing through it. The
count amplitude on each pixel will give informations on the significance of a point



60CHAPTER 3. CONTINUOUS WAVES WITH THE GPU HOUGH TRANSFORM

in the parameter space, within the error given by the image resolution. In this way
instead of inspecting every line intersection, we simply count the amplitude of the
Hough pixel, with a much lower computation effort.

The Hough transform works also with input images which pixels have not only
binary values but, e.g, a gray scale of values between 0 and 1. In this case a point
in the image is transformed to the Hough map with a weight.

The resolution of the Hough map can be enhanced with respect to the input
image, in order to give a better precision on the parameters estimation. Or,
conversely, if the computation is too demanding, it is possible to reduce the map
resolution to simplify the transformation (at the price of a greater uncertainty on
the parameters estimation).

Moreover, it’s possible to generalize the Hough transform beyond the straight
line pattern recognition: in general we can use an N -dimensional manifold as input
of the transform and an M -dimensional parameter space as output, searching for
other curves than a straight line (Duda and Hart, 1972, Ballard, 1981). This
characteristic makes the Hough transform suitable for many different applications
and is one of the reasons of the success and diffusion of the method.

3.2.1 Frequency-Hough transform

The current implementation of the Frequency-Hough is a MATLAB code which
runs on CPU. Here I will explain how this algorithm works and its main features,
taking into account an optimization valid only for computing on CPU. Further i
will present the GPGPU implementation, specifying when a choice made for the
original code could be changed to obtain a better performance on GPU.

As we said in section 2.3.1, the Frequency-Hough transform starts with an input
peakmap where the Doppler effect due to the Earth’s motion is already corrected.

The transform is from the peakmap frequency/time plane to the gravitational
waves frequency/spin-down parameters plane. With intrinsic frequency ν0 and
spin-down d = ν̇ as parameters of a given neutron star waveform, the expected
path in the peakmap at first order is

ν = ν0 + d(t− t0), (3.1)

where t0 is an arbitrary reference time. Similar to the transform proposed by
Hough, each point in the peakmap with coordinates (t− t0, ν) is transformed into
a straight line in the Hough (ν0, d) parameters plane (Antonucci et al., 2008):

d = − 1

t− t0
(−ν0 + ν)

Since the slope of these lines depends on the reference times, usually it’s
convenient to choose t0 as the half length of the observation time. In this way
peaks on a same row will be transformed on the Hough matrix in lines which span
symmetrically with respect to the reference frequency ν0 column, reducing the
uncertainty of the parameters .

Keeping in mind that the frequency bins in the peakmap have a certain width
∆ν = 1/TFFT , a peakmap point is actually transformed into a stripe between two
parallel straight lines:
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Figure 3.7: An example Frequency-Hough transform of a peakmap with an injected
signal from (Muciaccia, 2017) Thesis. The peakmap is computed with data extracted
from the Virgo-LIGO O2 run, with TFFT = 8192 s. The signal is a simple long transient
from t ∼ 86 h and t ∼ 189 h. Looking the ν̇ = 0 Hz/s row of the map, it can be seen how
the transform could be vulnerable to disturbances or fluctuations of the noise that create
peak patterns. This is the reason because verifications and follow-up on candidates are
necessary.

d± =
1

t− t0
(−ν0 + ν ±∆ν/2)

Using this fact the Frequency-Hough is implemented with a differential method,
more efficient when the frequency resolution in the parameter space is enhanced
with respect to the input space. Which can be summarized as follow:

• the map is initialized as a matrix with as much frequency bins as the peakmap,
and with the number of spin-down bins we want to inspect;

• in a loop, the values of the matrix elements corresponding to the relation
ν0 = ν −∆ν/2− (t− t0)d are incremented by 1;

• once the elements returned by the above relation are found and incremented,
it is straightforward and computationally efficient, in high-level frameworks,
to use array slicing and decrement by 1 the elements corresponding to the
relation ν0 = ν + ∆ν/2− (t− t0)d;

• once the differential map is computed and populated, every row is cumulatively
summed along the frequencies.

An example of the explained Frequency-Hough transform computation is shown
in Figure 3.7.

If we want more precision in the parameters, fixed the maximum and minimum
values of d and ν0, it’s possible to increase the resolution on both parameters, at
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the price of an increment of the Hough map size. A common choice is to define a
new frequency resolution ∆ν0 = ∆ν/10, which grants 8% higher pixel amplitude
(Antonucci et al., 2008), thanks to the reduction of the digitization effect, with
a minor computational increase since the greater part of the load is the creation
of the differential map. Regarding the spin-downs, the most natural choice for
the bin width is ∆ν̇ = ∆ν/Tobs. Enhancing this resolution will bring a very little
improvement in the amplitude of the pixels, since the map goes to only 3.6%
discretization amplitude loss with the natural spin-down binning, to ∼ 2% with
an enhancement factor 2, but at the cost of a big increase in the computations
necessary to populate the differential map (Antonucci et al., 2008).

It’s important to notice that the spin-down of a neutron star could depend
on many phenomena, and the function ν̇(t) could have in principle a complicated
form, even neglecting discontinuities associated to neutron star glitches. Since
the typical values of a neutron star spin-down are quite small, however, a Taylor
expansion stopped at first order is often a good approximation, but higher order
spin-down terms can be necessary for specific cases, e.g. with very young objects.
This, of course, comes at the price of an expansion of the parameter space, with a
corresponding increase of the computational cost.

3.2.2 The GPGPU algorithm for the Frequency-Hough trans-
form

The development of the new Frequency-Hough algorithm started from the
MATLAB code within the SNAG Toolbox (Frasca and D’Antonio, 2017). The first
step of the GPU porting was to write a first fully vectorized version with Scipy
and Numpy libraries (Scipy, 2017). Numpy has a sintax similar to MATLAB, and
TensorFlow takes many aspect of the Numpy sintax, then it was a useful approach
to add progressively more complexity to the development.

Writing a code in a high level programming language, vectorization is a vital
step. Using a library with functions well developed and compiled in a low level
language will be always faster than a custom function with similar instructions.
More importantly, a good numeric library acts in a similar way on scalars and on
arrays, applying efficiently a single instruction on a big amount of data in a way
extremely more efficient than, for example, a Python for-loop. The first goal of the
development work I completed was indeed the removal of any kind of loop.

The successive step was the migration to TensorFlow. Here, the memory
management was crucial. The original code uses data from .mat files with the
peakmaps in a float64 sparse format: since many elements of a peakmap are zero,
usually it is useful to store only the coordinates of the peaks instead the whole
matrix. In the case of a peakmap with Npeaks non-zero elements and size Nrow ·Ncol,
this happens if 642Npeaks < NrowNcol, relation always true with the threshold chosen
to select the peaks and the typical time-frequency ranges of a continuous waves
search. Since I worked on only one GPU with ∼ 5GB memory, it was necessary
to preserve the sparse structure of the input matrices. This could create problems
if time or frequency arrays values exceed the precision of float32 data type: only
workstation GPUs have float64 precision, and it is still very suboptimal with
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Table 3.1: Time computation comparison between the MATLAB Frequency-Hough code
running on CPU and the TensorFlow code on GPU, using the peakmaps from the input
files used for the analysis, generated with data from the 9 months long O2 LIGO run:
for the TFFT = 8192 s frequency band we have a peakmap for each 1 Hz between 10
and 128Hz; for the TFFT = 4096 s peakmaps are large 5Hz from 128 to 512Hz. Each
peakmap in both frequency bands covers the whole run duration. The spin-down range
was the same for both frequency bands ([−10−9, 10−10 Hz/s), bringing respectively to
210 and 105 bins. The devices used are a Intel Xeon E5-2620 CPU with twelve 2.40GHz
cores and a NVIDIA Tesla K20m with ∼ 2500 cores at 706MHz.

TFFT = 8192 s TFFT = 4096 s

MATLAB with Xeon E5-2620 14.2 s 32.5 s
TensorFlow with Tesla k20 (32 bit) 0.72 1.73 s

respect to the 32bit optimization of the hardware. Moreover, 64bit data takes more
space in memory, limiting the parallelization capability of the code.

To preserve the higher computation power of the GPU, all the data were loaded
from a .mat file with the Scipy function scipy.loadmat in the host RAM as Numpy
(float64 by default) arrays, and then passed to TensorFlow with tensors definition
where the float32 data type was imposed1. A better input pipeline can be defined,
using out of memory data load with appropriate file format and libraries. This is
deferred to future work.

The highest challenge in the GPU vectorization of the code has been the
parallelization on spin-down. To limit the memory usage on the single GPU, since
every spin-down row in the Hough map is created independently, I solved the
problem using the tf.map_fn function: it applies a function along every element
of a (possibly nested) tensor, parallelizing the instruction over the GPU. The
integration with tf.cumsum, instead, is intrinsically sequential so it becomes rapidly
the most inefficient part of the code when the frequency resolution is enhanced:
if with enhancement = 1 it represent . 10% of the total computation time, with
enhancement = 10 it raises to the 33%.

Despite some inefficiencies, the GPU Frequency-Hough code runs on a Tesla
K20 very fast, with a factor of ∼ 20 speed-up with respect to the MATLAB code,
as shown in Table 3.1. In Figure 3.8 can be seen a more accurate benchmark. In
Listing 2, I show the commented code of the TensorFlow Frequency-Hough function.

1Since the data type management is subtle with GPU programming, TensorFlow needs type
consistency in the data used for each function, and allows to specify the type output for almost
all functions and tensors definitions.
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Figure 3.8: GPU benchmarks on some key parameters of the Frequency-Hough algorithm
with TFFT = 4096s. Top left: computation time in function of the frequency band covered
by the peakmap. The actual computation times (the dots) are compared to the one I’d
obtain serializing the GPU Hough over 1Hz peakmaps (dashed lines). The red plots show
the halving serial to parallel computation time with a 9 months long peakmap, but with
a faster filling GPU memory. The blue plot comes from a 1 month long peakmap, with
a 20% time gain. Top right: computation time in function of the number of spin-down
step of the Hough, with Tobs = 9 months and ∆ν = 5Hz. Dots and dashed lines have
the same meaning explained above, then the plot shows a 68% time reduction with
respect the serialized case, proving that the vectorization with the tf.map_fn function
is successful. Bottom: relative time increase of the Hough map computation, increasing
the frequency resolution enhancement factor. Unlike the CPU algorithm, the additional
computational load is no longer negligible. The reason is that the integration step is
intrinsically sequential and can’t be efficient on GPU.
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1 def frequencyHough(nu,t, nuDot, w, numRows, numColumns):
2 """
3 Returns the Frequency-Hough transform of a sparse peakmap.
4 Parameters:
5 nu, t : 1D tensors
6 The coordinates of the peakmap in sparse format.
7 w : 1D tensor
8 The values of the peaks.
9 nuDot : 1D tensor

10 The spin-downs values over which calculate the Hough transform.
11 numRows, numColumns : int scalars
12 Size of the Hough map
13 Returns:
14 houghMap : 2D tensor
15 The Hough transform matrix
16 """
17 # The frequency resolution enhancement in the map.
18 enhancement = 10
19 # A certain number of columns is added to avoid
20 # frequencies to be transformed outside the image;
21 # they will be removed once the Hough map is computed.
22 securbelt = 4000
23 numColumns = numColumns + securbelt
24

25 # This function computes the transform histogram for a given spin-down
26 def rowTransform(ithSD):
27 sdTimed = tf.multiply(nuDot[ithSD], t)
28 transform = tf.round(nu-sdTimed+securbelt/2)
29 transform = tf.cast(transform, dtype=tf.int32)
30 # The rounding operation brings a certain number of peaks in the same

frequency/spin-down bin in the Hough map; the left edge is then
computed binning that peaks properly;

↪→

↪→

31 # this is the core of the code, with the most computational effort
32 values = tf.unsorted_segment_sum(w, transform, numColumns)
33 return values
34 # To keep under control the memory usage, the map function is a
35 # very useful tool to apply the same function over a vector
36 # in this way the vectorization is preserved.
37 houghLeft = tf.map_fn(rowTransform, tf.range(0, numRows),
38 dtype=tf.float32, parallel_iterations=10)
39 # Let’s superimpose the right edge on the image
40 houghRight = tf.subtract(houghLeft[:,enhancement:numColumns],
41 houghLeft[:,0:numColumns - enhancement])
42 houghDiff = tf.concat([houghLeft[:,0:enhancement],houghRight],1)
43 # Finally, the Hough map is computed integrating along the frequencies
44 houghMap = tf.cumsum(houghDiff, axis = 1)
45 return houghMap

Listing 2: Source code of the GPU Frequency-Hough algorithm written with TensorFlow.
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Figure 3.9: The TensorFlow graph of the Frequency-Hough code. It is an useful tool to
profile memory and processors usage and check if part of the code goes to CPU because
doesn’t have a GPU kernel.
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3.3 Analysis

Once the GPU algorithm for the Frequency-Hough transform was ready, it
has been used for an analysis on real data, with the purpose to test it with a
simplified version of the all-sky search. The data used are those from the nine
months long O2 run of the two LIGO detectors. I chose a delimited portion of
the sky corresponding to the Galactic Center region and ran, for each selected sky
point, Doppler correction on the peakmaps, Hough transform, candidate selection
and candidate coincidences. Both Doppler correction and candidate selection have
been carried out with a simple numpy porting of the SNAG functions hfdf_patch
and hfdf_peaks.

The data are organized in input files, MATLAB structures in .mat format,
containing many informations, including the non-corrected peakmap and the velocity
vectors of the detector for every FFT used to create the peakmap, essential to the
Doppler correction. For convenience the peakmaps are computed for the whole
observation time in various frequency bands and stored in different input files. We
have an input file for every 1Hz below 128Hz (i.e. for TFFT = 8192 s), and every
5Hz above. This file multiplicity inevitably slows the analysis, because it forced
me to serialize over the different files and compute the analysis every 1-5 Hz. A
way to improve the efficiency could be to use bigger peakmaps and, with limited
GPU memory availability, an out-of-memory progressive input-output pipeline.

Once the candidates of the whole frequency band are selected from the data,
they are stored in a different .mat file for each detector. Finally, an estimate of the
search sensitivity has done using coincidences between the candidates from the two
detectors.

3.3.1 Parameter space choice

To give an exhaustive test bench for the GPU Frequency-Hough algorithm, I
used the same choices typically done in an all-sky search. Regarding the parameter
space, however, it was necessary to narrow the domain to specific intervals in the
respective physical dimensions, in order to limit the total computing time.

Sky position

Recent studies show that an interesting region of the sky for a direct search of
continuous waves search could be the Galactic Center, where many observations
suggest that it could be present a large population of neutron stars, mainly in the
millisecond pulsar class (Bartels, Krishnamurthy, and Weniger, 2016, Rajwade,
Lorimer, and Anderson, 2017). Following Rajwade, Lorimer, and Anderson, 2017,
a promising area appears to be the square delimited by ±10◦ in galactic longitude
and latitude. This area is enough large to give also an idea on the difficulties that
an all-sky search with GPU must take into account.

In fact, looking toward different sky positions means different Doppler correction,
Frequency-Hough and candidate selection, for every point identified by the chosen
resolution on ecliptic coordinates. A well defined sky grid is fundamental to make
sure that the uncertainty of the Doppler correction frequency shift is smaller than
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Figure 3.10: A scatterplot of the sky grid in ecliptic coordinates computed for TFFT =
8192 s. In red is drawn the chosen region for the analysis, corresponding to the ±10◦

square in galactic coordinates, around the galactic center.

the peakmap frequency bin. If that weren’t the case, then the Doppler correction
error could lowers significantly the amplitude of a signal in the Hough map. This
brings to a high number of sky position to analyze, providing both the main
computational and memory load if one want to parallelize this parameter space
dimension, and forcing to the best compromise from parallel and serial computation.

Using the criterion explained in (Antonucci et al., 2008) and (Astone et al., 2014)
the resolution in ecliptic coordinates (λ, β) is such that two nearby sources with
same emitting frequency ν0 are distinguished, if the different Doppler correction
between the two position would produce a frequency difference greater than the
frequency resolution: ∆νD > δν = 1/TFFT . The dimension of a sky patch will be
determined then by the two equations{

δλ = 1
NDcosβ

δβ = 1
NDsinβ

(3.2)

The Doppler number ND is defined as

ND(ν0) = ν0TFFTωorbRorb/c ∼ 10−4ν0TFFT , (3.3)

where ωorb and Rorb are the average orbital parameters of Earth. Note that given
β, in equation 3.2 the width in ecliptic longitude is uniform. Conversely, the width
in latitude depends on the angular distance from the ecliptic.

To simplify the analysis I chose to impose ν0 in equation 3.3 as the maximum
frequency of each used TFFT band (8192 s and 4096 s as we’ll see in the next
section). In this way I worked with only one sky grid for every frequency band
chosen, obtaining an effective enhanced resolution with a higher number of points
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in the sky. With the enhanced sky resolution the small discretization reduction
in sensitivity loss (Antonucci et al., 2008) comes with a strong increase of the
computation load. A plot of the sky region inspected can be seen in Figure 3.10.

Frequency

Although it has been hypothesized that the Galactic Center neutron star popula-
tion consists mainly in millisecond pulsars, I chose to run the analysis only over the
first two frequency bands, with TFFT = 8192 s, 4096 s, respectively corresponding
to ν8192 ∈ [10; 128]Hz and ν4096 ∈ [128; 512]Hz, for two reasons. The first is that
the best sensitivity region of the two detectors is between the end of the first band
and the begin of the second; secondly, clues on the presence of a large population
of unseen millisecond pulsars comes with a prevision of a smaller number of slower
pulsars ((Bartels, Krishnamurthy, and Weniger, 2016)). Finally, as saw in Equation
3.2, the appropriate sky resolution for frequencies above 512Hz raises very much
the number of points for which the Hough transform has to be calculated. However,
a rough estimate of the computation time needed to process the input files from
512Hz to 2048Hz is around 170 hours with the single Tesla K20, then the analysis
in this frequency band is scheduled in the near future.

As already said, the resolution in frequency increases as the duration of the time
series used. A frequency bin in the peakmap is of δν = 1/TFFT , while in the Hough
map the resolution enhancement by a factor 10 has been maintained in this analysis,
despite the significant computation efficiency loss (Figure 3.8): δνH = δν/10.

Since the size of the peakmap scales quite well with the GPU parallelism, the
GPU Frequency-Hough could support easily higher coherence times, losing efficiency
only in the integration step and in memory usage (keep in mind that the more
memory is occupied by a single Hough map operation, the lesser we can parallelize
over the time-frequency space)

Spin-down

The chosen spin-down range goes from a reasonable maximum value for typical
isolated neutron stars, ν̇min ∼ −10−9 Hz/s to a small spin-up around ν̇max ∼
10−10Hz/s, taking into account that an isolated star could accrete a small quantity
of angular momentum from the surrounding environment.

As previously said, the natural choice for the spin-down binning is a width which
variation corresponds to a variation of only one bin in frequency during the whole
observation time: δν̇ = δν/Tobs. This choice corresponds to 210 spin-down bins
with Tobs = 9 months and TFFT = 8192 s, 105 bins with TFFT = 4096 s. A higher
resolution in spin-down can be allowed, with small computation time increase, but
raising significantly the memory load of the Hough map, giving a small benefit
from the reduction of the digitization effect. More rewarding from the point of
view of the analysis results could be to expand the parameter space with a larger
spin-down range, with similar computation load effects.
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3.3.2 Procedure

The logical scheme of the analysis procedure carried out is:

1. generation of the sky grid and selection of an interesting region;

2. core analysis, consisting in Doppler correction of the peakmaps using the
input files, Frequency-Hough, candidate selection;

3. coincidences of candidates from the two detectors;

In the following, these three steps are described in detail.

Sky region selection

The sky grid has been generated using the SNAG function pss_optmap. The
output of the function is an array with five columns: (λ, β, δλ, δβ−, δβ+). The
±10◦ region in both galactic coordinates has been selected with a MATLAB script
using the SNAG function astro_coord_fix to convert the whole coordinate grid in
galactic coordinates, leaving untouched the widths (the last three columns). The
array rows such that |λgal| < 10, |βgal| < 10 are picked with the MATLAB function
find and finally the coordinate columns are converted back in ecliptic coordinates.
The sky patches for TFFT = 8192 s and 4096 s are computed only once and stored
in a .mat file, in order to load them with the core analysis code in Python. The
selection resulted in 78 sky positions for TFFT = 8192 s and 254 for TFFT = 4096 s.

Core analysis

Actually, the first aim was to integrate the Hough TensorFlow code in the
existing MATLAB pipeline, but this is at the moment infeasible due the extremely
low integration between MATLAB and Python. It has been necessary then to
develop, in addition to the Frequency-Hough code, Pythons function also for the
Doppler correction and candidate selection.

Since a GPU implementation of the whole pipeline was beyond the purpose of
this Thesis, I simply translated the SNAG functions hfdf_patch and hfdf_peak to
Python using Numpy, with no optimization and parallelism. Unfortunately the
Doppler correction is strongly interconnected with the Frequency-Hough transform,
so I was forced to work serially over sky positions.

The Doppler correction and Frequency-Hough transform has been tested on
three hardware injection of signals in the data (see Figure 3.11), with parameters
as shown in Table 3.2.

Table 3.2: Hardware injections parameters.

pulsar_3 pulsar_5 pulsar_8

ν0 (Hz) 108.89 52.81 194.31
ν̇(Hz/s) −1.46 · 10−17 −4.03 · 10−18 −8.65 · 10−9

λ () 193 277 338
β () -31 -61 -27
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Figure 3.11: The GPU Frequency-Hough algorithm applied on three hardware injections,
with parameters as showed in Table 3.2. Top: pulsar_3. Mid: pulsar_5. Bottom:
pulsar_8.
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The typical all-sky search choice in the candidate selection is to split the Hough
map in stripes large 0.1 Hz for every FFT length class, and in those stripes the
pixel with maximum amplitude is searched. With the purpose to lighten up a
future follow-up analysis, I chose to enlarge this width to 0.5Hz for TFFT = 4096 s,
because the larger frequency range and the higher number of sky positions. This has
the effect to systematically raise the CR of the candidates: wider stripes means that
the maximum is searched on a larger number of pixel, and the selected one is the
greatest of the five maxima I could find with a stripe width of 0.1Hz. Remembering
figure 2.9, higher CR means a small decrease of the false alarm probability at the
cost of a small decrease of the search sensitivity.

The core analysis can be summarized in this simplified version of the used code:

1 ...
2 # First of all i define some job parameters:FFT length, frequency step;
3 # spin-down range, step, array values.
4 ...
5 # Loading data for doppler correction,
6 square = scipy.io.loadmat(’PATH/TO/square’)[’square’]
7 numPoints = square.shape[0]
8 # loading list of input files (with the peakmaps).
9 fileslist = numpy.array(glob.glob(’PATH/TO/DATAFOLDER’)).sort

10 numFiles = fileslist.size
11 # Initialization of candidates array.
12 numCands = #the value chosen
13 candidates = numpy.zeros((numFiles,numPoints,numCands*2,9))
14

15 # Loop on the files of the FFT frequency band chosen.
16 for ithFile in numpy.arange(numFiles):
17 # Loading the ith .mat input file and the useful data,
18 nu, t, v = load_data(fileslist[ithFile])
19

20 # loop into every sky positions in the area chosen.
21 for point in numpy.arange(0,numPoints):
22 # Doppler correction;
23 nuCorr = dopp_corr(point)
24 # now let’s use TensorFlow: defining tf constants,
25 nuHM, tHM, nudotH; = tf_const_definitions(nuCorr,t,nudot)
26 # calculating the Frequency-Hough transofrm,
27 houghmap = frequencyHough(point,nuHM, nudotHM, tHM)
28 session = tf.Session()
29 # running a TensorFlow graph returns a Numpy NDarray.
30 hough = session.run(houghmap)
31 tf.reset_default_graph()
32 session.close()
33 # Candidates selection.
34 candidates[ithFile,point] = candSel(numCands, nuCorr,

hough, patch[point])↪→

35 # Finally i save the whole candidates set to a .mat file.
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Some notes on the above code:

• the analysis is ran once for TFFT = 8192 s and once for TFFT = 4096 s for
each LIGO detectors. In the first frequency band with ν ∈ [10, 128] Hz it
took almost 4 hours, while in the second (ν ∈ [128, 512]Hz) around 20 hours
due to the higher sky resolution and bigger frequency band;

• the input files are in a file format which can’t support a complete out-of-
memory input pipeline, so I was forced to cycle over them. A way to improve
efficiency reducing the files serialization could be simply to build input files
with bigger peakmaps and, better but more difficult, implement a proper
input-output pipeline with a different file format;

• TensorFlow doesn’t overwrite a node of the graph if an operation is in a cycle.
Every iteration with constant definitions and operations on them creates new
nodes, occupying memory for every returned value of the iterated instructions.
For this reason I reset the graph and close the session at the end of the
cycle, unfortunately lowering efficiency because TensorFlow has to open a
new session at each iteration, taking some time. To avoid this, if a certain
sequencing is unavoidable, the code should use only variables which values
are updated in the iterations;

• every single value returned by the new codes has been compared with those
returned by the original SNAG codes, in order to have a total exact match both
in Doppler corrected frequencies, in Hough maps and in selected candidates;

• the times array with Tobs = 9 months exceeded the 32 bit floating point
precision capability, causing a difference of ∼ 0.4% in the amplitude of
the Hough map with respect the original one computed with 64 bit sparse
peakmaps. In order to satisfy the previous point for the Hough map, despite a
little difference in the actual amplitude values, I chose to switch the time and
spin-downs tensors to float64. The only numerical operation which ran with
float64 data was the simple ν̇i × ~t product (row 27, Listing 2): since values
of the spin-down array have a floating point precision well below the 32 bit
threshold, I could cast the product returned values to float32. Consequently,
the computation time of frequencyHough on the used device increased by
a factor about 10-20%. Remember that only workstation GPUs can work
with float64, still with a much lower FLOPS capability with respect to
32 bit data (Figure 3.2), then the float32 data type is mandatory with GPU
computation. A different dimension of the peakmap (shorter along times,
longer along frequencies) or a progressive data input and map computation
can help. Anyway, in further tests it should be studied better how the times
are truncated passing from 64 to 32 bit precision with detectors runs long
about one year, and how candidates selection can be altered.

Coincidences

Once every input files of a selected frequency band is analyzed for every sky
points in the chosen region, the candidates selected from a detector are saved all
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together in memory storage as .mat files, to limit as far as possible the read/write
operations since they hold only a few MB and are easy to manage. From this point
on, every operation on the candidates can be done within MATLAB.

For the coincidences step I used the SNAG function coin_candidates_direc,
storing the coincident candidates in files ready to future verifications and follow-up
analysis. In both frequency bands the coincident candidates are ∼ 2% of the
candidates selected using the data from only one detector.

3.3.3 Results

Without any deeper analysis on the coincident candidates, I computed the
search sensitivity and the false alarm probability, using the noise spectral amplitude
of the both detector for the O2 run and two different threshold choices on CR:

1. a threshold, which value corresponds to have, in average and in a given FFT
frequency band, only one candidate due to noise fluctuations. This hypothesis
gives a low false alarm probability with a higher CRthr:

Pfa =
Ncand

Ntot

=
1

NνNν̇Nsky

The corresponding CRthr for a given Pfa comes from Equation 2.17:

CRthr =
√

2 erfc−1(2Pfa) =
√

2 erfc−1(
2

NνNν̇Nsky

);

2. another hypothesis is instead that we have only faint signals with low CR
and then we set a low CRthr in order to keep them, while the highest CR
candidates may come from disturbances in the data. We can select then the
minimum CR from the candidates in a given frequency range. Since the
sensitivity curves I used have a resolution of 0.125 Hz, I chose this range.
This implies, of course, a better sensitivity at the cost of a larger number of
surviving candidates which must be followed-up

In Figure 3.13 are shown the differences on the number of candidates to follow-
up and respective false alarm probability, while in Figure 3.14 it can bee seen
how changes the resulting search sensitivity. Remember that the estimation of
search sensitivities following Section 2.3.3 is based on the hypothesis such that the
noise follows a Gaussian probability distribution. This is not generally true, so
the h0min(ν) showed are optimistic values, while the real search sensitivity can be
computed using software injection and generally are expected to be slightly worse
than the ones in Figure 3.14.

Using Equation 1.23, we can express the minimum detectable wave amplitude,
in terms of minimum ellipticity of a source:

ε =
c4r

4Gω2

1

I3
h0

A parameter in the formula is the moment of inertia of the neutron star along the
rotational plane I3, which is obviously related to the density of the object. Under
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certain hypothesis on the nature of the matter inside the star, various equations of
state have been proposed, with slight differences on the density that the degeneracy
pressure of the matter can sustain. This brings to a range on the moments of
inertia allowed by these models, which can be from ∼ 1038 kg m2 to ∼ 5 · 1038 kg m2

with more exotic equation of state (Johnson-McDaniel, 2013), for a mass range
1−2.5M�. Assuming moments of inertia within this range, the minimum detectable
ellipticity values are shown in Figure 3.12.

It is interesting to compare these values to the maximum values of ellipticity
predicted by various equations of state (Johnson-McDaniel and Owen, 2013). It
results that, excluding frequencies below 20Hz, the sensitivity of this search might
allow to detect signals from neutron stars with a wide range of maximum permissible
ellipticity for various masses and equations of state. For instance, more standard
equations of state admits ellipticity up to ∼ 10−7-10−5, with masses between 1.2
and 2M�, while more exotic models with a hybrid hadron-quark matter can reach
ε ∼ 10−3.

Since the plot in Figure 3.12 shows the minimum detectable ellipticity, the
search sensitivities computed allow to detect sources at higher frequencies with
a wide variety of equation of states, including the more standard ones. At lower
frequencies, instead, only exotic matter neutron stars could be detected.
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Figure 3.12: Minimum detectable ellipticity using the sensitivity of this research, using
Equation 1.23. The belts are for moments of inertia in the range [1, 5] · 1038 kg m2,
identified by Johnson-McDaniel, 2013, as allowed values using various kinds of equations
of state.
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Conclusions

In this Thesis I showed how can be useful in the search for continuous grav-
itational waves the use of GPGPU to develop analysis algorithm. Parallelizing
the Frequency-Hough transform computation on GPU, and serializing over sky
positions and over the input files, I obtained a speed-up of the analysis of a factor
20 in comparison to the original code. I showed also that improving the degree
of parallelism, i.e. analyzing the more data possible at once, the efficiency of the
analysis can be still increased.

A faster analysis may allow to expand the parameters space of the search,
increasing its sensitivity. In fact, despite the blind continuous wave search have
to face a very large volume of the parameters space, managing a big amount of
data, the definitely biggest part of the computations to produce a candidate on a
certain point of the parameter space, depends mainly on the specific point. The
whole analysis pipeline can be then easily vectorized and parallelized in an efficient
way on GPUs, thanks also to the high level structure of TensorFlow.

With this objective in mind a few arrangements and improvement of the code
could be:

• extend the code to multi-GPU systems, since TensorFlow is very efficient
working with many GPUs

• developing a scalable big-data input/output pipeline which can work out-of-
memory with different devices, using appropriate modern file formats and
libraries, trying to balance serialization and parallelism;

• work with bigger peakmaps, potentially covering the whole analyzed frequen-
cy/time plane;

• study the feasibility of matrices in dense format instead sparse: in this way a
parallel out-of-memory input could be easier to manage;

• develop GPU codes for Doppler correction and candidate selection, which
could work together with the Hough transform parallelizing over the sky
position;

• since a certain degree of serialization is unavoidable, it’s important to remove
every iterated constant tensor or operation, since as we said every new node
in the TensorFlow graph will not deleted until the session is closed, wasting a
big amount of memory;
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• remove any float64 data, e.g. with data chunks covering a time range large
enough to the 32bit floating point precision.

With a more complete and performing analysis code, runnable by a cluster of
GPU, it would be possible to further deepen the analysis presented in this Thesis,
trying to extend the sky region selected, to cover the whole sky, and the frequency
range, to cover the whole sensitivity band of the detector. Moreover, more features
can be added to the procedure. For instance one could:

• use adaptive Frequency-Hough transform, for which each pixel is filled no
more with a boolean number but with values between 0 and 1, to take into
account the effect of the detector antenna pattern to the expected response
with respect to a given sky position and noise non-stationarity;

• add the second order spin-down parameter to the Hough transform in order
to detect young neutron stars with high spin-down values;

• since the candidate follow-up analysis uses the Frequency-Hough transform,
it could be useful to develop a code which could use the GPU code of the
transform: with a faster follow-up one could select a bigger set of candidates
from the Hough maps, increasing the search sensitivity.

The field of big-data computation with GPU is in fast evolution, with new
hardware architectures which raise more and more the computational power available
and an increasing number of frameworks which allow to develop codes with an high
varieties of purposes. For this reason an increasing part of scientific analysis in the
next years will use these devices and frameworks.

Developing GPGPU codes for gravitational waves search, and specifically for
one of the most challenging task such the continuous waves search, is of a primary
importance: one of the research field most computationally demanding, can’t
avoid to use the power granted by the modern graphic devices, especially if, as
demonstrated by this Thesis, the analysis pipeline responds so well if converted in
vectorized GPU codes. At this point, to have a cluster of GPUs could grant a great
ratio between scientific result benefits and financial costs.
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