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A B S T R A C T

This thesis describes the innovative applications to the monitoring in harsh
environment, represented by the Compact Muon Solenoid (CMS) detector at
the Large Hadron Collider (LHC), of the Fibre Bragg Grating (FBG)
technology, which, although invented almost 40 years ago, is currently
undergoing an explosion in variant manufacturing technologies and
applications. The environment inside a large particle physics experiment like
the CMS poses several challenges of monitoring spatially varying quantities
in an aggressive environment, with high radiation, high magnetic field, tight
electromagnetic compatibility (EMC) requirements, where particle detection
priorities require monitoring sensors to have very low mass and associated
service volume as well as excellent EMC compliance, conditions that can be
very well satisfied by FBG-based sensors inscribed on optical fibres. The
particular application described here is the monitoring of strain and
temperature variation along the beryllium central beam pipe, a vacuum
chamber which carries the counter-rotating proton beams in the Large
Hadron Collider (LHC) to collisions within the CMS experiment.
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I N T R O D U C T I O N

The work related to this Thesis is focused on the development of an
innovative fiber optic monitoring system, based on the Fiber Bragg Grating
(FBG) technology, for the structural and thermal monitoring of a high energy
accelerator beam pipe. The beam pipe instrumented is the central beam pipe
of the Compact Muon Solenoid Experiment (CMS), at the European
Organization for Nuclear Research (CERN), which is part of the Large
Hadron Collider (LHC) and is the place where the high energy particles
collisions take place. It has to stand to an extreme vacuum condition (up to
10�13 atm) and, at the same time, it must not interfere with the particle
resulting from collisions. Indeed, it is made of a beryllium tube section, 3m
long with a central diameter of 45mm and 0.8mm thickness wall, sealed on
the two extremities with two conical aluminium sections, each 1.5m long.
The central beam pipe is a fundamental element of both the CMS experiment
and the LHC ring. It needs to be continuously monitored in order to secure
relevant informations about its structural and thermal state.
The proposed monitoring system consists of four single-mode optical fibers
placed along the cardinal longitudinal positions on beam pipe cross section.
On each fiber, 16 FBGs have been manufactured: 7 are glued on the pipe to
measure the local strain and the remaining 9, for each fiber, are left unglued
but in contact with the pipe in order to work as local thermometers and as
temperature compensators for the adjacent strain sensors. The designed
system allows the monitoring of any deformation induced on the CMS
central beam pipe during the experiment motion during maintenance
periods and magnetic field induced ones during operation phases. Moreover,
the uniqueness of the iPipe monitoring system sensing position, whose FBG
sensors are placed on the outer surface of the CMS central beam pipe, in
direct contact with the metallic surface of the vacuum chamber, allows to
measure for any thermal dynamic taking place on the vacuum chamber
structure.
This thesis is organized as follows.

• Chapter 1 is dedicated to the fiber optic sensors technology, centering
the discussion on the FBG sensors. An overview of the working principle
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2 introduction

will be given together with a detailed and well documented state-of-
the-art of the effects of ionizing radiation on the fiber gratings.

• Chapter 2 has the challenging goal of motivating the need for high
precision measurements in the CMS environment. An introductory
description of both the LHC accelerator and the CMS detector is given
in order to help the reader understanding the complexity of the
environment, given that the beam vacuum chamber, to be
instrumented as the main objective of this Thesis, is an important part
of both entities. Special attention is given to the description of the
several FBG monitoring systems active in CMS to set the scene for the
introduction of the iPipe project.

• Chapter 3 deals with the iPipe project. The preliminary studies are
explained in details together with all the problematics encountered
during the commissioning and operation of the system, which have
been part of the core issues of this Thesis work. The radiation effects
on the iPipe FBGs are discussed and the unique results from the strain
monitoring of the CMS central beam pipe are shown.

• Chapter 4 is devoted to the application of the iPipe sensors to the
direct monitoring of the beam-induced heating. The physical basis
of this phenomenon are explained and documented leading to the
interpretation of the iPipe temperature data in the framework of the
beam impedance. The uniqueness of this results triggered the interest
of the community and an upgrade of the system has been proposed,
installed and is undergoing the commissioning phase in order to be
ready for the restart of the LHC collisions.

• The conclusions summarize the main achievements realized during
this thesis, underlining the open issues and possible improvements of
FBG based monitoring system for particles accelerators beam pipes and
equipments.
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F I B E R B R A G G G R AT I N G

1.1 fiber optic sensors

Usually, an optical fiber sensor system is composed by: a light source, a
detector and an optoelectronic transducer, as shown in Figure 1. Generally,
the source consists in bulk lasers, laser diodes or LEDs; the transducer could
be an optical fibers or doped fibers or bulk materials and, at the output of
the system, an optoelectronic system in which there is a photodetector, that
is used to covert the variation in the optical signal that has been caused by
the physical perturbation of the system into an electrical signal, usable for
further elaborations. As optical fiber sensors operate by modifying one or
more properties of light passing through the fiber, they can be broadly
classified as extrinsic or intrinsic.
Intrinsic optical sensors directly employ an optical fiber as the sensitive
material and also as the medium to transport the optical signal with
information of the perturbation environment to be measured. In this case the
light does not leave the fiber to perform the sensing function, except at the
detection end of the sensor. In case of extrinsic sensors, on the other hand,
the optical fiber is simply used as mean to carry light to and from a location
at which an optical sensor head is located. The sensor head is external and
usually is based on optical components which are designed to modulate the
properties of light in response to changes in the environment with respect to
the physical perturbations of interest. The intrinsic fiber sensor types are
more attractive and widely researched as this scheme has many advantages
compared to extrinsic, such as their in-fiber nature and the flexibility in the
design of the fiber sensor head [1].
Optical fiber sensors can also be further classified according to their spatial

positioning. For example, a point sensor can be used to sense quantity to be
measured from discrete points while distributed fiber sensors provide spatial
and temporal information of the measures from any point along a single
fiber with a certain resolution. A style of sensor that is in between these two
configurations is represented by the quasi-distributed scheme, where the

Figure 1: Basic components of an optical fiber-based sensing system
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4 fiber bragg grating

Figure 2: Point, distributed and quasi-distributed optical fiber-based sensing

measured information is obtained at particular and pre-determined points
along all the length of a fiber network [2]. A schematic of the three major
sensing schemes, point, distributed and quasi-distributed, is illustrated in
Figure 2.

1.2 fiber grating sensors

Fiber gratings [3] consist of a periodic perturbation of the optical fiber
properties, generally of the core refractive index. Those sensors can be
classified, based upon the period of the grating (L) into two main types:

• Fiber Bragg Grating (FBG), if L is of the order of µm,

• Long Period Grating (LPG), if L is several hundreds of µm.
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Their working is based on the coupling of a propagating core mode and
other modes of the core or the cladding. The phase-matching condition to be
satisfied is given by [4]:

Db =
2p

L
m (1)

where Db = b1 � b2 is the difference between propagation constants of the
involved modes, referred to as 1 and 2, and m is an integer number, called
mode order, if the waveguide support more than one mode of propagation
otherwise m = 1. This coupling reflects in the presence of one or more
attenuation peaks in the transmission spectrum, whose position depends on
the grating characteristics but also in external factor, such as temperature and
strain. From these considerations, we can state that at the basis of the fiber
grating sensors these is a wavelength, or a frequency, measurement.

1.2.1 Fiber Bragg Grating

A fiber Bragg grating (FBG) [5] couples light from a forward-propagating
mode to the backward, counter-propagating mode, in the core of an optical
fiber. In this case, b2 = �b1 and Db = 2b1 results in a period L of the order
of magnitude of µm [4]. The coupling occurs at a specific wavelengths, named
Bragg wavelengths and defined as [6]:

lBragg = 2 · ne f f · L (2)

where ne f f is the effective refractive index of the propagating core mode. So,
the transmission or reflection spectra of a FBG show a narrow dip or peak
centered at lBragg, respectively, as shown in Figure 3.

1.2.2 Long Period Grating

A Long Period Grating (LPG) contributes to couple light of a propagating
core mode (the fundamental one) with discrete co-propagating cladding
modes (indicated by their order n); in this case, b2 = b(n) > 0 and Db is
small, resulting in a period L of some hundreds of micrometers [4] [7]. As
the cladding modes are quickly attenuated, the transmission spectrum of
the grating contains a series of attenuation bands: each band corresponds to
the coupling to a different cladding mode and it is centered at a wavelength
defined as [7]:

l(n) = dne f f · L (3)

where dne f f = ne f f � n(n)
clad, ne f f and n(n) are the refractive indices of the

propagating core mode and of the nth cladding mode. The wavelength of the
attenuation bands depends on several external parameters, such as
temperature, strain and refractive index of the medium around the cladding
[8] [4].
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Figure 3: Principle of operation of a fiber Bragg grating sensor.

1.3 fbg technology

As introduced before, a fiber Bragg grating consists of a periodic modulation
of the refractive index in the fiber core formed by its exposure to an intense
light interference pattern. At each index variation a small amount of light
guided along the fiber core is reflected and all the reflections add coherently
at a well determined wavelengths, called Bragg wavelengths and defined in
Eq. 2. The formation of permanent grating was first demonstrated by Hill et
al. in 1978 [9]. They excited a germania-doped optical fiber with intense
argon-ion laser radiation at 488 nm and observed that after several minutes
the intensity of reflected light increased until almost all the light was
reflected from the fiber. The growth in back reflected light was explained in
terms of non linear effect called photosensitivity, which permits the index of
refraction in the core of the fiber to be increased by exposure to intense laser
radiation. In this early experiment, a fiber Bragg grating was formed when a
small amount of the laser light reflected back from the end of the optical
fiber interferes with the exciting laser light to establish a wave pattern. The
index of refraction increases to greater extent at position where constructive
interference results in a maximum of laser intensity. As the strength of the
grating, which is proportional to the depth of its index modulation, increases
the intensity of the back-reflected light increases until it saturates. Although
photosensitivity appeared to be an ideal means for fabricating these early
Hill gratings in optical fibers, their usefulness was extremely limited because
they only reflected at wavelengths in the visible close to the wavelength of
the writing light, were spread along the optical fiber with varying strength
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and took a long time to produce. These limitations were overcome 10 years
later by Meltz et al. in 1989 [10], who recognized from the work of Lam and
Garside [11], that photosensitivity was a two photon-process that could be
made more efficient if it were a one-photon process corresponding to the
germania oxygen vacancy defect band, at a wavelength of 245 nm (i.e. 5 eV)
[6]. In the experiment of Meltz the fiber was irradiated form the side with
two intersecting coherent ultraviolet laser beams of wavelength 244 nm,
which corresponds to one half of the 488 nm, the wavelength of the blue
argon laser line.
The transverse holographic method worked since fiber cladding is
transparent to UV light, whereas fiber core is highly absorbing of this
radiation. The principal advantage with regard grating fabrication is related
to the fact that spatial period of photo-induced perturbation depends on
intersecting angle between the two interfering beams. This permits a versatile
and efficient fabrication of custom Bragg gratings operating at much longer
wavelengths than the writing wavelength. The periodic perturbation of the
core index of refraction gives rise to successive coherent scattering for a
narrowband band of the incident light. The grating thus effectively acts as a
stop-band filter, reflecting light with wavelengths close to the Bragg
wavelength, and transmitting wavelengths sufficiently different from
resonance condition. Each reflection from a peak in the index perturbation is
in phase with the reflection from the next peak when the wavelength of the
light corresponds to the Bragg wavelength as shown in Figure 3.
Theoretical formulations based on coupled mode theory [12] have been
developed to analyze fiber grating spectra by Erdogan et al. [13].
Successively, a variety of different continuous wave and pulsed lasers with
wavelengths ranging from the visible to the vacuum UV have been used to
write gratings in optical fiber. In practice, krypton-fluoride (KrF) and
argon-fluoride (ArF) excimer lasers that generate (10ns) pulses at
wavelengths of 148 and 193 nm, respectively, are used most frequently to
produce FBGs. The exposure required to produce a FBG is typically a few
minutes with laser intensities of 100 to 1000 mJ/cm2 and pulse rates of 50 to
75 s�1. Under these conditions, the change in the core index of refraction is
between 10�5 and 10�3 in germanium doped single-mode optical fiber.
Techniques such as hydrogen loading proposed by Lemaire in 1993 can be
used to enhance the optical fiber photosensitivity prior to laser irradiation
[14]. Hydrogen diffusion makes the core more susceptible to UV laser
radiation. Changes in refractive index of the order of 10�2 have been
achieved by this means. Successively, the transverse holographic method of
writing fiber Bragg gratings has largely been superseded by the phase mask
technique in 1993 [15]. Phase mask is a thin slab of silica glass into which is
etched (using photolitographic techniques) a one-dimensional square wave
periodic surface relief structure. Since this material is transparent to UV laser
radiation the primary effect of the phase mask is to diffract the light into the
0, +1 and -1 diffraction orders. Careful control of the depth of the
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corrugations in the phase mask suppresses zero-order diffraction, leaving the
+/- 1 diffracted beams to interfere and produce the periodic pattern of
intense laser radiation needed to photoimprint a Bragg grating in the core of
an optical fiber. The photoimprinted index grating pariod will be the half of
the phase mask period. Note that grating period is independent of the
writing radiation wavelength.
Although, the usual practice brings the optical fiber almost into contact with
phase mask, Othonos in 1995 demonstrated the improvements in the spatial
coherence of the laser writing, relaxing the need for such close contact [16].
The phase mask technique greatly simplifies the manufacture of FBGs
through easier alignment, reduced stability requirements on the
photoimprinting apparatus, and lower coherence demands on the laser beam.
It also permits the use of cheaper UV excimer laser source and tends to
consistently yield high performance gratings. The prospect of manufacturing
high performance gratings at low cost is critical to the large scale
implementation of this technology for sensing applications. The main
drawback associated to this approach relies to the need of separate phase
mask for each grating with a different operating wavelength. On the other
hand, it results very flexible since it can be used to fabricate gratings with
controlled spectral responses characteristics. As a consequence of
technological assessment, in the mid 1990’s many research groups have been
engaged in the study and realization of new grating devices through more
complex refractive index modulation profiles. Examples include apodized
FBGs, chirped FBGs, tilted FBGs, phase shift FBGs and long period fiber
gratings [17] [18].
The commercial transition did not happen until the mid 1990’s and was
subsequently strongly driven by communications needs and the ramping up
of the telecommunications bubble, which saw a tremendous explosion of the
number of companies and research groups engaged with the design,
fabrication, packaging and use of gratings. First companies to produce
commercial FBGs were 3M, Photonetics and Bragg Photonics in 1995. Soon
after the telecommunications bubble collapse, there was a significant shift by
many players in the industry from communications to sensing applications.
At the time, this was a prudent and strategic move on the part of FBG
manufacturers to keep exploiting the technical and manufacturing
infrastructure. As FBGs made the transition from optical communications
devices to sensing elements in the 1990s, the bulk of the sensing applications
centered on discrete, single-point sensing of specific parameters, such as
strain and temperature, using sensors based on embedded or packaged
gratings. These early gratings were typically written using phase masks or
side exposure interferometric techniques. These fabrication methods initially
relied heavily on manual skills and labor, severely limiting many of the
features and performance of the gratings in terms of production capacity,
repeatability, mechanical strength, as well as number and quantity of FBGs
written on a continuous fiber. Due to this increasing interest in FBG sensing
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technology, many research studies were devoted to the conception of
optoelectronic unit able to demodulate FBGs based sensors.
However, the sensor industry is much more cost sensitive, demanding
multiple sensing points and greater mechanical strength. Such requirements
also call for the capability to fabricate an array of multiple FBGs at different
locations along a same length of optical fiber. Such needs are being
addressed by more sophisticated, on-line, reel-to-reel fabrication processes
and systems that allow the writing of complex FBG arrays along a single
fiber spool [19] [20].

1.4 fbg theory in peanuts

Several theoretical works have been trying to determine the optical properties
of gratings, depending on:

• magnitude of effective refractive index (ne f f ),

• period of the refractive index perturbation (L),

• grating length (L),

• number of grating periods (N), defined as L/L,

• refractive index modulation amplitude (Dnmod), defined as the
difference between the refractive index of the zones illuminated and
not,

• modal overlap factor (h), which defines the amount of the power guided
by the core and can be calculated as [21]:

h =
p2f2

coreNA2

l2 + p2f2
coreNA2 (4)

where fcore in the core diameter.

From the well-known coupled-mode theory, the reflectivity (R) of uniform
gratings, as a function of wavelength, can be expressed as [22] [11]:

R =
sinh2

⇣
kL

q
1 �

�
d
k

�2
⌘

⇣
1 �

�
d
k

�2
⌘

cosh2
⇣

kL
q

1 �
�

d
k

�2
⌘
+

�
d
k

�2 sinh2
⇣

kL
q

1 �
�

d
k

�2
⌘ (5)

where k = p/lBragg · h · Dnmod is known as the coupling coefficient, d =
2pne f f /l � p/L and d/k in the detuning ratio, depending on l/lBragg.
Fig. 4 shows, as example, the profile obtained for an uniform grating with
kL = 2. The maximum value of R occurs at lBragg (i.e. d = 0) and is [13]:

Rmax = tanh2(kL) (6)
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Figure 4: Reflection spectrum versus normalized wavelength for an uniform Bragg
grating with kL = 2 [13].

Another important parameter is the grating width, in particular the full
width, defined as the distance between the first two minima of the reflection
spectrum, is given by [13]:

width = lBragg

s⇣Dnmod

ne f f

⌘2
+

⇣lBragg

ne f f L

⌘2
(7)

In the weak grating case (Dnmod <<
lBragg

L ), the filter bandwidth is limited
by the FBG length, whereas in the strong grating case (Dnmod >>

lBragg
L ), the

light does not penetrate the full length of the grating and the bandwidth is
dependent only on the refractive index modulation amplitude.

1.5 fbg as a sensor

The FBG response is sensitive to external factors. Indeed, any change which
varies the refractive index or grating period, such as strain and temperature,
will change the Bragg wavelength, making the grating a very good intrinsic
sensor, with the information wavelength-encoded and independent of the
signal intensity [6]. When a force DF is applied to the grating the signal will
change according to the following formula:

DlBragg

lBragg
=

�
1 +

1
ne f f

dne f f

dS
�� 1

L
dL
dF

�
DF (8)

where S is the strain. A typical value for the sensitivity to an applied axial
strain is 1 nm/millistrain, for a grating at 1300 nm [9].
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If there is a temperature variation of DT, the central wavelength of the grating
will shift according to the relation:

DlBragg

lBragg
=

1
ne f f

�dne f f

dT
�
DT +

1
L
�dL

dT
�
DT (9)

where:

• dne f f
dT in the thermo-optic coefficient, about 10�5/�C [23]

• 1
L
�

dL
dT

�
is the thermal expansion coefficient, about 0.5 · 10�6/�C at RT

[24].

A typical value of the temperature coefficient of a bare grating at 1550 nm
is about 0.01 nm/�C and it is primarily due to the thermo-optic effect [9].
However, it also depends on the fiber coating, particularly on its material
and thickness, indeed by increasing the coating thickness it increases with a
saturating trend [25]. The temperature sensitivity also decreases if the grating
peak is at shorter wavelengths [26].

1.6 types of gratings

The gratings different types are classified according to the laser source used
for their writing: the UV laser can be pulsed or continuous wave, whereas
the IR source has to be ultrashort pulsed.

1.6.1 UV-FBGs

The phenomenon behind the UV-FBG formation is the photo-sensitivity of
silica doped with specific elements, primarily the germanium. In the past
decades, gratings were written with all types of lasers, continuous wave or
pulsed, emitting light at different wavelengths. Nowadays, the most
commonly used light sources are KrF and ArF excimer lasers emitting,
respectively, 248 and 193 nm pulses with a duration of ⇠10 ns at repetition
rates of 50-75 Hz. The exposure of a Ge-doped fiber to UV light for few
minutes at intensities of 100-1000 mJ/cm2 causes an increase of the refractive
index ranging between 10�5 and 10�3 but it can reach 10�2 by loading the
fiber with H2 [6]. During inscription ne f f and Dnmod increase, indeed the
peak position shifts towards longer wavelengths, while the peak width and
reflectivity increase [27]. The relation between Dnmod and the incident
fluence (I) depends on the excitation photon energy. For the gratings writing
with an ArF excimer laser, Malo et al. found a dependence of the growth rate
on I2, indicating a two-photon process, in which the carriers are generated
by direct excitation in the silica bandgap and then they are trapped at
Ge-related defects [17]. The thermal stability of gratings depends on the fiber
composition and the inscription conditions but, generally, they do not
withstand temperatures higher than 600�C. This is related to the defects
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originating Dnmod: studies about the fluence dependence of the Ge-related
defects and Dnmod and their thermal stability showed that the grating
formation is mainly associated with the generation of GeE’ and GeH centers
and indeed it is the much higher formation efficiency of these centers that
gives rise to the much higher photosensitivity of H2-loaded fibers [28].
Most commonly observed are Type I FBGs. This name refers to FBGs, whose
formation is accompanied by a monotonous increase of the refractive index
modulation amplitude. Type I gratings can be written under continuous or
pulsed UV radiation with intensity below 10 MW/cm2 in various types of
fibers, whether photo-sensitized or intrinsically photo-sensitive. The
inscription mechanism corresponds to single-photon absorption at
pre-existing sites located in the band gap.
By increasing the pulse energy beyond a threshold value the induced
refractive index modulation does not grow anymore linearly with the pulse
energy but increases very quickly up to saturate around 5 · 10�3. The
gratings written in this regime are labeled as Type II FBGs [29]. Such
gratings show high temperature stability because the refractive index
changes are related with glass structural changes. Indeed, studies with
optical microscope show that laser damage, responsible for the index change,
is limited to the core-cladding interface [29]. Those gratings exhibit high
reflectivity and large bandwidth and they withstand temperatures up to
800�C. However, their use is limited by their poor quality spectra.
If the Type I grating writing is not stopped when the grating is formed, but
the fiber is further exposed to the UV light a regenerated grating appears,
called Type IIA grating [30]. In contrast to the initial Type I grating, this new
grating shows a steady blue shift during the growth of its strength, which
explains the name "negative index grating". These gratings are written in
highly Ge-doped, B/Ge or Sn/Ge co-doped fibers, with or without
H2-loading [31]. Their inscription is characterized by a non-monotonic
evolution in both modulation and effective index, with three phases. Initially,
ne f f and Dnmod increase and a Type I grating is written. Then, by increasing
the accumulated laser energy [31] or by subjecting the grating to a thermal
treatment at high temperature, as 700�C [32], the Type I grating is erased and
ne f f and Dnmod decrease, until the starting point of the regeneration process
is reached: Dnmod starts to increase again, while ne f f decreases, implying the
blue-shift of the initial central wavelength.
Another type of regenerated gratings is Type IA gratings, which are written
after erasure of a Type I grating in hydrogenated germano-silicate fibers.
Differently from the Type IIA, a large red wavelength shift during inscription
is measured [33]. Also in this case the wavelength shift occurs in three
phases [34]: an initially rapid increase of the Bragg wavelength, followed by
a slower growth up to reach a plateau at a saturation value that depends on
fiber type, hydrogenation and irradiation conditions. Type IA exhibit the
lowest thermal sensitivity among all the FBG types [33] [35], whereas the
strain response remains unchanged [35]. Similarly to Type IIA, Type IA
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gratings are formed in B/Ge co-doped fiber. The difference is the use of
hydrogen loading for Type IA gratings inscription.

1.6.2 IR fs-FBGs

The FBGs inscription can be made also using 800 nm femtosecond radiation
[36]. The fs-laser is focused into the core of the fiber and induces local
refractive index changes in a point-by-point writing process. The process is
highly nonlinear and therefore basically independent of the fiber material,
which means that doping the fiber is not required. The FBGs can be written
in radiation insensitive fibers and special pure core fibers for harsh
environments.
The grating formation is characterized by a threshold for the pulse peak
intensity, which mainly depends on the temporal and spatial qualities of the
laser light and the accuracy of the alignment of the incident beam onto the
fiber core [37], and also on the presence of dopants in the fiber, which
decrease the threshold [38]. Above this peak intensity threshold, a grating
will be written, but increasing the peak intensity two regimes of induced
index change are observed: in analogy with the UV-FBGs, the two types
gratings are referred to as type I-IR and type II-IR [39].
Compared with the traditional UV-laser method, the photosensitivity of the
fiber material and the hydrogen loading treatment are not required in the
fs-laser approach [40]. Owing to the ultrahigh peak power of the fs-laser, the
FBGs can be inscribed in the fiber made of any material. This latter
consideration makes the fs-FBGs an attractive solution for sensing in high
radiation environment using special radiation tolerant fibers.

1.7 effects of g-radiation on fiber gratings

During the last two decades, several experimental research have investigated
the FBG sensor technology behavior in ionizing radiation environment, a
detailed review of the achieved results can be found in [41].
Ionizing radiation induces changes in both the refractive index (Dne f f ) and
the period (DL) of a fiber grating resulting in a Bragg wavelength shift (BWS):

DlBragg

lBragg
=

Dne f f

ne f f
+

DL
L

(10)

From the studies reported in literature, it can be stated that under
g-radiation the central wavelength of a fiber Bragg grating shifts towards the
red exhibiting a saturated trend. The BWS saturation values and at the
respective accumulated doses depend on the fiber chemical composition and
the conditions of the grating inscription. This rule is not followed by the
N-doped silica fiber whose Bragg wavelength does not show a saturation
effect, at least up to a 1.5 MGy dose [42]. The H2-loading used to make easier
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the grating inscription causes a higher sensitivity to radiation. Recent studies
showed that the most resistant gratings under g-radiation are the FBGs
written in fluorine-doped fibers with the more recent technique that uses
femto-second radiation at 800 nm [43]: DlBragg saturates around 5 pm at low
g-doses, ⇠5 kGy. The experimental investigation of the radiation effects on
the FBGs is focusing the attention of the research with the aim of applying
this technology to the monitoring of radiation hazardous environment, like
present and future nuclear power plants [44]. These argument will be
addressed in more details in the following sections of this chapter, while in
the next chapter the application to the harsh environment represented by an
high energy physics experimental facility will be explained.
Only few studies have been published concerning the behavior of LPGs
when exposed to ionizing radiation. As for FBGs, a peak shift is observed as
a consequence of the radiation induced refractive indices (Dne f f and Dn(n)

clad)
and period (DL) change:

Dl(n)

l(n) =
Dne f f � Dn(n)

clad

ne f f � n(n)
clad

+
DL
L

(11)

The effect of g-radiation on standard LPGs written in N-doped and
Ge-doped fibers has been investigated by Vasiliev et al. [45]. Within the
experimental error of ± 0.3 nm, any radiation induced change in the
transmission spectra has been revealed after a cumulated dose of 9.3 kGy
(dose rate of 6.6 Gy/s).
The turn-around-point long period grating (TAP-LPG) [46] exhibit a
trasmission spectra characterized by dual resonant peaks due to coupling to
higher order cladding modes. Under radiation, both peaks shift in different
directions with high sensitivity and indeed they are good candidates as
dosimeters [47].
The chiral long period grating (CLPG) is characterized by a periodic
modulation of the optical properties of the fiber achieved by twisting the
fiber as it passes through a miniature oven. The period greatly exceeds the
optical wavelength so that core and cladding modes can be coupled to
produce several narrow dips in the transmission spectrum. Even if their
radiation sensitivity depends on the fiber composition, the CLPG are very
sensitive to radiation with a dip shifts up to 10 nm after a g-dose of 100 kGy
has been cumulated [48].
Since this Thesis work has focused on the application of FBG sensors, the
next sections of this chapter will be devoted to the explanation of the FBG
sensing technology.
In the following paragraphs a review of the radiation effects on the FBG
types reported in section 1.6 will be given.
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1.7.1 UV-FBGs

The radiation influences the position, amplitude and FWHM of the Bragg
peak, depending on the grating parameters and the writing conditions as
well as the used fiber. Generally, the ionizing radiation induces a red Bragg
wavelength shift with a saturating tendency. The red-shift results from the
increase of the average effective index ne f f [49]. For the germanosilicate
fibers, as demonstrated by Neustruev et al. [50], the g-irradiation can be
considered as a further UV-light exposure since it creates the same
paramagnetic defects as the UV-light. Moreover, the g-radiation should affect
only the mean value of ne f f and not the modulation amplitude Dnmod [51].
Two main reason can be addressed to explain the saturating behavior [52]:
the limited concentration of precursor defects, which are responsible for the
refractive index change, and the competition between the annealing and the
generation of the defects [53], that is also dependent on the radiation
dose-rate and the annealing rate.
In general, the BWS depends on the manufacturing parameters [53] [54], e.g.
composition of the optical fiber, hydrogen loading, annealing, and on the
irradiation parameters, e.g. dose rate, temperature.
In Figure 5 the BWS, under identical manufacturing and irradiation
conditions, of several grating made in different fibers doped with
germanium, boron, phosphorous, cerium or nitrogen to achieve the
photosensitivity. As demonstrated by Henschel et al. [53], it is not possible to
find a clear correlation between the observed radiation sensitivity and the
fibers composition.
Therefore, fibers that show higher radiation induced attenuation (RIA) do
not give rise to gratings with higher radiation sensitivity. The cause is that
the grating inscription with high UV light intensity changes the fiber
properties so much that the resulting material can no longer be compared
with that of the initial fiber and even the defect generation by ionizing
radiation in this new material will be different [53]. However, Lin et al.
observed in B/Ge co-doped fibers that the higher the GeO2 concentration,
the higher the FBG radiation sensitivity, easy to explain as the formation of
more Ge-related color centers [55]. Before the writing of the grating, the
photosensitivity of the fiber is enhanced with the H2-loading and,
consequently, after the writing an annealing has to be performed to
accelerate the hydrogen out-diffusion and stabilize the grating. Increasing
the fiber sensitivity to UV light, the hydrogen increases also the radiation
sensitivity of gratings. Indeed, BWS saturates at higher shift levels and at
higher doses for gratings written in loaded fibers than in the unloaded [42]
[55] [56]. A probable reason of the high radiation-sensitivity of gratings
written in hydrogen-loaded fibers is the radiolytic rupture of the OH-bonds,
whose concentration increases with the H2-loading [56].
Except special fiber coatings, it is not possible to write gratings with UV
light without removing it since it absorbs such wavelengths. In practice,
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Figure 5: Bragg wavelength shift of gratings made of different fibers, during g-
irradiation at RT up to 0.1 MGy, with dose-rate of 0.9 Gy/s [53].

gratings have to be inscribed in bare fibers that has to be re-coated after the
grating writing process. The coating influences the grating
radiation-sensitivity [57]: the exposure ionizing radiation modifies the
structure of the coating, which can shrink or swell, resulting in a Bragg
wavelength shift. However, it can be thought that the coating could shield
rays. This shielding effect has to be considered only for UV light or X-rays of
very low energy, but not for g-rays with an energy of about 1 MeV [54].
Besides the fiber, the conditions of writing and using could also influence the
grating response under radiation. The grating radiation sensitivity does not
depend on the writing UV laser light, for example its wavelength [58]. It
depends on the Bragg wavelength initial value and it increases with
increasing lBragg [26], whereas it depends slightly on the fiber tension
during the grating inscription, decreasing by increasing the tension [54].
It has been experimentally demonstrated that the sensitivity of the grating to
ionizing radiation is independent of the light power used for measuring the
spectra [58] even if, by the phenomenon known as photo-bleaching, the light
power increasing reduces the fiber RIA.
The dose-rate also influences the grating sensitivity. Indeed, it has been
observed that by increasing the dose-rate, the BWS saturates at higher shift
levels and at higher doses [59]. Also the irradiation temperature play a role,
since increasing the temperature facilitates the defect annealing resulting in a
decrease of the BWS [54]. Finally, it has been observed that a pre-irradiation
could reduce the radiation sensitivity, because during the pre-irradiation
most of the precursors is converted [55]. However, this effect depends on the
post-irradiation recovery [49].
As described in the previous section, the Type II grating is damage grating in



1.7 effects of g-radiation on fiber gratings 17

Figure 6: Comparison of the BWS in Type I and Type II gratings [53].

any kind of fiber. This implies that the radiation sensitivity of this type of
grating is defined by the fiber properties [53]. In Figure 6 a comparison
between the BWS of a Type I and a Type II grating written in the same kind
of photosensitive fiber is shown, highlighting the lower radiation sensitivity
of the Type II grating [53]. Type IA gratings are formed in standard
telecommunication hydrogen-loaded fibers following fiber UV pre-exposure.
If the pre-exposure is not done a standard Type I grating is formed, meaning
that both Type I and Type IA gratings can be written in one fiber. Faustov et
al [60] performed a comparison study, irradiating with g from a Co60 source
pairs of Type I - Type IA gratings written in the same fiber section. Two
types of fiber were used: a B/Ge co-doped fiber Fibercore PS-1250/1500 and
a highly Ge-doped fiber Fibercore SM-1500. All fibers were hydrogen loaded.
From the results reported in the plot in Figure 7 it can be stated that Type IA
FBGs are more radiation sensitive with respect to standard gratings.
Moreover, Type IA gratings exhibit a faster post-radiation relaxation: after a
sufficiently long time the BWS changes its sign and this behavior is observed
for both boron-containing and boron free fibers. It was concluded that the
damage to the glass matrix due to the UV blank exposure, combined with
the presence of trapped hydrogen, is responsible for both, the high ionizing
radiation sensitivity of Type IA gratings, and their post-irradiation annealing
behavior. The results also indicate the possible role of boron for the radiation
sensitivity enhancement [60]. Type IIA FBGs are regenerated gratings and
can be inscribed in highly Ge or Ge/B co-doped fibers without hydrogen
loading. Gusarov et al. [57] found that the Type IIA FBGs are more radiation
resistant as compared to Type I FBGs written in the same fiber. A saturation
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Figure 7: Comparison of the BWS in Type I and Type IA gratings [60].

trend is observed also for Type IIA gratings but with no significant
post-irradiation recovery.
Finally, several works show that the temperature sensitivity of the UV FBGs
is not influenced by radiation [42] [61] [53] [62].

1.7.2 IR fs-FBGs

The radiation effects on Type I-IR and Type II-IR femtosecond FBGs were
studied for the first time by Grobnic et al. [43]. Fig. 8 shows the
radiation-induced BWS in FBGs written in the standard Ge-doped fiber
Corning SMF-28, proving that the H2-loading increases the radiation
sensitivity, especially for Type I-IR gratings, that exhibit higher BWS with
respect to the Type II-IR gratings. Moreover, BWS saturating behavior is
observed only for the gratings made in unloaded fibers, at levels that are
similar for both grating types and depend only the fiber composition. On the
same plot, the BWS of UV Type I FBGs are also shown [53], showing a
behavior similar to that observed for the Type I-IR FBGs.
The radiation-induced BWS is larger in the fiber with higher RIA at lBragg,
however it has been observed that a RIA difference of more than two orders
of magnitude leads to a BWS difference of less than a factor 10 [43].
A major advantage of fs-IR gratings is the possibility to write gratings with a
very good reflectivity inside almost any fiber, making possible the
manufacturing of very radiation hard FBGs. Indeed, in Figure 9 the BWS of
Type II-IR gratings written inside a pure silica fiber (PSC), fiber 2 of Table I
(Corning) and two very radiation hard fluorine doped fibers (Fujikura and
Draka). It is remarkable that the BWS of the FBGs written inside the F doped
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Figure 8: Comparison of BWS for fs-IR-FBGs and UV-FBGs written in a Corning
SMF-28 with and without hydrogen loading [41].

fibers is only a few pm up to a dose of 100 kGy and they even stay below 5
pm up to 1 MGy at a slightly higher dose rate [63]. Radiation-induced
temperature sensitive coefficient changes were below the measurement
accuracy, meaning that such gratings are good candidate for sensing in high
radiation dose rate environments [41].

1.8 effects of mixed g-neutron radiation

As just seen, a lot of papers have been published until now about the g-
radiation tolerance of the gratings. In contrast, very few tests were performed
on the gratings in nuclear reactor cores and all on the standard gratings:
type I-UV FBGs. The sensitivity of the Bragg wavelength to mixed g-neutron
radiation is higher than that to pure g-radiation [64]. The lBragg red-shifts
showing a saturating behavior under a neutron flux lower than 1.5 · 1011

n cm�2s�1, with a g-dose-rate up to 180 Gy/h, whereas under an higher
neutron flux (lower than 1.5 · 1014 n cm�2s�1), with a g-dose-rate up to 9
MGy/h lBragg increases almost linearly with increasing dose without any
saturation and the peak width also increases, indicating the grating erasure.
Annealing at high temperatures and pre-irradiation do not improve the
grating radiation stability [65]. As for the g-radiation, the hydrogenation
increases the grating sensitivity: the wavelength shift, the amplitude reduction
and the peak broadening are bigger for the grating written in loaded fibers
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Figure 9: BWS of Type II-IR FBGs written inside a Corning SMF-28, a PSC fiber and
two fluorine core doped fibers from Fujikura and Draka [41].

than in the unloaded one [64] [65] [66]. The temperature sensitivity does not
change because of the radiation [66].

1.9 interrogation techniques and multiplexing

The interrogation system, which processes the back-reflected FBG sensors
optical signal, represents the key element of monitoring systems in terms of
both performance and cost [67]. The requirements for FBG interrogation
systems are low power, high resolution, high speed, small size and capability
to deliver real-time measurements. FBG sensors require expensive optical
sensing interrogator to achieve all these performances. FBG have been
extensively accepted by engineers and have become the most prominent
sensors for structural health monitoring (SHM), because of their high
accuracy. The typical resolutions and the measure ranges of the FBG sensors
are the ones required by civil engineering: resolution as low as 1 µe and 0.1
�C, which translates into a wavelength resolution of about 1 pm, strain
measurement ranges in the order of 10 me and more than 200 �C as
temperature operating range. Whereas this wavelength resolution is easily
achieved with expensive laboratory instrumentation, the ability to resolve
changes on this order using small, packaged electro-optics units able to
operate on the field is more of a challenge. The choice of fiber Bragg
interrogation method depends on the available optical component
technology suitable for a specific application. The most straightforward
method for interrogating a FBG sensors array is based on passive broadband
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illumination in the telecom C band (1530-1565 nm). A linear sensor array can
be created in a single long optical fiber by writing a set of Bragg gratings
with different and unique Bragg wavelengths or by bonding stubs of
common optical fiber to different FBGs. FBG sensors wavelength spacing can
be 1-2 nm, allowing up to a few tens to be multiplexed in a single fiber
operating in the C band. Each FBG can be localized at any position along the
optical fiber. However, minimum spacing and maximum number of gratings
are ultimately ruled by cross-talk coming from multiple reflections and
spectral shadowing. Thus the same optical fiber behaves as an array of stress
sensors, as a multiplexing system and as the transmission medium. This
makes it possible to have multi-point, as well as quasi-distributed sensing.
Light with a broadband spectrum which covers that one of an FBG sensor
feeds the system, and the narrowband component reflected by the FBG is
routed to a wavelength detection system. The two most important
interrogation schemes are: wave division multiplexing (WDM) and the time
division multiplexing (TDM). A TDM system employs a pulsed broadband
light source and identifies different gratings of the same wavelength by the
time taken for their return signals to reach a detector, being the returns from
closer gratings received before those from more distant ones. A system of
passive sloped filters can be used to determine the wavelength of each pulse
as it arrives. Alternatively a high-speed spectrometer can be used. The key
disadvantages of TDM systems is the requirement to have low reflectivity
gratings, and to maintain a minimum spacing between the gratings to allow
the interrogator enough time to make a wavelength measurement. These
disadvantages often limit the performance and practicality of a TDM
measurement system. With a WDM system many gratings can be combined
on a single fibre and addressed simultaneously provided each has a different
Bragg wavelength. This is achieved in practice either by using a broadband
light source and a spectrometer for detection, or an agile tunable or
swept-wavelength light source and simple photodiode detectors. The
interrogation unit used for the purposes of the work presented in this Thesis
employs the latter method.
The state of the art of commercially available fiber Bragg grating interrogator
is represented by Micron Optics products [68] which are designed
specifically for fiber sensor applications.





2
F B G S E N S I N G I N H E P : T H E C M S E X P E R I M E N T AT L H C

2.1 the large hadron collider

The Large Hadron Collider (LHC) is a particle accelerator and collider at the
European Organization for Nuclear Research (CERN) near Geneva,
Switzerland. The LHC is designed to accelerate bunches of either protons or
heavy ions and bring them to collision at the centres of four particle
detectors with a centre of mass energy up to

p
s = 14 TeV.

The LHC physics program is broad and diverse, ranging from precise
measurements of Standard Model (SM) parameters to the search for new
physics phenomena. One of its main goals is establishing the origin of the
electroweak symmetry breaking, either by discovering the SM Higgs boson
and measuring its properties or excluding it and looking for evidence for
alternative mechanisms. It also enables searches for physics beyond the SM
that could appear at the TeV scale, such as supersymmetrical particles, new
heavy gauge bosons, technicolor particles or extra dimensions. The LHC is
thoroughly described in [69].

2.2 lhc : an overview

The LHC is a circular accelerator. This topology allows the particles to be
indefinitely recirculated through the accelerating sections, thus allowing to
reach very high energies while keeping a relatively compact design. The
highest energy accelerators that preceded the LHC, the LEP (Large Electron
Positron) lepton synchrotron and the Tevatron hadron synchrotron were both
circular accelerators. The LEP collided electrons with positrons at a centre
of mass energy of up to

p
s = 209 GeV, while the Tevatron collided protons

with antiprotons at a centre of mass energy of up to
p

s = 1.96 TeV. In order
to pursue the goals of the LHC physics program, extremely rare processes
need to be studied. The number of events per second generated in a collider
via a given process is given by:

N = Ls (12)

where s is the cross section for the process under study and L the machine
luminosity, which depends only on the beam parameters. The LHC was
therefore designed to provide collisions with an unprecedented peak
instantaneous luminosity of L = 1034 cm�2s�1. At this luminosity, a light
Higgs boson event would occur with an average frequency of ⇡ 0.25 Hz. As
a comparison, at the maximum luminosity obtained at the Tevatron,
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L = 5 · 1032 cm�2s�1, a light Higgs boson event would only occur with an
average frequency of the order of 10�4 Hz.
A circular collider’s luminosity can be written as:

L =
N1N2nb frevg

4penb⇤ F (13)

where N1 and N2 are the numbers of particles per bunch in each beam, nb
is the number of bunches per beam, frev in the revolution frequency, g is
the relativistic gamma factor for particles in the beam, en is the normalized
beam emittance which give a measure of how much the particles depart from
the ideal trajectory, b⇤ is the beta function at the collision point giving the
envelope for the particles’ motion and F is the luminosity reduction factor
due to the crossing angle at the interaction point. frev and g are determined
by collider radius and particle energy while all the other parameters may be
controlled to maximize the luminosity.

2.3 design and nominal parameters

The LHC is housed in the tunnel which the LEP collider occupied until 2000.
It uses superconducting resonating cavities to accelerate the two
counter-rotating proton beams and superconducting magnets to bend them.
The necessity for high luminosities dictated the decision to collide protons
with protons instead of antiprotons as done e.g. at the Tevatron. While using
antiprotons would have enabled a simplified collider configuration of a
common vacuum and magnet system for both counter-rotating beams,
antiproton production and storage are challenging processes. They would
have imposed significant limits on the total number of particles in the
antiproton beam, N2 in equation 13 , thus bounding the maximum
luminosity. Therefore two proton beams are used, each controlled by
separate magnets. The 26.7 km long tunnel straddles the French-Swiss
border near Geneva; it lies between 45 m and 170 m underground and
consists of eight straight sections, each about 528 m long, and eight arcs. The
LHC would have longer arcs and shorter straight sections for the same
circumference, thus requiring less intense magnetic fields to bend the beams.
However reusing the existing tunnel was clearly the most cost-effective
option. The straight sections serve as insertion regions: four of them house
physics experiments, one the acceleration system, one the beam dump and
the remaining two the beam cleaning systems. The arcs are occupied by
magnets and the systems to make them functional. The overall layout of the
tunnel is shown in figure 10. Due to space constraints in the tunnel the LHC
uses twin bore magnets that consist of two sets of coils and beam channels
within the same mechanical structure and cryostat. Each arc consists of 23
cells, each one composed of dipoles for deflecting and quadrupoles for
focusing the bunches. In order to focus the beam in both planes, a series of
focusing and defocusing quadrupoles is arranged. In total there are 1232
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Figure 10: Layout of the LHC tunnel [70]. The red parts are new underground
buildings built specifically for LHC. The grey parts represent existing LEP
infrastructure.

main dipoles and 392 quadrupoles. In addition, sextupole, octupole and
decapole corrector magnets are positioned to correct errors in the particle
trajectory.
In this geometry structure the bending radius of the dipoles is about 2.8 km.
The magnetic field needed to keep 7 TeV protons on a circular trajectory can
be calculated as:

B =
p
er

(14)

where p =
p

E2 � m2 is the proton’s momentum and r is the bending radius.
Thus one obtains a peak dipole field of 8.33 T. Producing such a high field
using a conventional electromagnet is unfeasible, due to extremely high
currents and consequent heat dissipation. The LHC therefore uses
superconducting magnets. In particular the magnet coils are made of
niobium-titanium alloy, a superconductor with a critical temperature of 9.2 K.
The coolant used is super-fluid helium at 1.9 K. Helium becomes super-fluid
at 2.17 K. Super-fluid helium has the highest thermal conductivity of any
known substance, making it a very good choice as a coolant. In this state it is
also characterized by a complete absence of viscosity, which enables it to
penetrate in the complex shape of the coils. The high-field super-conducting
magnets operate in a static bath of pressurized super-fluid helium at 1.9 K,
cooled by continuous heat exchange with flowing super-fluid helium. Before
reaching the LHC, the particles are accelerated by a chain of accelerators that
gradually increase the particles’ energy. The protons start their journey to the
LHC in the linear accelerator Linac2. This accelerator yields protons with an
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Figure 11: The CERN Accelerator Complex.

energy of 50 MeV which are then injected into the first circular accelerator of
the chain, the Proton Synchrotron booster (PS), which increases the energy to
1.4 GeV. The protons are then transferred to the Proton Synchrotron (PS), that
raises the energy to 25 GeV and organises them in bunches with about
1.15 · 1011 particles each. From the PS the beam is injected into the Super
Proton Synchrotron (SPS) where the energy of the bunches increases by a
factor of almost 20 up to 450 GeV, which is the injection energy of the LHC.
A schematic of the CERN accelerator complex is depicted in Figure 11. The
LHC acceleration system consists of 8 radio-frequency (RF) superconducting
resonating cavities per each beam, that supply the protons with about 485
keV per revolution during the ramp phase from 450 GeV to 7 TeV. The RF
cavities operate at a peak voltage of 2 MV at a frequency of approximately
400 MHz. This results in 35640 potential wells in the RF field, so-called RF
buckets, where it is energetically favourable for the bunches to be located in
the beam. This corresponds to a spacing in time of only 2.5 ns, but only
every tenth RF bucket is used, making the minimum bunch spacing
Dt = 25ns. The LHC therfore has NB = 3564 possible locations, called
buckets, where bunches can sit for each beam. The bunch patterns of the two
counter-rotating beams together determine when there will be collisions in
the the centre of the experiments. After acceleration the beams circulate in
the machine for a period of typically 10-20 hours during which they are
brought into collision.
In high-luminosity colliders, there is a non-negligible probability that one
single bunch crossing may produce several separate events, a phenomenon
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known as pileup. The average number of superimposed events can be
estimated as:

µ = LsppDt (15)

where Dt = Dt · (NB/Nb) is the average bunch spacing. Assuming a proton-
proton inelastic cross section of spp ⇡ 80 mb, one obtain µ = 25.

2.4 experiments

At the LHC experimental interaction points, four particle detectors
reconstruct the collision events to perform detailed studies of known physics
processes and to search for evidence of new physics. Two of them, ATLAS
[71] and CMS [72], are general purpose detectors; ALICE [73] is dedicated to
the study of the quark-gluon plasma, which is postulated to have existed
during the early universe, using lead-ion collisions; LHCb [74] is targeted
towards studying the decays of B hadrons in order to better understand the
matter-antimatter asymmetry in the universe.

2.5 the cms experiment

The Compact Muon Solenoid [72] is one of the two "general purpose"
detectors at the Large Hadron Collider. It was designed with the aim to
study a large spectrum of physical phenomena, starting from the completion
of the Standard Model predictions looking for the Higgs Boson and up to the
search for new physics beyond the Standard Model at the TeV scale.
The experiment is located in an underground cavern at LHC experimental
point number five, near the french town of Cessy. The main feature of the
detector is a strong super-conductive solenoidal magnet, which can reach a 4
T field and dictates the cylindrical shape of the experiment. Another
characteristic of CMS is its modularity. This had made it possible to build
CMS on surface, while the experimental cavern was being excavated, and it
was lowered one section at the time in 2007. The magnet occupies the central
region of the detector, called barrel, which is externally subdivided in 5
wheels. The wheels compose the iron yoke for the return of the magnetic
fields, and contain the chambers for the detection of muons. The central
wheel (designated wheel 0) is also the structural support for the magnet to
which it’s connected. The barrel region is closed on both ends by four
instrumented iron disks called endcaps. Once closed, the detector is quite
compact, being a cylinder 21.6 m long and with a diameter of 14.6 m. Its
total weight is of about 14500 tons. In Figure 12 an expanded section of the
CMS detector is shown, with highlighted the main sub-detectors.



28 fbg sensing in hep: the cms experiment at lhc

Figure 12: CMS schematic layout.

2.5.1 CMS Coordinate system

The CMS coordinate system used to describe the detector is a right-handed
Cartesian frame, centered in the interaction point and with the z axis along
the beam line (this direction is referred to as longitudinal). The x axis is chosen
to be horizontal and pointing towards the centre of the LHC ring, and the
y axis is vertical and pointing upwards. The x � y plane is called transverse
plane.
Given the cylindrical symmetry of the CMS design, usually a (f, q) cylindrical
coordinate system is used in the reconstruction of the tracks of particles. f
is the polar angle, laying in the x � y plane, measured from the x-axis in
mathematical positive direction (i.e. the y axis is at f = 90�. The azimuthal
angle q is measured from the z-axis towards the x � y plane. The angle q can
be translated into the pseudo-rapidity h by:

h = � ln
✓

tan
q

2

◆
(16)

A longitudinal view of CMS detector displaying the segmentation h of the
sub-detectors is shown in Figure 13.

2.5.2 The CMS Tracker

The CMS tracking [75], is located inside the coil, and it is the first detector
surrounding the interaction point. It is designed to allow a precise
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Figure 13: Transverse view of CMS in the barrel region (a) and longitudinal view of
one quarter of the detector (b).
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Figure 14: The tracker schematic structure.

reconstruction of the trajectory of the charged particles produced in the
collisions. The active envelope, as can been seen from Figure 14, extends to a
radii of 115 cm, over a length of approximately 270 cm on each side of the
interaction point, with a total sensitive surface of around 200 m2. At the
nominal LHC luminosity, every 25 ns typically 20 proton-proton collisions
occur, producing around 1000 particles crossing the tracker volume. The flux
of particles equates to have a high hit rate of 100 MHz/cm2 at the innermost
detector layer, decreasing to 300 kHz/cm2 at the outermost. This imposes
stringent conditions on the detector and readout electronics. To satisfy them
the detector technology must provide high granularity combined with a fast
readout, and be able to operate in this harsh environment for a expected
lifetime of approximately 10 years. The CMS tracker consist of two parts
instrumented with two technologies: Pixel detectors and Silicon Strips. The
Pixel system is the first element after the collision point. The detector
consists of two sub-detectors: the Barrel (BPIX) and Forward (FPIX). The
BPIX is made of three layer detector with 53 cm long with layers at mean
radius of 4, 7 and 11 cm. The FPIX has two layers at z = ± 34.5 and ± 46.5
cm with a radial coverage between 6 and 15 cm. The detector has more than
66 million readout channels, the sensitive area is of 1 m2 of pixels with a unit
size of 100 ⇥ 150 µm2.
The Silicon Strip Tracker is formed of 15148 detector modules mounted on
the four different subsystems: Tracker Inner Barrel and Disk (TIB/TID),
Tracker Outer Barrel (TOB) and Tracker End Caps (TEC). Each is assembled
on an independent mechanical light support structure. The TIB is a group of
4 layers and covers up to |z| < 65 cm, using silicon sensors geometry with a
thickness of 320 µm and strip pitch between 80 and 120 µm. The TIB is the
loser part to the interaction point and is exposed to a high dose of radiation.
The TOB is a group of 6 layers with a half-length of |z| < 110 cm. The
radiation level of TOB when compared to the TIB is lower. The geometry can
be different with thicker silicon sensors of 500 µm which can be used to
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maintain a good signal-to-noise ratio for longer strip length and wider pitch
between 120 to 180 µm. The outer endcap TEC is composed of 9 disks that
are between the 120 cm and 280 cm in Z axis. The inner endcap TID is
composed of 3 small disks filling the gap between the TIB and the TEC. The
TEC and TID modules are organized in rings, centered on the beam line. The
Silicon Strip tracker has around 9.3 millions of strips with 200 m2 of active
sensing area. It can provide a minimum of 10 measurement points in the
radial projection along a particle track for pseudorapidities up to a
maximum of h=2.5.
The structure for the different parts of the silicon strip tracker is made of
carbon fibre in order to reduce the budget material, high mechanical strength
and low dilation coefficient. The cooling circuits have to allow the silicon
strip tracker to operate with a temperature below -10 �C in order to reduce
the thermal runaway and anti-annealing processes during the LHC collisions,
while during the shutdown periods it should be at 0 �C.

2.5.3 The Electromagnetic Calorimeter

The CMS Electromagnetic Calorimeter [76] detector is a layer surrounding
the CMS Tracker which function is to measure the energies from the electrons
and photons. The ECAL consists of 76000 lead tungstate PbWO4 crystals1

with a density of 8.28 g/cm3, a 3D view is shown in Figure 15. The detector
volume is centered on the interaction point with a length 7.9 m and a 3.6 m
in diameter with an approximated crystal mass of 90 tonnes. It is composed
of a Barrel (EB) with a pseudorapidity range |h| < 1.479 that is made of
two halves, each of them divided into 18 f-sectors called Supermodules
housing 1700 crystals. The two Endcaps (EE) with a pseudorapidity range
1.479 < |h| < 3 are composed of two Dees divided vertically, each one formed
by groups of 25 crystals called Supercrystals making a total of 3675 crystals
per Dee. On the front of the EE towards the interactions point the Preshower
(ES) is installed with a pseudorapidity range 1.653 < |h| < 2.6. The crystals
are tapered and distributed over the Barrel and Endcaps with the tip oriented
approximately 3� away from the main interaction point, to attenuate the effect
of inter-crystal gaps. The crystals will deteriorate with the radiation creating
colour centres and a self-anneal, depending on the temperature and time
causing a variation on the energy measurement. In order to make an accurate
measurement a very precise system for monitoring the crystal transparency
was installed.
Two different technologies of photo-detectors have been used on the Barrel
and the on the Endcaps. Avalanche Photodiodes (APDs) were used on the
Barrel, specially developed by the Hamamatsu Photonics for CMS ECAL. The
endcaps use Vacuum Photo-Triodes (VPTs) developed by the manufacturer
RIE in St Petersburg. The ECAL detector has to work under a magnetic field

1 The lead tungstate has the properties of having a short radiation length of 0.89 cm, related to
the energy loss of high energy, electromagnetic-interacting particles with it.
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Figure 15: View of the CMS ECAL structure: Barrel (one supermodules in yellow),
Endcap (in green), Preshower (in orange).

of around 3.8 T, resistant to radiation and have a lifetime around 10 years
and up to doses of 4 kGy and 2·1013 n/cm2 in the Barrel region and up to 50
times higher in the Endcaps.
The Preshower detector is installed in the forward regions. Its main function
is to identify two photons with a small distance between them, that are
produced from the decay of the particle p in order to exclude them from
single photon with high momentum measured on the ECAL crystal. The
Preshower is a sandwich made of two lead absorbers and two orthogonal
layers of silicon strip sensors in the configuration absorber-sensor-absorber-
sensor. The ES is composed of 4300 detectors providing a total of 1.4·105

detector channels, covering an area of 16.5 m2.

2.5.4 The Hadronic Calorimeter

The CMS Hadronic Calorimeter (HCAL) [77] was designed to measure
hadrons, as protons, pions or kaons produced by the LHC collisions. A
longitudinal view of a quarter of CMS is shown in Figure 16 where the
location of all HCAL components are indicated. From the measurements of
the hadrons it is possible to do an indirect measurement of the existence of
non-interacting particles that do not leave any record when they cross the
CMS detector, using as indirect measurement the imbalance momentum or a
missing energy. To make this possible the hadronic calorimeter has to be
hermetic. This means that it has to contain all the particle energy inside the
hadronic calorimeter. In order to be the most hermetic as possible the HCAL
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Figure 16: Longitudinal 2D view one quarter of the CMS detector with all HCAL
calorimeters

was designed with two barrels (HB and HO), two endcaps (HE) and two
forward (HF) detectors. The hadronic calorimeter also demands a design
with the adequate granularity and mass resolution. The working concept is
based on a sequence of absorber and tiles of fluorescent scintillator material.
The HCAL is made of around 10k individual tiles. Brass was chosen as
absorber as it has short interaction length, is non-magnetic and easy to
machine. In order to measure the total of the high energy particles inside of
the hadron calorimeter, it is necessary to maximize the amount of absorber;
this leaves few space for the scintillating tiles. The concept used was tiles
with embedded wavelength-shifting (WLS) fibers that are the optimal
solution for the space available. The sensor technology used to measure the
light from the fibers was hybrid photomultiplier (HPMT).
The barrel HB is built in two half and is installed between the ECAL and the
magnet (1.77 m  R  2.95 m). Each half barrel is made of 18 barrel wedges
with 26 tonnes each, with 17 layers, the first fifteen layers of the absorber are
made of brass and the last 2 are made of stainless steel for structural
reinforcement. The HB has a pseudorapidity range of 0 < |h| < 1.4. A barrel
HO or is placed outside the magnet coil in the barrels with a few more
additional layers to measure all the energy that was deposited on the HB
without escaping any energy to the outside. The thickness of the scintillators
in this barrel is around 10 mm. The HO has a pseudorapidity range of
0 < |h| < 1.3.
The Hadronic Endcap modules (HE) are placed behind the ECAL endcap on
the Muon Endcap disks. Each module has 18 wedges with 14 tonnes each,
with 19 layers of absorber and with a pseudorapidity range of
1.4 < |h| < 3.0. The HE has geometry with a inner radius of 0.4 m and a
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outer radius about 3 m with a thickness of 1.8 m. The HF calorimeter is
placed on both sides of the detector at 11.1 m away from the interaction
point. The HF has a pseudorapidity range of 3.0 < |h| < 5.0. The materials
could not be the same, used on the HB/HO and HE due to the high levels of
the radiation on the region. The selected absorber on the HF calorimeter was
iron. The active material used was quartz fibers embedded on the iron
absorbers installed parallel to the beam pipe.

2.5.5 The Muon System

As implied by the experiments middle name, the detection of muons is of
central importance to CMS. Muons provide a clean experimental signature
in the detectors that allows to identify signatures of interesting processes,
like the "golden-plate" Higgs decays into ZZ or ZZ⇤ then decaying into four
muons, over the very high QCD background rate expected at LHC with full
luminosity. Therefore a precise and robust muon measurement was a central
theme from its earliest design stages.
The CMS Muon System [78] has the function of efficiently identifying muons
and measuring their momenta, with a measuring range from a few GeV up
to TeV and triggering. The muon detector is one of the largest ever built,
having a muon position resolution in ranges between 50 and 200 µm. The area
covered by the muon chambers is around 2,000 m2 for the barrel detector and
an area of 1,500 m2 for the endcaps. The layout of the muon system is shown
in Figure 17. The muon detectors were built with three different detector
technologies based on gas detectors: drift tubes (DT) chambers installed
on the barrels, cathode strip chambers (CSC) installed on the endcaps and
the resistive plate chambers (RPC) on both barrels and endcaps. The muon
system has, in total, an active detection area of 25,000 m2 in the different
layers of the chambers and nearly 1 million channels. The combination of the
different technologies according to the background rates and magnetic field
ensures an excellent performance of muon detection and efficient triggering
in the pseudorapidity range 0 < h < 2.4. The geometry of the muon barrels
(MB) detector consists of 5 cylindrical barrels with 15 m of outer diameter
and 2.5 m long. Each barrel is divided into 12 sectors of 30� azimuthal angle
each, and with 4 layers. They are made with rectangular DTs and RPCs
parallel to the beam pipe as depicted in the schematic in Figures 17. Each
muon chambers installed in the barrel wheels have 12 layers of drift tubes
grouped in 3 independent units called SuperLayers (SL). The SL is made of
drift cells with a spacial resolution of 250 µm, which has a rectangular shape
and a maximum drift length of 2.1 cm, operating at a selected voltage that
can determine 400 ns maximum drift time. The gas used on the drift tubes is
a mixture of Ar(85%)+CO2(15%).
The muon endcap (ME) regions have the chambers with the trapezoidal
shape organized in series of concentric rings around the beam pipe, as
shown in Figure ??b. The total ME consists of four layers on the positive
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Figure 17: Longitudinal view of on quarter of the CMS detector: the various system
composing the CMS muons spectrometer are shown.

and on the negative side. The distribution of the CSCs is made in three
chambers rings, each ring contains 36 chambers, while the RPCs, at the
moment, are installed only on the two external rings. The CSCs use the
technology of the multiwire proportional chamber, having 6 anode wires
separated with 7 cathode panels with milled strips on them. The strip on
the cathode panels runs radially in accordance with the CMS coordinate
system. The nominal voltage of operation is 3.6 kV and the gas mixture
used is Ar(30%)+CO2(50%)+CH4(20%) with a gas volume of 50 m3 with the
sensitive planes of all chambers is around 5000 m2. The RPC chambers are
used on both Endcaps and Barrels for trigger purpose. The chambers have
double gaps design assembled with two Bakelite sheets of 2 mm thickness
interspaced with 2 mm gas gap. In the centre of the gap a plane of readout
strips is installed. The two gaps are filled with a gas mixture C2H2F4(96.2%)+i-
C4H10(3.5%)+SF6(0.3%). The mode of operation is in avalanche mode, which
can work efficiently with rates up to 10 kHz/cm2.

2.5.6 The CASTOR calorimeter

CASTOR (Centauro And Strange Object Research) [79] is one of the two
forward calorimeters of the CMS experiment. CASTOR covers a
pseudorapidity range from 5.10 < h < 6.57. During the LHC heavy ion
collisions this pseudorapidity range is very sensitive for observation and
studies of the so-called centauro and strangelet objects, which were initially
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Figure 18: Sketch of the CASTOR structure.

observed in cosmic ray induced showers [79]. Studies of energy flow in such
forward region done for proton-proton, proton-ion and ion-ion collisions are
also of high interest for tuning of cosmic ray showers Monte-Carlo
generators. The CASTOR calorimeter is located at 14.37 m away from the
interaction point. The dimension of the detector is about 1.5 m in length and
36 cm in diameter. A sketch of the detector is shown in Figure 18. Each
halves of the detector weighs around 1 tonne. CASTOR is exposed to a
residual magnetic field between 0.1 T and 0.16 T with a radiation level
between 2 kGy and 20 kGy. The detector is longitudinally segmented in 14
modules. The azimuthal segmentation provides 16 sectors. Each module
consists of five alternating layers of tungstate and quartz glass (radiation
hard fused silica). The layers are installed with an angle of 45� with respect
to the beam axis to provide efficient collection of the Cerenkov light
produced by the shower particles in quartz plates. Cerenkov light produced
in the quartz plates during shower development are transported with
air-core light-guides and to HAMAMATSU R5505 photomultiplier tubes.
This type of photomultipliers can work under a magnetic field of up to 0.5 T,
with the field lines doing a ±45� angle in relation with the PMT-axis.

2.6 need for additional monitoring systems in cms

The CMS operation in very complex environmental conditions requires a
constant monitoring of temperature, structural deformation, relative humidity,
magnetic field and ionizing radiation. Indeed, all the CMS area is under
constant monitoring with the main scope of having information about of the
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working condition of all the subsystems. The monitoring became crucial for
all the equipment that are temperature dependent and/or have to work under
particular thermal conditions. The monitoring system originally installed in
CMS are made of traditional electronic sensors [72]. The already significant
number of detectors and electrical wiring installed at the CMS, does not
facilitate further installation of additional monitoring systems. Moreover,
during the operation of LHC, the high level of radiation and magnetic field
is often not compatible with a good functioning of conventional electronic
sensing devices. The FBG technology, unknown to the CMS community at
the time of the design of the detector, represents a valuable and innovative
answer to the request for additional monitoring systems to be inserted in the
complex structure of the CMS detector, where cabling easiness play a key
role. Indeed, the FBG technology allows the realization of wide monitoring
quasi-distributed systems with an elevate number of sensing points with a
single optical fiber.

2.7 fbg based monitoring system for cms

Monitoring systems based on the FBGs technology were installed, by our
group, in the underground site of CERN CMS experiment since 2009. They
were gradually increased up to 200 temperature and strain sensors, running
24/7 for 3 years during LHC collisions, without any interference with CMS
operating conditions [80]. Since February 2013 until March 2015 the LHC has
been stopped in order to allow technical interventions and upgrade of the
machine and experiments, Long Shut-Down (LS1). During this period, we
expanded our FBG monitoring system. Now we have nearly one thousand
FBG sensors installed and operational, covering the CMS experiment from
the outer to the most inner part. The central beam pipe structural monitoring
system is part of the CMS-FBG monitoring system and it is taking data,
continuously, from the beginning of 2015.

2.7.1 Readout and data handling

The spectral features of the FBG sensors, allow to realize efficient spatially-
distributed sensing systems on a single fiber by using the WDM technique
together with a spectrally-encoded readout technique based on tunable laser
source. This technique consists in interrogating a certain number of grating
at the same time exploiting the spectral diversity between their selves: since
a FBG reflects only a narrow portion of the incident light, by putting several
gratings in series on the same fiber, the instrument will read a reflection
spectrum that is composed by the central wavelengths of each grating. The
attenuation of the optical fibers is sufficiently low allowing the readout system
to be placed on a more comfortable place where both the magnetic field and
the radiation level is low enough to be operated and maintained. Optical
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Figure 19: Integration of the FBG data taking system in the CMS Detector Control
System

fibers installed on the various parts of the CMS detector are then directed
to the Underground Service Cavern (USC) about 120 meters away from the
sensors. The USC is a member of the twin caverns of the CMS experiment
and is isolated by means of radiation hazards from the experimental one
that houses the detector itself. Being radiation safe, this cavern is accessible
during the LHC operations as well. The optical fibers are read out by a
MicronOptics sm 225-500 optical interrogator system [68] that is equipped
with an ethernet interface and can be accessed through a proprietary TCP/IP
protocol. In order to reduce network traffic on the interrogator, it is connected
to a mini private network created by the readout computer. This computer
has another network interface installed as well, that allows the integration
and sharing of the FOS system data with the CMS Detector Control System
[81]. In order to be able to be integrated into the CMS DCS, the read out
software uses the Distributed Information Management (DIM) protocol [82]
that is a custom protocol over TCP/IP developed at CERN. DCS system of the
CMS detector is implemented in the widely used PVSS/WinCC [83] process
management software language using the CERN built Joint Controls Project
(JCOPS) framework [84]. In PVSS/WinCC we also developed a module that
connects to the read out software via DIM and then provides the quasi
standard interface required by the experiment. This module besides the
relaying commands to the FOS system is responsible for the archiving the
recorded data into the CMS online Oracle database. Furthermore, the read
out software is also able to dump the raw data into text files to allow offline
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Figure 20: Layout of the Bulkhead FBG monitoring system and temperature dynamic
recorded on the positive side.

analysis. The scheme of the data management for the FOS4CMS is depicted
the Figure 19.

2.7.2 Tracker bulkhead temperature monitoring

The very first FBG monitoring system installation has covered the temperature
monitoring of the two BulkHead side plus and side minus of the CMS detector.
The installation took place in July 2009 and took data 24/7 until the end of
2012. The designed monitoring system consists of 20 FBG sensors spliced in
two arrays and an interrogation system for fiber optic sensors. The FBG sensor
arrays were built on the basis of a standard single-mode optical fiber SMF-28.
The sensors are packaged with a ceramic material and their dimension are 40
x 10 x 5 mm. On each fiber we spliced 10 FBGs, whose wavelength spacing
was chosen in order to guarantee the correct peak detection. The junctions
FBG-SMF28 have been made using a fusion splicer that minimizes the power
loss induced from the junctions by implementing an auto-alignment facility
of the fiber cores. The distance between each adjacent sensor is approximately
2m. The two arrays have been installed on the Tracker Bulk Head external
surface, one on the positive and one on the negative side. In Figure 20, as an
example, it is shown the layout of the system together with illustrative graphs
of the data recorded by the sensors installed on the positive side, where
large temperature variations can be seen. They are in complete coincidence
with the Tracker power cycles. Temperature has been recorded continuously
throughout the year 2011 and more detailed results are reported in [80]. The
system has been running until the end of 2012 when the Long Shutdown 1
(LS1) began.
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(a)

(b) (c)

Figure 21: Layout of the FBGs monitoring system installed on the HF Riser structure
(a) and strain data recorded during magnet ramp up (b) and ramp down
(c).
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(a)

(b) (c)

Figure 22: Layout of the FBGs monitoring system installed on the HF platform
structure (a), with an example of temperature and strain dynamic during
CMS operation and magnet ramps (b,c).

2.7.3 HF raisers and CASTOR platform structural monitoring

The 3.8T CMS magnet cycles induce strain deformation on the detector
structure. A strain monitoring system composed of eleven FBG sensors has
been installed on the HF riser structure.
Ten FBG has been glued on the structure to measure the strain deformation
while one has been left free to be used as thermal compensator [80]. The
strain sensors layout is shown in Figure 21(a): four sensors are on the NEAR
side, two on the IP side (S1 and S6) and two on the non-IP side (S5 and S7)
while six sensors are on the FAR side, three on the IP side (S8, S9 and S10)
and three on the non-IP side (S2, S3 and S4). During a B-field rump up,
compression of the Raiser structure is observed on the IP side , while
decompression of the same structure is seen on the non-IP side, as shown
from the strain dynamic versus B-field values plotted in Figure 21(b,c).
Calculations done by the CMS Integration Office showed that despite the
relatively large shear displacements (⇠1.5 mm), the rotation centre is more or
less coinciding with the internal beam pipe support therefore no destructive
force is exerted on the beam pipe. Moreover, the FBGs data highlight that the
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Figure 23: Morphing of the HF raiser and platform structure computed from the
FBGs strain data.

raiser structure responds very similar to every magnet ramps.
The CASTOR detector has to be placed on a platform attached to the HF
raiser structure. In order to ensure the safe operation of the whole structure,
the strains in this platform have to be measured. A strain monitoring system
composed of eleven FBG sensors has been installed on the HF platform
structure: eight FBGs has been glued on the structure to measure the strain
deformation while three has been left free to be used as thermal
compensators [80]. The layout of this monitoring system is depicted in
Figure 22(a). Therefore, at first a calculation has been performed at zero
magnetic field for the gravity-only distortion that was validated by the FBG
data. Then, the FBG data recorded in high magnetic field was used to
calculate the strain distribution. Calculations showed that no destructive
forces are exerted in this region. An example of the strain dynamic acting on
the CASTOR paltform during a magnet rump is show in the plots in Figure
22(b,c).
The morphing of the entire structure, HF raisers plus Castor platform is
shown in Figure 23. These FBGs measurements represent the experimental
proof of the stability oh the HF raiser structure together with the CASTOR
platform. Moreover, this monitoring system has been the first FBG strain
monitoring installed in CMS and in a HEP experimental facility.
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Figure 24: Layout of the CMS Experimental Underground Cavern (UXC) FBGs
temperature monitoring system.

2.7.4 Cavern temperature monitoring

In 2011, during LHC Run1 period, a temperature monitoring system for the
whole CMS Experimental Underground Cavern (UXC) has been installed
[80]. It is composed by a 2 km long SMF-28 fiber with sixty FBG sensors:
23 sensors on wall near side, 3 sensors on wall +Z side, 23 sensors on wall
far side, 8 sensors on shaft far side, 3 sensors on wall -Z side as shown in
Figure 24. The system is up and running and the data are displayed 24/7 in
the CMS control room during operation and maintenance phases. This FBG
temperature sensors system allows the monitoring of the thermal gradient of
the whole CMS UXC.

2.7.5 RPC Endcap temperature monitornig

The RPC Endcap muon system has been equipped with a FBG based
monitoring system during LS1. On each chamber on the disks RE±2, RE±3
and RE±4 we have placed a FBG temperature sensors, that is to say 72
sensor per disk on a single fiber, for a total of 432 FBG sensors. The
temperature is an essential parameter to be monitored for the correct
understanding of the performaces of the RPC detector, since it enter as a
correction factor in the computation of the applied high voltage which is
directly related to the detector efficiency. As all the other FBG monitoring
system installed in CMS, also the RPC’s one is in data taking 24/7 and the
temperature data are displayed in the RPC detector control station in the
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Figure 25: Layout of one of the six FBG temperature monitoring systems installed
on the RPC endcap disks (left) and photo of the YE+4 RPC disk with the
FBGs array installed (right).

CMS control room. The layout of the system, as well as a picture of one RPC
disk, is shown in Figure 25.

2.7.6 BRM temperature monitoring

The CMS Beam Radiation Monitoring (BRM) system is composed of 6
different subsystems that monitor the beam conditions and radiation field in
and around CMS over time scales that range from bunch by bunch to long
term monitoring. The remit of the BRM is to provide monitoring of the
beam-induced radiation field within the UXC55 cavern and the adjacent
straight sections, and to provide real-time fast diagnosis of beam conditions
and initiate protection procedures in the advent of dangerous conditions for
the CMS detector. During LS1 we equipped the new Pixel Luminosity
Telescope2 (PLT) and the Beam Condition Monitor3 (BCM) Analog Opto
Hybrid (AOH) boards, the PP0 and the cooling circuit with a temperature
monitoring system based on the FBG sensor written in naked SMF-28 fiber,
for a total of 80 FBG sensors. In particular, the AOH board temperature FBG
array contains 10 gratings:

• 4 grating for measuring laser temperature;

• 1 grating for measuring ambient/radiation effects;

• 1 grating for measuring PP0 Regulator temperature;

2 The PLT is comprised of two arrays of eight small-angle telescopes situated on either side
of the CMS interaction point. Each telescope hovers only 1 cm away from the CMS beam
pipe, where it uses three planes of pixel sensors to take separate, unique measurements of
luminosity.

3 The BCM of the CMS detector at the LHC is a protection device similar to the LHC Beam
Loss Monitor system. The main purpose of the system is the protection of the silicon Pixel
and Strip tracking detectors by inducing a beam dump, if the beam losses are too high in the
CMS detector.
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Figure 26: Example of a AOH board equipped with a temperature FBG array and
view of the cmsonline web page where the temperature data are displayed
24/7 in realtime.

• 1 grating for measuring cooling inlet to BCM and PLT;

• 1 grating for measuring outlet of BCM/Inlet to PLT;

• 1 grating for measuring outlet of PLT silicon/ROC section;

• 1 grating for measuring final cooling return.

In Figure 26 a photo of the AOH the FBG array installed is shown next to a
view of the web CMS based detector monitoring, cmsonline, where the data
recorded from this temperature monitoring system are available.

2.7.7 External Yoke structural monitoring

New detectors were not the only large-scale additions to CMS. The most
massive change to the structure of the experiment was the addition of the
new 125-tonne shielding discs, yoke endcap disc four (YE4), installed outside
of the fourth endcap muon station at either end of the detector. The YE4
is part of the CMS return yoke system, which provides the path for the
magnetic flux return in the CMS experiment. The return yoke, whose total
weight is ⇡ 12500 tonnes, consists of five dodecagonal three-layered barrel
wheels and four endcap disks at each end comprised of steel blocks up to
620 mm thick, which also serve as absorber plates for the muon detection
system. The YE4 disks, in particular, are 14 m in diameter, 125 mm thick. To
monitor any magnetic field induced movement on the YE-4, at the end of LS1
we have designed and installed a FBG based strain monitoring system. The
layout of the system, as well as a photo taken during the installation of the
FBG arrays, is shown in Figure 27. The strain monitoring system is comprise
35 FBG sensors: 10 temperatures (left free) and 25 strains (glued on the disk
surface).
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Figure 27: Layout of the strain and temperature FBG monitoring system installed on
the YE4 disk.

Figure 28: Temperature (a), relative humidity (b) and dew point (c) reconstruction
from the FBG-based thermo-hygrometer installed in on the CMS Tracker
end-flange. For comparison, the readings from the standard hygrometer
installed in the same position are reported in red [85].
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2.7.8 Tracker RH monitoring

From 2011, our multidisciplinary research group has been involved in the
development of new generation of relative humidity fiber optic-based sensors
to be applied to the monitoring of the environmental parameter of the CMS
Tracker detector. After a dedicated R&D phase, a full network of 72 optic
fiber-based sensors, each one formed by a FBG temperature sensor and one
FBG relative humidity sensor, has been installed from the end of 2013 in
the critical areas of the CMS Tracker end-flange for constant distributed
thermo-hygrometric monitoring [85].
During the LS1, the fiber optic-based sensors readings have been constantly
compared with the information provided by a network of conventional
non-radiation-resistant sensors and also with some punctual dew point
measurements provided by a few sniffers, available on the volume. This had
allowed for validation of the FBGs measurements in term of both temperature
and relative humidity, in a region where the concentration of power cables and
cooling pipes creates strong local gradients. After the CMS closing and even
the restarting of the LHC operations in April 2015, the full network of FBG-
based thermo-hygrometers installed in the experiment, has been continuously
working, providing distributed monitoring of the environmental conditions in
the detector, preventing from the risk of local condensation and ice formation.
An example of temperatre, relative humidity and dew point reconstruction is
shown in Figure 28.

2.7.9 Central beam pipe monitoring system

We designed and installed a new fibre optic sensors (FOS) structural
monitoring system on the new central beam pipe of the CMS experiment to
monitor on-line unpredictable mechanical deformations [86] and [87]. The
central beam pipe is a fundamental element of both, the CMS experiment
and the LHC ring. It have to stand to an extreme vacuum condition (up to
10�13 atm) and, at the same time, it must not interfere with the particle
resulting from collisions. To satisfy those conditions, in its final version, the
central beam pipe is made of a gossamer Beryllium tube that need to be
continuously monitored to have information about its structural and health
state. Hence, is mandatory that, any monitoring system to be installed on the
beam pipe must not interfere with the particle detectors that wrap around
the pipe. The detailed description of the monitoring system, as well as the
result coming from the analysis of the data recorded is the main subject of
present Thesis work and it will be widely addressed in the next two chapter.
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I P I P E P R O J E C T

3.1 introduction

The central beam pipe is a fundamental element of both, the CMS experiment
and the LHC ring: it is the place where the high energy proton-proton
collisions take place. It have to stand to an extreme vacuum condition (up
to 10�13 atm) and, at the same time, it must not interfere with the particle
resulting from collisions. To satisfy those conditions, in its final version, the
central beam pipe is made of a gossamer Beryllium tube that need to be
continuously monitored to have information about its structural and health
state. Hence, is mandatory that, any monitoring system to be installed on the
beam pipe must not interfere with the particle detectors that wrap around the
pipe. Radiation immunity represents one of the most important specification
required to a monitoring system operating in a High Energy Physics (HEP)
environment, while other needs are: low complexity layout, multiplexing and
multi-parameters measurement capabilities.
On the basis of these technical specifications, we designed and installed a
unique structural system based on Fibre Bragg Grating (FBG) sensors, that
has been called iPipe monitoring system, on the new central beam pipe of the
CMS experiment to monitor the thermal condition and on-line unpredictable
mechanical deformations.

3.2 cms beam pipe system

The CMS beam pipe spans over ±18 m from the interaction point (IP) to
both ends of the experimental cavern. It is segmented into a central section
and 4 sections on each end. The central section is 6.2 m long and consists
of a cylindrical part of 3.8 m length with conical ends. Before the Long
Shutdown 1 (LS1), occurred from 2012 to 2014, the cylindrical piece had an
inner diameter of 58 mm and was made out of 0.8 mm thick beryllium, while
the conical parts were made out of stainless steel also 0.8 mm thick. During
LS1 the central beam pipe has been replaced with a new central beam pipe,
that will be described in the following sections, to cope with the requirements
coming from the upgrade of the Pixel detector [88]. The design of the CMS
beam pipe system and especially the central section has been the subject
of extensive studies leading to the conclusion that a cylindrical central part
followed by a conical section at each end is the most favorable in terms of
reducing backgrounds since it minimizes the solid angle with heavy material
as seen by particles produced at the IP [89] [90] [91]. The conical section of
the former central portion of the beam pipe starts at ±1.9 m and follows the
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h=4.9 cone, it extends into the end-cap portion of the pipe and terminates in
a thin window before a flange at ±10.7 m which couples it to the HF pipe.
The HF pipe is almost 3 m long, also slightly conical, varying in diameter
from 170 mm to 208 mm and is constructed from 1.2 mm thick stainless steel.
It terminates in a thin window flange which carries 3 ion pumps and reduces
the inner diameter to 58 mm, for coupling to the CASTOR-T2 (CT2) pipe.
This cylindrical pipe again terminates in a flange and bellow system, which
couples it to the cylindrical, stainless steel forward pipe, 2.4 m long, which
terminates at the junction to the TAS absorber at 18 m. The schematic of the
CMS beam pipe can be seen in Figure 29. The main features of the CMS beam
pipe system are:

• the Be central section which presents minimal material to particles
emerging from the interaction point;

• the conical outer sections along lines of constant h (allowing the use of
stainless steel while still minimizing background in the muon system);

• the thin reducing window at the end of the endcap pipe;

• the HF and CT2 pipes which allow forward calorimetry up to h=7,
external to the return yoke;

• the placement of pumps and flanges out of the detector acceptance.

The radius and thickness of the central beryllium section are important
parameters affecting the physics performance of the CMS tracking system.
The impact parameter resolution and vertex resolution could be substantially
improved by a re-designed pixel tracker, which has an additional fourth
tracking layer within the limited space between the beam pipe and the strip
tracker, ensuring also that the first measured point, given by the radius of
the first layer, is as close to the beam line as possible. The support system
proposed for the upgraded pixel tracker, would have allowed such a 4-
layer system to be installed, but with installation tolerances so small as
to pose a substantial risk. Reduced risk and better performance have been
obtained reducing the beam pipe radius. This requirement had to be balanced
against assuring safe and efficient operation of the accelerator and minimizing
background in the experiment.

3.3 the new central beam pipe

3.3.1 Design Constraints

As already pointed out, the main reason to change the beam pipe design was
to allow a new Pixel detector to be mounted closer to the interaction point.
This can only be achieved by reducing the outer diameter of the cylindrical
part of the beam pipe (see Figure 30). As the new Pixel detector features
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Figure 29: The right schematic shows the elements of the beam pipe system of CMS.
The left one presents the final drawing of the CMS new central beam pipe.
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Figure 30: Sketch of the new (top) and old (bottom) beam pipe. For the new pipe
notice the conical part extending to z=1450 mm in order to achieve a
smaller diameter on the cylindrical part of 45 mm.

the innermost barrel layer at 29 mm from the beam line, taking into account
mechanical tolerances and the 2 mm stay clear region for ease of installation
and adjustments, the outer diameter of the cylindrical part of the beam pipe
cannot exceed 45 mm. From the old central pipe design, a certain number of
mechanical and physical characteristics need to be maintained:

• the overall length of 6240 mm;

• the longitudinal extension of the pure Beryllium section of the beam
pipe of 3804 mm);

• the cone angle of the conical section (h=4.9);

• the support position at ± 1630 mm;

With all these constraints in mind, the new beam pipe is defined by simply
extending the conical part following the h=4.9 line closer to the center until the
cylindrical part can start with an outer diameter of 45 mm. The transition from
conical to cylindrical now occurs at z=1457 mm from IP. As a consequence,
the inner conical section already starts within the pure Beryllium part of
the beam pipe and the support at z=1630 mm finds itself in the conical part.
The only other parameters left free for optimization are the inner radius of
the cylindrical part for a length of 2915 mm and the material to be used for
the outer conical part. Consequently, a study was carried out by which the
minimal inner radius of the beam pipe was determined to be 21.7 mm with a
wall thickness of 0.8 mm (see following section for further details).
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3.3.2 Choise of Materials

For the choice of the beam pipe material for the outer conical part, three
options were investigated. The first option is to keep the material unchanged
by using Stainless Steel as was done for the current beam pipe design.
Secondly, two other alloys were considered, type 2219 Aluminum(93%)and
Aluminum/Beryllium composite(AlBeMet®1). The Stainless Steel option was
discarded, since this material is heavy, it gets easily activated and in addition,
some of its isotopes have a rather long half-life. As a consequence, significant
effort would be required to shield the Stainless Steel pipe during opening and
maintenance of the detector, a feature which is not in accordance with the
ALARA principle for radiation protection. Aluminum (type 2219) on the other
hand, although easily activated as well, results in radioactive isotopes with
short half-lives and, just after one month cool down period, the activation
level drops by about a factor of three. Aluminum beam pipes are widely used
in the LHC experimental areas and present very little technical risks. Finally,
the AlBeMet®composite performs best in terms of activation and material
density, since 62% of this alloy is made of pure Beryllium and in addition its
mechanical properties are nearly as favourable as the Aluminum alloy type
2219. However, in spite of these obvious advantages, not a lot of experience
exists with beam pipes built out of this material, it has never been used for
LHC experimental beam pipes and in fact only short pipes have ever been
built with it (at DESY). AlBeMet®is very brittle and some of its properties,
such as notch sensitivity, are not very well known. Technical and schedule
risks were considered higher for AlBeMet®with respect to Aluminum and it
comes at a substantial higher cost. All of these facts were considered during
the CMS central beam pipe Engineering Design Review (EDR held at CERN
on March 5th 2012) and resulted in the recommendation of using Aluminum
as material of choice for the external conical part, 1.6 m support collars and
end flanges.

3.3.3 Support Structure

The CMS central beam pipe is part of the CMS beam pipe, as shown in
Figure 29. A view of the half cross section of the CMS experiment is shown
in Figure 31 to help the reader to visualize were the beam pipe is located
with respect to the CMS structure. The central beam pipe is attached to the
Tracker structure by means of a pair of 4 stainless steel wires (two vertical

1 AlBeMet®is the trade name of the Materion Brush Beryllium & Composites (formerly known
as Brush Wellman) company for a beryllium and aluminum composite material derived
by a powder metallurgy process. This powder metallurgical product is produced by gas
atomization available as rod, bar, tube and sheet. These shapes are derived by consolidating
the Al/Be powder by hot isostatic pressing (HIP) and cold isostatic pressing (CIP) followed
by extrusion. The extruded bar is fabricated by CIPing the isotropic spherical Al/Be powder
into semi-dense billets and then canning the billet for subsequent extrusion with a minimum
of 4:1 reduction ratio
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Figure 31: Technical drawing of the half cross section of the CMS detector.

and two horizontal). The attachment points are located 1.6 mm away from
the interaction point, resulting in a span of 3.2 m. The technical 3D view of
this support inside the Tracker volume is shown in Figure 32(a). The new
beam pipe design made the need redesign also these supports, moving away
from Stainless Steel clamps to Aluminum in order to significantly reduce the
amount of material. The redesign have been done taking into account not
only the primary function of supporting the beam pipe without introducing
stress to the structure, but also the need to maximize clearances to the Barrel
and Forward detectors during the insertion and removal processes. Between
the central beam pipe and the subsequent endcap beam pipe there is, on
both side, a double bellow in order to reduce any mechanical interaction
between the two sectors and to secure the stability of the central beam pipe.
A permanent support for the central beam pipe and bellows is attached to
the tracker bulkhead. The above described support, called tracker support, is
shown in Figure 32(b). It consists of three separate supports:

• a x-y support for the central pipe at z = 1.6 m through wires engaged
into pulleys and attached to the nose, also called fishing rod, structure
for tensioning and regulation, shown in Figure ??a;

• a x-y support for the central pipe at z = 3.1 m through a system of sticks
and carriages integrated into the nose structure;

• a x-y-z support for the endcap pipe at z = 3.5 m through a system of
sticks integrated into the nose structure.

The z = 3.1m support holds the central pipe at the connection flange to the
endcap pipe just before the double bellow section, visible in Figure 32(b),
while the z = 3.5m support holds the endcap pipe through a full
translation-constrained point. The tracker supports are configurable for
various operations. In particular:
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(a)

(b)

Figure 32: Technical drawing of the x-y support for the central pipe for tensioning
and regulation at z = 1.6 m in (a), and of the tracker supports at z = 3.1 m
and z = 3.5 m (b).
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• the x supports will be removed during pixel detector insertion and
bakeout jacket insertion and removal,

• the z support at 3.5 m will be removed during bakeout to allow for
thermal expansion. A temporary support will be used instead.

Between the endcap beam pipe and the HF beam pipe, inside YE3 at z =
10.7m, there is another permanent support: it hangs from above and is
stabilized from sides and bottom. The top hanger has x, y and z adjustment.
Finally, at z = 13m, there is a support installed in the base for the CASTOR,
between the HF and the CT2 sector of the beam pipe. It is a lever mechanism
used to reduce the deflection of the beam pipe. It will be activated from
below when the two halves of the base are closed below the beam pipe. The
HF and the CASTOR support are shown in Figure 33. The above described
permanent support are in place when the CMS detector is closed in its
operational configuration. During maintenance phases the permanent
supports are integrated or, depending on the specific maintenance case,
substituted by temporary supports, that will not be described in this work. A
detailed description of all the permanent and temporary supports of the
CMS beam pipe can be found in [92].

3.3.4 Tolerances and Aperture

The required beam aperture determines the theoretically minimum inner
diameter for any new beam pipe. During injection the beam occupies the
largest aperture in the vertical plane and in case of an asynchronous beam
dump the beam is largest in the horizontal plane. The dimension of the beam
pipe must be chosen such that, taking into account all possible mechanical
tolerances of the beam pipe, all installation tolerances and all possible
movements of the pipe during operation, the wall of the pipe can never
approach the beam closer than the limiting distance required by the beam
aperture. As a prudent precaution for the safety of the detector, no element
of the beam-pipe within it should have a smaller aperture than the closest
machine element to the interaction region, which in the CMS case is the TAS
absorber, situated at 18 m and having an inner radius of 18 mm.
During the design of the LHC experimental beam pipes, conservative
aperture estimates lead to the request for a stay-clear cylinder of 14 mm
radius around the nominal beam line close to the interaction point. The
following mechanical factors have been considered to contribute to limiting
the practicably achievable minimum inner pipe radius, such that the
stay-clear cylinder is always contained within the physical pipe:

• construction tolerances causing the pipe radius to be less than nominal;

• mechanical sagging of the pipe between supports;

• the precision with which the pipe can be surveyed into place;
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(a)

(b)

Figure 33: Technical drawing of the HF permanent support located at Z = 10.7 m
with respect to the impact point (a). Drawing of the CASTOR permanent
support located at Z = 13 m
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• time-dependent movements of the beam pipe supports (attached
through the Tracker, Tracker support and barrel Hadron Calorimeter to
the central yoke wheel). These may be caused by displacements of the
whole cavern with respect to the plane of the LHC machine, settling or
flattening of the central yoke wheel, or distortions due to the magnetic
field.

To significantly lower the limit on the minimum diameter of the cylindrical
portion of the new central beam pipe, with respect to the old central beam
pipe, significant improvements in minimizing the uncertainty of the beam
pipe envelope with respect to the ideal beam line have been achieved.
New aperture calculations were made by machine experts in order to
establish whether the smaller diameter central beam pipe section would still
be compatible with safe and stable beam operation for various machine
optics and energies. Relevant inputs to the aperture calculations are:

• The final value of 6.05 mm as the linear sum of the tolerances for the
position of the beam pipe with respect to the ideal beam line.

• Stay clear region of 14.00 mm around the beam. This quantity is to be
added to the 6.05 mm linear sum of the tolerances.

• New beam pipe radius in the central cylindrical section is assumed to
be 21.7 mm.

• Closed orbit tolerance of 4 mm at nominal injection energy and optics
(170 µrad crossing angle, 2 mm beams separation and 3.75 µm nominal
normalized transverse emittance)

• Beta-beating of 20%.

The output of the aperture calculation is a quantity called n1 defined as the
largest setting in sigma (sx,y is the rms beam size) of primary collimators
such that the local aperture is protected from secondary halo [93]. Taking into
account also operational margins, the primary aperture of the LHC needs to
stay at n1>7.0. This value of n1 is the criterion for the geometrical acceptance
for all elements in the ring. From the calculations, the n1(s) value for the new
beam pipe is 19.8 during the Injecton phase (450 GeV) and 454 at Flat Top
phase (7 TeV).

3.3.5 Machine Induced Background

Extensive studies were made on the impact of machine induced background
events in CMS. One important aspect of the new beam pipe is the measure of
its impact on the machine induced background events showering the central
portion of the detector.
Machine Induced Background events (MIB) were simulated in the LHC
detectors focusing on two main sources: tertiary beam halo and beam-gas
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interactions. It is found that background rates in detector subsystems strongly
depend on the origin of MIB, particle energy and type. Using this source
term, instantaneous and integrated loads on the detectors and impact on the
detector performance can be further derived. The latter was done for CMS
using both GEANT4 [94], and FLUKA [95] simulation codes. Material and
shape of the central section of the pipe have an impact on how the MIB events
are seen by the CMS detectors close to the beam line (mainly Pixel, inner
portion of the silicon strip tracker, HF, BCM1 and PLT). Of relevance for CMS
in this context are mostly beam-gas events interacting with the beam-pipe
and beam- pipe elements in the proximity of the interaction region, hence
superimposing to the innermost detectors showering particles to the normal
p-p interaction products originated from the IP. Especially for the Pixel, these
extra particles, being almost parallel to the silicon modules, may leave a large
number of hits and, if the event is triggered at L1, causing at present sizeable
dead-time for the experiment (long time to readout and clear). Figure 34
shows the interaction map for events which primary beam-gas interaction
occurred along LSS5. As can be seen from the colored density map, the beam
pipe material is a source of many of these interactions and in particular the
region where from conical it becomes cylindrical at around 2 m from the IP
which scores the highest density in the map.
The shape and mostly the material in the conical section of the of the beam
pipe plays a major role in determining the amount of showering particles
from beam-gas interactions which eventually make their way in the inner
region of the CMS detector. Results show that while hadron and neutron
densities are not affected too much by the change in beam pipe layout and
material, the electron density, which by far dominates the overall background,
does (Figure 35). This is explained by reduced electromagnetic showers in
the conical part of the beam pipe due to lighter material.

3.4 mechanical analysis of the new central beam pipe

The static and dynamic (modal) analyses of the design for the new central
beam pipe of the CMS experiment have been made in a dedicated study
within the CERN EP-CMX-EI section and have been presented in an internal
calculation note [96]. In this section the results achieved will be summarized.
The geometry proposed for the new CMS central beam pipe is shown in
Figure 36 consists of:

• a central Beryllium pipe with a cylindrical shape of length equal to
2915 mm, centered about the interaction point (I.P.), an outer diameter
of 45 mm and a thickness of 0.8 mm;

• a conical Beryllium pipe at each end of the central cylindrical pipe with
a length of 444.5 mm, a half angle of 0.853 degrees and a thickness of
0.8 mm;
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Figure 34: GEANT4 simulation of hit density in proximity of CMS for events where
primary beam-gas interaction occurred along LSS5. As expected, the
highest values are found at the end of the conical section of the pipe
between 200 mm and 250 mm from IP5 [88].

Figure 35: Fluka simulation of the hit density for electrons emerging from the
interaction of primary beam-gas events (entering from the right) with
detector material for the old beam pipe (left) and the new aluminum
beam pipe (right) [88].
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Figure 36: Technical drawing of half section of one side of the CMS central beam
pipe. The change from cylindrical to conical shape is highlighted as well
as the change from beryllium to aluminum.

• a conical Aluminium 2219 pipe at each end of the conical beryllium
pipe with a length of 1196 mm, a half angle of 0.853 degrees and a
thickness of 0.8 mm.

As already explained in previous sections, the CMS central beam pipe is
supported by two collars (Figure 32) positioned symmetrically with respect
to the IP and distanced of 3260 mm and two end flanges. The total length of
the central beam pipe, including the two end flanges, is 6240 mm.
The mechanical analysis has been carried out in the two main scenario
foreseen for the central beam pipe: gravity plus vacuum and gravity plus
vacuum plus temperature. To simulate these scenario specific loading
conditions have been considered taking into account the physical constrains
of the structure. In particular, the supports at Z= ± 1.6 m (Figure 32a), which
consist of two collars placed around the conical portion of the pipe with each
being attached to four prestressed radial wires, has been modeled taking into
account influence of the wires in the collars’ displacements: due to the
relatively high stiffness of the wires in their longitudinal direction, all anchor
points? degrees of freedom were considered unconstrained with the
exception of the one corresponding to the translation in the longitudinal
direction of the respective wire. Concerning the end flanges at Z=±3105mm
(Figure 32(b), all degrees of freedom were constrained with the exception of
the translation degree of freedom in the beam pipe’s axial direction in order
to not restrict the axial movement of the beam pipe. Finally, the presence of
the double bellow has been accounted introducing a spring with
longitudinal stiffness of 109 N/mm (according manufacturer data).
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(a)

(b) (c)

Figure 37: Mechanical simulation of the CMS central beam pipe structure (a) under
nominal working load condition (b), i.e. gravity plus vacuum, and during
bakeout operation (c), i.e. gravity plus vacuum plus temperature up to
250�C.

The results of the simulations in the above mentioned cases are illustrated in
Figure 37. In normal operating conditions, i.e. vacuum plus gravity, the
deformation along X direction is negligible while the maximum longitudinal
deformation is -0.12 mm. In the bakeout scenario, i.e. vacuum plus gravity
plus temperature up to 250�C, the deformations along X ad Y directions are
negligible while the maximum longitudinal deformation is -11.4 mm.
These results gave a clear input to the design of the fiber optic sensors
monitoring system to be installed on the central beam pipe.

3.5 the ipipe monitoring system

3.5.1 Design and layout

The iPipe monitoring system consists of four naked glass SMF-28 fibers (200
µm diameter: core-cladding-buffer) placed along the cardinal longitudinal
positions on beam pipe cross section. 16 FBG sensors have been manufacted
on each fibre, 7 of them are solidarly glued on the pipe to measure the
local strain and the remaining 9 are left unglued but in contact with beam
pipe in order to work as local thermometers and as strain temperature
compensators for the adjacent strain sensors. A schematic representation of
the FBG distribution around the beam pipe is depicted in Figure 38, while
in Table 1 are reported the central wavelengths of each sensors as measured
at room temperature after the installation of the arrays on the pipe was
completed. In Figure 38a, the quotes indicate the positions, relative to the
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(a)

(b)

Figure 38: Longitudinal (a) and transverse (b) layout of the fibre optic monitoring
system installed on the CMS central beam pipe. The quotes in (a) refer
to the distance of the temperature and strain sensors with respect to the
center of the pipe.

center of the central beam pipe of the FBG sensors. All the quote refer to the
FBG sensors of a single fibre: the ones reported behind the drawing of the
pipe are related to the strain FBGs, while the ones above are related to the
temperature FBGs. As shown in Figure 38b, 4 FBGs array are installed on the
central beam pipe tilted of 15� with respect to the cardinal position to cope
with the installation of the 4 layer Pixel detector, that will happen in March
2017.
The system has been designed to stand the high radiation dose in this region
during LHC operation and to survive the bakeout treatment of beam pipe
at high temperature (up to 220�C), necessary to remove unwanted polluting
particles from the inner surfaces of the beam pipe.

3.5.2 Preliminary studies on the glue

The new CMS central beam pipe, widely described in the previous sections,
is made of 6 m length of beryllium tube with aluminium 2219 alloy at each
extremity. Of critical importance has been to find glues which can fulfill the
required condition of curing at room temperature, having low viscosity,
being radiation resistance, without damaging the beam pipe materials in an
irradiated area. Since keeping the beam pipe absolutely unaffected by the
encapsulant is of highest importance, it was decided to study the interaction
of the Stycast 2850 FT Catalyst 24 LV with Be and Al 2219 in various and
representative conditions of use of CMS cavern to minimize any risk of
damaging the beam pipe. The study focused on the effect of heat treatments
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FBG Z coord Array1 Array2 Array3 Array4
type [mm] lB [nm] lB [nm] lB [nm] lB [nm]

Temp -2800 1511.819 1512.076 1512.155 1512.030
Strain -2750 1517.049 1516.868 1516.887 1517.207
Strain -2450 1522.058 1521.911 1521.668 1522.094
Temp -2400 1527.301 1527.339 1526.631 1527.356
Temp -800 1532.182 1532.347 1532.510 1532.416
Strain -750 1537.224 1537.348 1537.915 1537.621
Temp -400 1542.197 1542.496 1542.307 1542.311
Strain 0 [IP] 1547.281 1547.412 1547.391 1547.398
Temp +50 1552.202 1552.421 1552.484 1552.620
Temp +400 1556.984 1557.459 1557.011 1557.166
Strain +750 1562.037 1562.320 1562.360 1562.500
Temp +800 1567.295 1567.501 1567.306 1567.429
Temp +2400 1572.075 1572.098 1571.986 1572.228
Strain +2450 1576.897 1577.120 1577.115 1577.103
Strain +2750 1582.168 1581.936 1581.751 1582.162
Temp +2800 1587.174 1586.887 1586.696 1587.040

Table 1: Layout of the FBG array installed on the CMS central beam pipe as measured
after the gluing procedure at RT in a surface laboratory at CERN.
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due to bake out and on irradiation and is widely described in [97]. The
samples investigated consist in 1 cm x 1 cm plates of Al 2219 and S-200-F
beryllium alloy. No passivation treatment was applied to Be plates, while in
the real conditions a passivation treatment is carried out which removes any
possible machining contamination and enhances de protection of Be by
passivation. From this point of view, the conditions of the test are more
severe than in the real situation.2

3.5.2.1 Gluing steps

Preparation of the surface, gluing step and heat treatments were carried out
by CERN specialized technician from the TE-MSC-MDT section. Metallic
plates were cleaned with ethanol and carefully dried. On each plate, two
drops of Stycast 2850 FT Catalyst 24 LV were deposited, one containing optical
fiber and one without. The 24h curing was carried out at room temperature.
Five plates of each material (Al 2219, Be) were prepared.

3.5.2.2 Heat treatments and irradiation

Three heat treatments were set up:

• room temperature for one week, 50% humidity (called RT in the
following),

• 100�C for one week, 50% humidity in order to activate any diffusion
process, (called 100�C in the following). Samples were deposited in
closed jars in order to keep the humidity level during the 100�C heat
treatment.

• 3 times 280�C for 2 days in order to simulate a severe bakeout (called
BKO in the following).

The samples, 2 plates for each material, were placed in hermetically closed
jars and introduced in oven for the heat treatments.
Part of the samples was also sent to IONISOS (France) for gamma irradiation
up to a dose level of 200 kGy, to partially simulate the real environment,
in term of ionizing radiation, that will be present in the beam pipe volume
during the LHC collisions.
After heat treatments and irradiation, the samples were sent externally for
cutting and polishing. The Be samples were sent to EXOTEC PRECISION
(Lisieux Way, Taunton TA1 2JZ, UK), while Al 2219 were sent to METLAB Oy
(Nuutisarankatu 15, 3900 Tampere, FI). The Al 2219 samples were mounted
in a conductive resin, cut and polished while the Be samples were cut and
polished directly without being mounted in a resin.

2 Taking into account the specific hazards of Be, safety rules were discussed with Occupational
Health & Safety and Environmental Protection Unit of CERN (J. Gulley). Thus, experimental
work was guided by procedures submitted to OH&SEE unit prior to observation.
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3.5.2.3 Microscopic observations

The microscopic observations took place in two stages. First, were carried out
observations of the surface of gluing, called later on ”from the top". Then,
samples were cut and polished, and the cross-section was observed. The
observations were carried out on three microscopes:

• Optical stereomicroscope M205C (Leica)

• Optical microscope Axio image M2m(Zeiss)

• SEM Sigma (Zeiss) equipped with Oxford 50 mm2 X Max EDS (Energy-
Dispersive X-ray Spectroscopy) detector

For the Al 2219 samples no great, nor generalised interaction was observed.
However, Stycast of the Al 2219-BKO samples present cracks on the edge of
the droplet but seems to remain adherent to the substrate. Nevertheless, no
evident sign of corrosion was found. In Figures 39 SEM images from the top
and of the cross-section are shown.
Concerning the beryllium, as first observation it has to be noticed that the
Be samples show porosity. However, since this material is manufactured
by powder metallurgy, presence of porosity is expected and unavoidable.
Moreover, the preparation of the cross-surface induced damage of the surface,
which complicates the interpretation of the results on the interface surface.
No great, nor generalized interaction was detected on the Be samples and
no marks of corrosion were identified. The Figures 40 present examples of
the interface surface for different samples of Be, under the droplet of Stycast
and out of it: the different samples do not show any significant difference
in terms of roughness. Finally, the mechanical properties and adherence of
the Stycast, after all treatments was qualitatively checked by pulling on the
optical fiber. In all cases, the fiber broke but the Stycast remained complete
and adherent.

3.5.3 The Installation

We installed the sensors on beam pipe in May 2014 in one of the surface
laboratories at CERN Meyrin site. The gluing was a very delicate phase of
the entire project, demanding several trials on metal samples and tests of
gluing strength in specific laboratories. Before the sensor array gluing, we
had to position the fibre in the nominal position using temporary Kapton
foil collars, removed after 24h curing of the glue. A part of the strain sensor
positions, we secured the correct positioning of the fibre with additional
gluing dots. In the technical specifications of iPipe project we were requested
to secure a maximal sag of fibre by 200 micron with respect to the external
beam pipe surface. This was mandatory to avoid any possible contact of fibre
arrays with insertion of next generation CMS Pixel Tracker. Each array was
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 39: Al2219 samples SE views of the surface (a,c,e,g) and of the cross section
(b,d,f,h) after the following treatments: 100�C (a,b), bakeout (c,d), 100�C
plus g-irradiation at 200kGy (e,f), bakout plus g-irradiation at 200kGy
(g,h).
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(a) (b)
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Figure 40: Al2219 samples SE views of the surface (a,c,e,g) and of the cross section
(b,d,f,h) after the following treatments: 100�C (a,b), bakeout (c,d), 100�C
plus g-irradiation at 200kGy (e,f), bakout plus g-irradiation at 200kGy
(g,h).
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Figure 41: Spectra of the four arrays of the iPipe monitoring system as recorded with
a MOI SM125 soon after the installation of the fiber on the CMS central
beam pipe.

positioned and glued in 24h. The day after the beam pipe was rotated by 90
degrees in order to have always the next array gluing position on top of the
beam pipe. In 4 days the full setup of 4 fibres was successfully installed on
the beam pipe. During the following week, the beam pipe was packed and
shipped to CMS underground site for final installation in the CMS detector.
The installation was completed by the end of June 2014.

3.5.4 The bakeout

To avoid colliding with gas molecules inside the accelerator, the beams of
particles in the LHC must travel in a vacuum as empty as interstellar space:
ultra-high vacuum is needed for the pipes in which particle beams travel. This
includes 48 km of arc sections, kept at 1.9 K, and 6 km of straight sections,
kept at room temperature, where beam-control systems and the insertion
regions for the experiments are located.
In the arcs, the ultra-high vacuum is maintained by cryogenic pumping of
9000 cubic metres of gas. As the beam pipes are cooled to extremely low
temperatures, the gases condense and adhere to the walls of the beam pipe
by adsorption. Just under two weeks of pumping are required to bring the
pressures down below 1.013·10�10 mbar.
Two important design features maintain the ultra-high vacuum in the room-
temperature sections. Firstly, these sections make widespread use of a non-
evaporable getter coating, developed and industrialized at CERN, that absorbs
residual molecules when heated. The coating consists of a thin liner of
titanium-zirconium-vanadium alloy deposited inside the beam pipes. It acts
as a distributed pumping system, effective for removing all gases except
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(a) (b)

(c) (d)

(e) (f)

Figure 42: Highlight of the various installation and gluing phases.The whole CMS
central beam pipe structure with the Kapton collars to hold the fiber is
shown in (a,b); the gluing of the strain sensors is made to see in (c,d);
pictures of one of the gluing spot to reduce the fiber sagging on the Be (e)
and Al (f) sectors.
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methane and the noble gases. These residual gases are removed by the 780
ion pumps. Secondly, the room-temperature sections allow bakeout of all
components at 250�C. Bakeout is a procedure in which the vacuum chambers
are heated from the outside in order to improve the quality of the vacuum.
This operation needs to be performed at regular intervals to keep the vacuum
at the desired low pressure.
The bakeout of the CMS central beam pipe has been performed soon after its
installation inside the CMS detector, in August 2015. The beam pipe was set
to nominal vacuum level and external heating up to 250�C was performed
to secure the removal of any residual gas molecules attached to internal
beam pipe metal walls. The consequent thermal expansion was causing a
global elongation of beam pipe up to 3 mm in the Beryllium (Be) region
and up to 1.5 mm in each of the two Aluminum2219 (Al) regions for an
overall elongation of 6 mm. In despite of the extra length left between fibre
gluing positions, we suffered some breaking points along the fibres. Some of
them were happening in accessible regions and were subsequently repaired
by fibres splicing in situ. Some of them were not recoverable and we could
profit of the fibre double end reading in order to maximize the amount
of readout sensors. Some other sensors (mostly strain ones) were suffering
spectrum deterioration during the bakeout phase and consequently were
tagged as not reliable anymore. At the end of the fibre recovering phase and
sensors quality control we secured 40 reliable sensors out of the 64 initially
installed. In Figure 43, the spectra after the recovery operation performed, in
the months following the bakeout, are shown. The redundancy of amount of
sensors initially defined in the iPipe project design turned out to be a relevant
element to secure the final performance of the beam pipe monitoring system.

3.5.5 The need for recalibration

After the arrays installation on the beam pipe, the l0 of all the sensors has
been re-calibrated in order to take into account the installation induced
shift, with respect to the firm calibration parameters. Moreover, the extreme
stressing conditions suffered during the bake-out made necessary a further
re-calibrations of the sensors in order to take into account any effect on the l0
and sensitivity. Those actions have been performed while the beam pipe was
still accessible making use of different local electronic sensors as references.
Figure 44 shows the temperature dynamic of the T+50 sensor, calculated with
the parameter estimated from an in situ calibration of the l0. It is evident, by
looking at the temperature dynamic of a reference electronic sensor of the
Pixel placed nearby the IP, that this set of calibration parameters is not valid
anymore when the temperature approaches the room temperature value.
The presence of real thermal gradient between this two sensors, away from
each other 3cm in the vertical direction, could not be physically explained
assuming that the lB is changing only because of the thermo-optic effect.
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(a) (b)

(c) (d)

Figure 43: Spectra of the iPipe monitoring system, as recorded with via the FOS4CMS
DAQ, soon after the installation of the fiber on the CMS central beam
pipe. Distorted peaks are presents in the fibers TOP (a) and BOTTOM (c).
The fiber FAR is almost not avilable (b), while the fiber NEAR has been
completely recovered (d).
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Figure 44: Temperature dynamic next to the IP as recorded by the iPipe T+50 sensor
(green) and by an electronic sensor from the Pixel detector (red), from
January 2015 to October 2016.

After several recalibration trials and following the conclusions of several
fruitful discussions with the Pixel temperature experts colleagues, we’ve
decided to calibrate the iPipe temperature sensors with respect to the Pixel
temperature sensors profiting of the last months of LS1, that is to say January
and February 2015, and the commissioning phase which last up to beginning
of May 2015. In these periods the temperature variations are only influenced
by the Pixel cooling system and the Pixel volume can be considered to be
in thermal equilibrium. Figure 45 is a scatter plot between the lB of the
sensor T+50 and the temperature recorded by the nearby Pixel temperature
sensors. The distribution clearly show the presence of a wavelength shift
not referable to the thermo-optic effect. Nevertheless, the distribution can be
nicely fitted with to straight line with different slope. The best functions have
been estimated with a linear fit by minimizing3 the c2 and the intersection
point of the two straight line represent the wavelength at which the slope
changes. The temperature dynamic measured by the FBG at 50 mm from
the IP, i.e. T+50, next to the one recorded by the nearby Pixel electronic
sensor during the whole 2015 operation is shown in Figure 46, proving the
reliability of the latter calibration parameters. This recalibration procedure
has been applied to all the iPipe reliable temperature sensors and in Figures

3 These analysis, as well as all the other data analysis presented in this Thesis have been made
using the ROOT framework.
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Figure 45: Correlation between the l of T+50 and the temperature measured by the
nearby Pixel’s reference sensor. From a double linear fit, by minimizing
the c2 the calibration constants are estimated. The turn around point is
estimated to be at l = 1552nm corresponding to the reference temperature
of 11.4�C.

47 the fits for the sensors T±400 and T±800 on the fiber TOP are shown.
From these plots it is evident that a double straight line calibration is not
needed for all the sensors. This last observation excludes the possibility
that the change of the FBG response is due to the influence on the thermo-
optic coefficient of thermal condition to which they have been exposed
during the bakeout. However, the elasto-optic effect could be involved in
this phenomenon. Indeed, considering that the critcal temperature for the
glue is 155�C and that during the bakeout the central beam pipe has been
subjected to a global elongation on ⇠6 mm and recalling, from the section
above, the way in which the fiber has been installed on the beam pipe, we
can assume that a new tensioning state is present on the fiber from the end
of the bakeout.
Nevertheless, the iPipe temperature monitoring is reliably working 24/7 since
the beginning of 2015 and the monitoring data are currently displayed in the
CMS Detector Control System (DCS).

3.6 temperature monitoring

In Figure 48 it is shown the temperature profile of the beam pipe during the
CMS operation throughout 2015 and 2016. As depicted in the beginning
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Figure 46: Temperature dynamic next to the IP as recorded by an electronic sensor
from the Pixel detector (red) and the iPipe T+50 sensor, with the old
calibration (green) and with the new double line calibration (blu), for the
2015 data.

paragraphs of the chapter, the CMS central beam pipe in located inside the
Pixel detector volume. The power consumption per pixel is estimated to be
around 60µW; for the total of ⇡ 39 million pixels, which compose the Pixel
detector, this add up to 2.3kW. In order to ensure correct operation, the
pixels of the temperature should be maintained at -10 degrees (a detailed
description of the Pixel detector can be found in [75]).
As mention in the previous section, the re-calibration procedure of the iPipe
temperature sensors has been done profiting of the Pixel temperature
sensors, assuming that the thermal environment in the Pixel volume before
the start of the LHC Run2 is driven only by the Pixel cooling system. Three
main temperature intervals can be identified that correspond to different
configuration of the CMS detector:

• room temperature, when the detector is in maintenance during the
technical stop;

• ten degrees, when the detector is closed, the pixels boards and cooling
system are off;

• between zero and minus ten degrees, when the detector is closed, the
pixels boards are on and the cooling is on;

• minus ten degrees, when the detector is closed, the pixels board are off
and the cooling is on.

From Figure 48, it is clearly visible the temperature gradient between the
beryllium and the aluminium sectors of the central beam pipe. The beryllium



76 ipipe project

(a) (b)

(c) (d)

Figure 47: Correlation between the l of T+400 (a), T-400 (b), T+800 (c), T-800 (d)
and the temperature measured by the nearby Pixel’s reference sensor. The
calibration parameters and well as the turn around point are estimated
with a double linear fit (a,c) or with a linear fit (b,d), by minimizing the
c2.
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part, i.e. the sensor from T+800 to T-800, is at 4÷ 9± 1�C when the detector is
closed but not operational and the cooling is on, while the aluminium parts
are 3�C colder.

3.6.1 Considerations on radiation induced shift

The iPipe fibers can be considered as the closest detector with respect to the
impact point. Indeed, the Pixel silicium sensors, after the EYETS2017 upgrade,
will be at 29mm from the outer surface on the central beam pipe, while the
iPipe fiber are in direct contact with the vacuum chamber. This implies that,
our fibers will be exposed to all the particle resulting from the p-p collisions
since the vacuum chamber wall are made of beryllium with the intend to
minimize the particle interaction with it. This means that, during the LHC
operations, the iPipe fiber will be exposed to a mixed radiation field resulting
from the particles, leptons and hadrons, produced in the p-p collisions. The
intensity of the ionizing radiation, during a time interval, is correlated with
the LHC delivered integrated luminosity.
Luminosity is an important indicator of the performance of an accelerator: it is
proportional to the number of collisions that occur in a given amount of time.
The luminosity is a quantity that measures the ability of a particle accelerator
to produce the required number of interactions. It is the proportionality factor
between the number of events per second dR/dt and the cross section sp:

dR
dt

= L · sp

Therefore, the unit of the luminosity is cm�2s�1. The formula for the
luminosity of two Gaussian beams colliding head-on is given by:

L =
N1N2 f Nb
4psxsy

where N1 and N2 are the number of particles per bunch, f the revolution
frequency and Nb the number of bunches. The higher the luminosity, the
more data the experiments can gather to allow them to observe rare
processes.
On the other hand, the absorbed radiation dose is the mean energy
deposited per unit mass, taking into account all the energy loss mechanisms.
Ionization is the dominant energy loss mechanism in the Pixel volume. From
the integrated luminosity it is possible to estimate the delivered dose over
one year considering that one year of LHC operation corresponds to 8·1015

inelastic proton-proton collisions, assuming an instant luminosity of
1034cm�2s�1, an inelastic cross-section of 80mb and a data taking period of
107s.
The profile of the integrated, LHC delivered and CMS recorded, luminosity
during 2015 and 2016 in shown in Figure 49. Comparing these plots with the
trends of the iPipe sensor T+50 in Figure ?? it is evident that the increase in
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(a)

(b)

Figure 48: Temperature profile of the beam pipe during the CMS operation
throughout 2015, (a), and 2016, (b).
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luminosity correspond to an apparent increase in the temperature which
reflect the Bragg wavelength shift (BWS) due to the ionizing radiation (see
Chapter 2).
Thanks to the CMS BRIL community we are able to have an estimation,
based on FLUKA simulation, of the deposited dose, as function of the
coordinate system of CMS, with respect to the total integrated luminosity.
From these calculation we can say that a total dose of O(106) Gy as been
delivered during the 2016 operations while a total dose of O(105) Gy was
delivered during 2015. The BWS are in agreement with those presented in
literature, as for example the review paper [41].
Finally, it should be noted that, in 2016, there is a walkaway also in the
temperature measurement of the Pixel sensors. This is a physical
temperature increase related to the radiation induced damage in the silicium
boards of the Pixel detector [88].

3.7 strain monitoring

To correctly evaluate the strain, it is necessary to separate strain and
temperature effect in order to compensate the thermal apparent strain effect.
Since in the CMS central beam pipe fibre optic monitoring system the
temperature sensors are not bonded on the beam pipe, they can be
considered strain-free and used as compensators.
In the previous chapter the FBG sensing features have been explained in
details. Before showing the iPipe strain measurements it is necessary to recall
and extend the physical phenomena behind the strain sensitivity of the FBG.
In general, the grating’s sensitivity is governed by the fiber elastic,
elasto-optic and thermo-optic properties and the nature of the load or strain
which is applied to the structure that the fiber is attached to or embedded
within. Strain shifts the Bragg wavelength through dilating or compressing
the grating and changing the effective index. The amount of wavelength shift
is given by:

dlB

lB
=

�n2

2
�
[p11e1 + p12(e1 + e2)] (17)

where the principal strains are e1 along the fiber axis and e2 transverse to the
fiber axis. If the strain is homogeneous and isotropic, then 17 simplifies into:

dlB

lB
= [1 � pe]e ⇡ 0.78e (18)

where pe express the photoelastic contributions as a function of the Poisson
ratio and the fiber Pockel’s coefficients [6], and is defined as:

pe =
�n2

2
�
[p12 � µ(p11 + p12)] (19)

As depicted in Figure 38, in our monitoring system there is a temperature
measuring FBG at 5 cm distance from each strain measuring FBG. The strain
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Figure 49: Delivered and integrated luminosity in the CMS detector during the LHC
p-p collisions of 2015(a) and 2016 (b), and Bragg wavelength shit of sensor
T+50 during 2015 and 2016 operations.
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sensors have been bonded on the beam pipe external surface by means of
a thin layer of Stycast glue (see picture in Figure 42) while the temperature
sensors are left free.
In general, the wavelength of an FBG sensors changed with strain and
temperature:

Dl

l0
= k · e + adDT (20)

alpha where l0 is the base wavelength in the reference thermal and
mechanical condition, k = 1 � pe is the gage factor, and ad = dn/n

DT express
the change of the refractive index as a consequence of the temperature
variation. The first term of equation 20, k · e describes the strain impact
caused by force, eM, and temperature through the thermal expansion
coefficient of the specimen, eT = aspDT:

e = eM + eT (21)

Going back to equation 20, it can be rewritten as follow:

DlS

lS
0

= k · eM + (k · asp + ad)DT (22)

If the FBG is not mechanically stressed, the signal Dl/l0 will change only
with temperature according to:

DlT

lT
0

= (k · a f iber + ad)DT (23)

since the only mechanical effect acting on the grating is the thermal expansion
of the fiber itself. Tipically, a f iber ⇠ 0.5 · 10�6/K while the impact of the
change of refractive index on the signal variation is one order of magnitude
bigger, ad ⇠ 5 · 10�6/K. When, as it is the case of the strain FBG of the
iPipe monitoring system, a FBG sensor is fixed on a specimen the signal
Dl/l0 change with the strain on the specimen, e, and therefore the thermal
expansion coefficient is asp and not a f iber

4. From equation 22, we can desume
an equation for a strain measuring FBG:

eM =
1
k

Dl

l0
�

�
asp +

ad

k
�
DT (24)

From this last equation it follows that it is possible to have a measure of the
mechanical strain, eM by means of a temperature compensation FBG, i.e. a
temperature measuring FBG placed in a region of the specimen not subjected
to any mechanical stress whose signal changes according to the following
equation:

DlC

lC
0

= (k · asp + ad)DT (25)

4 The linear thermal expansion coefficient for the metal of the CMS central beam pipe are
aAl2219 = 24.1 · 10�6/K and aBe = 12.1 · 10�6/K
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Figure 50: Temperature induced relative variation of the signal of the iPipe strain
sensor at the IP, S0 (red), and the nearby temperature sensor T+50 (green).

Considering the layout of the iPipe monitoring system, the temperature FBG
cannot be considered as temperature compensator since their signal variation
is not divren by asp, as can be clearly seen in the plot presented in Figure 50,
where the l dynamic of the sensors T+50 and S0 are shown. By subtracting
the signal of the sensor T+50, eq. 23, from that of S0, eq. 22, we obtain the
strain, e = eM + eT, acting on the IP of the CMS central beam pipe:

e =
1
k
�DlS

lS
0

� DlT

lT
0

�
(26)

In Figure 51 the strain dynamic over the 2015 (a) and 2016(b) operation of
the CMS detector is shown. This plots reflect the thermal dynamic shown
in Figure 48 in term of expansion and contraction of the structure caused
by the temperature changes described in the previous section. The reference
condition, i.e. zero strain, is set when the detector is closed and operational. In
particular, it was set on March 24th, when the CMS detector was closed at the
end of the upgrade operations of the LS1. The compressions and expansions
are in agreement with the thermal model of the beam pipe, presented in
Figure 37.

3.7.1 Magnetic field induced strain

The CMS magnet is the central device around which the experiment is built,
with a 4 Tesla magnetic field. It is superconducting solenoid whose job is to
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(a)

(b)

Figure 51: Strain dynamic on the beam pipe during the CMS operation throughout
2015, (a), and 2016, (b)
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bend the paths of particles emerging from high-energy collisions in the LHC.
The more momentum a particle has the less its path is curved by the magnetic
field, so tracing its path gives a measure of momentum. CMS began with the
aim of having the strongest magnet possible because a higher strength field
bends paths more and, combined with high-precision position measurements
in the tracker and muon detectors, this allows accurate measurement of
the momentum of even high-energy particles. As widely described in the
previous chapter, the tracker and calorimeter detectors fit snugly inside the
magnet coil whilst the muon detectors are interleaved with a 12-sided iron
structure that surrounds the magnet coils and contains and guides the field.
The enormous magnet also provides most of the experiment’s structural
support, and must be very strong itself to withstand the forces of its own
magnetic field.
When the magnetic field is switched on, the CMS Endcap structure shrinks
toward the center of ⇡ 13 mm resulting in mechanical forces acting on the
double bellows, that may induce stress on the central beryllium beam pipe.
The same happens when the solenoid ramps down, but in opposite direction.
The supports involved in the movement, with reference to Figure 29, are the
Endcap (10.4m) and the HF (13.7m) ones, while the other subsequent sectors
of the CMS beam pipe do not introduce any mechanical stress on the central
beam pipe when the solenoid magnet ramps.
In Figure 52 it is shown the l variation during a magnet ramp-up, from 0 to
3.8T, of the sensors T+50 and S0 on the fiber installed on the TOP position.
Before the start of the ramp, there is a decrease of the temperature of the
beam pipe volume which reflects in a compression (eT) of the beam pipe
structure. During the ramp the temperature is stable while the signal of the
strain sensor exhibit a complex dynamic related to the mechanical component
of the strain (eM) acting on the beam pipe. In Figure 53 the strain, calculated
from eq. 26, acting on the IP is plotted for the three available sensing positions.
It is evident that, while the field is ramping, the beam pipe is subjected to
mechanical deformations of the order of 30 µe. The complexity of the motion
is evident also in the difference between the strain dynamic of the three
sensors, that reflects the fact that the magnetic field acts on the CMS structure
dragging the Endcap towards his magnetic center.
Figure 54a shows the strain dynamic during a multistep ramp-up happened
on September, 14th. It is worth to be noticed that once the B-field ramp
reaches his first plateau the loading on the beam pipe is kept constant until
the restart of the ramp when the movement picks up from where it left,
reproducing almost the same dynamic shown in picture Figure 53. In Figure
54b the strain deformations acting during a magnet ramp-down are shown.
By way of example, in Figure 55 it is presented the strain at different sensing
position along the beam pipe, S±750, S-2450 and S-2750 for the same ramp-up
shown in Figure 53. Finally, in Figure 56 the relative strain, calculated with
respect to the beginning of the ramp, of several ramps, occurred during the
2015, is plotted versus the magnetic field intensity. Figure 56a shows a set
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Figure 52: Comparison of the relative l variation of one of the iPipe strain sensor at
the IP, S0 (red), and the nearby temperature sensor, T+50 (green), during
a magnet ramp happened on July, 5th 2015.

of ramp-up while a set of ramp-down, to be observed from right to left, is
shown in Figure 56b.
In conclusion, we can state that the strain recorded on the central beam pipe
by our monitoring system results from magnetic induced forces acting on
the double bellows during the variations of the magnetic field. However, the
amplitude of these strain deformations is negligible from a mechanical safety
point of view. Indeed, during the magnetic field gradient the whole CMS
beam pipe structure in subject to mechanical deformation of the order of ⇡ 10
mm while the maximum measured strain deformations on the central beam
pipe are of the order of 20µe. Moreover, these results prove the extreme high
sensitivity of our FBG strain sensors and validate their level of reproducibility.
During the 2017 Technical Stop, i.e. from January to April, the new Pixel
detector with 4 silicon layers will be installed and it will be placed at only 1,5
mm from central beam pipe external face. During the future CMS operations,
the mechanical stability of the central beam pipe will be a crucial parameter
to be monitored since an abnormal deformation could be very dangerous for
the surrounding detectors.

3.8 conclusion

The iPipe system has proved to be an important innovation in the framework
of the Structural health monitoring of crucial parts of the CMS detector and
LHC beam pipe.
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Figure 53: Strain evolution, as recorded from the three available strain sensors at S0,
during the ramp-up of the B-field happened on July, 5th 2015.

The work related to this chapter of the Thesis has been of fundamental
importance for the manufacturing of the iPipe system, its installation,
commissioning and operation. The iPipe system data analysis demonstrated
the complete fulfillment of the initial technical specs in terms of monitoring
and quantify any deformation induced on the CMS central beam pipe
during the experiment and LHC operations. Moreover, the data analysis here
presented proved the overall sensitivity and reliability of this innovative and
effective monitoring system.
The measure of the mechanical stability of the CMS central beam pipe was of
critical importance in the view of the reduction of the clearance between the
beam pipe and the surrounding Pixel detector foreseen in the Pixel upgrade
of 2017. The iPipe measurements are a good indication of the stability of the
structure, since strain deformations only of the order of 20µe has been
measured during the CMS magnet ramps, when the whole CMS structure is
known to be subjected to magnetic field induced deformations of the order
of 10 mm. These measurements were indeed a direct indication of the correct
design manufacturing and operation of the new CMS central beam pipe,
even during the B-field induced stresses.
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(a)

(b)

Figure 54: Strain evolution during a B-field multi-step ramp-up (a) on September,
14th 2015 and during a ramp-down (b) on July, 16th 2015, as recorded from
the three available strain sensors at S0.
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(a) (b)

(c) (d)

Figure 55: Strain evolution during a B-field ramp-up happened on July, 5th 2015, as
recorded from the available strain sensors at S+750 (a), S-750 (b), S-2450
(c) and S-2750 (d).
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(a)

(b)

Figure 56: Relative strain during several magnet ramps (details in table). The
magnitude of the oscillation during the ramps-up, (a), is ⇡ 20µm. The
same applies to the ramps-down, (b), whose plot must be read from right
to left.





4
I P I P E M E A S U R E M E N T O F T H E B E A M I N D U C E D
H E AT I N G

4.1 beam induced rf heating

A beam of charged particles, basically, moves inside an accelerator under the
Lorentz force produced by the external electromagnetic fields generated, e.g.,
from the guiding and focusing magnets and RF cavities. As the beam intensity
increases, the electromagnetic fields self-generated by the beam, particularly
the fields generated by the beam interacting with its surroundings, will
perturb the external fields prescribed by the accelerator optics design, which
is made considering the beam as a collection of noninteracting single particles
[98]. These electromagnetic fields are called wake fields1 since they remain
usually behind the (ultra-relativistic) exciting particles. The wake fields can
influence the motion of trailing particles, in the longitudinal and in one
or both transverse directions, leading to energy losses, beam instabilities,
or producing undesirable secondary effects such as excessive heating of
sensitive components at or near the chamber wall, called beam-induced RF
heating. Therefore, in practice the elements of the vacuum chamber should be
designed to minimize the self-generated (secondary) electro-magnetic fields.
For example, chambers with different cross-sections should be connected
with tapered transitions; unnecessary cavities should be avoided; bellows
should preferably be separated from the beam by shielding; plates should
be grounded or terminated to avoid reflections; poorly conductive materials
should be coated with a thin layer of very good conductor (such as copper)
when possible, etc.

4.1.1 The phenomenon

The wake functions characterizes the electromagnetic interaction of the beam
with the surrounding environment. The electromagnetic problem is posed
setting the Maxwell’s equations with the beam as source term and boundary
conditions given by the structure in which the beam propagates [99]. A
particle q0 going through a device of length L, leaves behind an
electromagnetic fields and a probe charged q at distance z will feel a force as
a result (see Figure 57). The integral of this force over the device defines the
wake function, assuming the particles to move with the same velocity v = bc,
where c is the speed of light and b is the relativistic factor. A detailed
calculation of the wake fields is given in [100].

1 The terminology wake comes from the consideration that, in the relativistic limit, the causality
principle dictates that there can be no electromagnetic field in front of the beam.
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Figure 57: Pictorial representation of a device of arbitrary cross section along an
accelerator.

It is often useful to examine the frequency content of the wake field, a time
domain quantity, by performing a Fourier transform on it. This leads to the
concept of impedance, a frequency domain quantity, which represents, for
the plane under consideration (longitudinal, horizontal or vertical), the force
integrated over the length of an element, from a source to a test wave (as a
function of their frequency), normalized by their charges. As the
conductivity, permittivity and permeability of a material depend in general
on frequency, it is usually better (or easier) to treat the problem in the
frequency domain. The idea of representing the accelerator environment by
an impedance was introduced by Sessler and Vaccaro [101].
The RF fields generated by the proton beam interact with the beam
surrounding materials and energy can be dissipated in the non-perfectly
conducting walls, eventually leading to local heating; the LHC experience is
widely described [102]. The power loss, which is due to the real part of the
longitudinal impedance, is always proportional to the square of the number
of particles per bunch but it depends on the frequency distribution of the
impedance. It can be linear with the number of bunches, when the bunches
are independent, i.e. for a wake-field that does not extend beyond a short
range (or broadband impedance) which does not couple the consecutive
bunches. On the other hand, it can be proportional to the square of the
number of bunches, when the bunches are not independent, i.e. for a
wake-field which couples the consecutive bunches, (or narrowband
impedance) [103]. The power Ploss lost by a beam composed of M
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equi-spaced and equi-populated bunches of Nb protons traveling in the
aperture of an LHC equipment of longitudinal impedance Zlong is [102]:

Ploss = 2(eMNb frev)
2
⇣ •

Â
p=1

Re
⇥
Zlong(2ppM frev)

⇤

⇥ Powerspectrum(2ppM frev)
⌘ (27)

where e is the proton charge, frev is the revolution frequency, the power
spectrum of the bunch as a function of frequency is given by
Powerspectrum( f ). In the frame of this formalism, it is important to note
that the power loss is proportional to the square of the total intensity MNb
for a sharp narrowband impedance at resonating frequency fresonator:

Ploss = 2(eMNb frev)
2Re

⇥
Zlomg(2ppM fresonator)

⇤

⇥ Powerspectrum(2ppM fresonator)
⌘ (28)

if the resonating frequency coincides with one of the beam frequencies. On
the other hand, the power loss is still proportional to the square of the bunch
intensity Nb but linear with the number of bunches M for a broadband
impedance:

Ploss = 2(eMNb fr)
2
⇣ 1

M frev

Z +•

0
Re

⇥
Zlong(2p f )

⇤

⇥ Powerspectrum(2p f )
⌘ (29)

The Powerspectrum( f ) includes the information on the bunch length, which
has a huge effect on the Ploss, as demonstrated in [104]. This consideration
poses the request for detailed investigation on the beam induced RF heating
in preparation for the High Luminosity LHC scenario, when the bunch
intensity will double.

4.2 lhc observations

Beam induced RF heating was one of the major limitations to increasing the
LHC luminosity in Run 1 [103]. Temperature increase in near-beam devices,
due to electromagnetic fields generated by the proton beam interacting with
the longitudinal beam coupling impedance of these devices, was indeed
observed to cause severe damage, delays or dumps [102]. During the first
long LHC shutdown in 2013-14 (LS1), many actions were taken by CERN
equipment groups as well as experiments to solve existing problems and
prevent new ones for modified or newly installed hardware [105], while a
summary of beam induced RF heating issues for 2015 is provided in [106].
The usual solutions to avoid beam-induced RF heating are the following,
depending on the situation:

• Increase the distance between the beam and the equipment.
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• Coat with a good conductor if the heating is predominantly due to
resistive losses and not geometric losses.

• Close large volumes (which could lead to resonances at low frequency)
and add a smooth transition. This is why beam screens and RF fingers
are installed.

• Adding a material with losses allows reducing the amplitude of narrow-
band impedance modes by broadening them, but the remaining power
into that material has to be handled in a proper way.

• Improve the subsequent heat transfer:

– Convection: there is none in vacuum.

– Radiation: usually, the temperature is already quite high for the
radiation to be efficient. One should therefore try and improve the
emissivities of surrounding materials.

– Conduction: good contacts and thermal conductivity are needed.

– Active cooling: the LHC strategy was to water cool all the near
beam equipment.

• Try and design an All Modes Damper (AMD) if possible, to remove the
heat as much as possible to an external load outside vacuum, where
it can be more easily cooled away. This can also work together with a
damping ferrite.

• Increase the bunch length, but then the luminosity will be decreased
due to the geometric reduction factor in the absence of crab cavities
(and possible losses from the RF bucket). The longitudinal distribution
can also play a very important role for some devices, and it should be
kept under tight control.

• Install temperature monitoring on critical devices to warn about (and
prevent) possible damages.

To extend the discovery potential of LHC a design study for a novel machine
configuration, the High Luminosity LHC (HL-LHC), was started with the goal
to increase its luminosity by a factor of 10 beyond its design value. Within
the framework of the HL-LHC project [107] a first impedance estimation
was done concerning new configuration. In particular, the impedance of the
upgraded experimental beam pipe was also studied, since a reduction of
diameter of the inner detector of CMS (inner radius from 29 mm to 21.7 mm)
was proposed to increase the detector performance [108]. Studies showed an
expected increase of ⇠ 30% of the power loss for CMS vacuum chambers,
from 1.4 W to 1.9 W per meter length.
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Figure 58: A 3D view of the presently installed CMS vacuum chamber. The beam
pipe is shown from the interaction point to the compensation module.

4.3 cms beam pipe impedances

The vacuum chamber inside of the CMS experiment is matched to the needs
of the installed detector components. A 3D-view of the presently installed
vacuum system is shown in Figure 58. The description of the structure of the
CMS beam pipe, together with the comparison between the new and the old
CMS central beam pipe, has been the subject of the previous chapter where
more detailed pictures are shown. The calculation of the wake fields for the
present, as well as for the former, designs of the whole CMS vacuum chamber
are presented in [109] [110] [111] [112] [113]. The reduction of the central
beam pipe diameter has been done in the frame of the HL-LHC requests
coming from the upgrade of the CMS detector. A representation of the
vacuum chamber of the CMS experiment for the HL-LHC in r-z-coordinates
is shown in Figure 59: the vacuum chamber has a rotational symmetry along
the z axis. The wake fields and higher order modes of the new beam pipe
of the CMS detector for the High Luminosity LHC configuration (HL-LHC)
have been calculated and extensively discussed in [113]. The longitudinal and
transverse effective impedances increase significantly with reduced radius
and the power loss is increased by ⇠30% by the radius reduction from 29mm
to 21.7mm.

4.4 ipipe direct measurements

The iPipe monitoring system FBG sensors are placed on the outer surface
of the CMS central beam pipe, in direct contact with the metallic surface.
This peculiar, and unique, sensing position allow to measure for any thermal
dynamic that took place on the vacuum chamber structure. Moreover, the
system has been designed to take data 24/7 at 0.1Hz. In the frame of the
beam induced heating phenomenon, it is interesting to focus the thermal
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Figure 59: A representation of the vacuum chamber of the CMS experiment for the
HL-LHC in r-z-coordinates. All dimensions are in mm. The interaction
point (IP) is at z = 0 mm.

analysis on the time interval defined from the moment when the protons are
injected in the LHC machine the beams are tuned to the start of the collisions.

4.4.1 LHC Fill

Everything start with the injection of the protons in the LHC ring. They
are easiest to get from hydrogen, the simplest atom with just one electron
orbiting one proton. Indeed, the LHC starts with a bottle of hydrogen gas.
An electric field is used to strip hydrogen atoms of their electrons to yield
protons. Linac 2, the first accelerator in the chain, accelerates the protons to
the energy of 50 MeV. The beam is then injected into the Proton Synchrotron
Booster (PSB), which accelerates the protons to 1.4 GeV, followed by the
Proton Synchrotron (PS), which pushes the beam to 25 GeV. Protons are then
sent to the Super Proton Synchrotron (SPS) where they are accelerated to 450
GeV. The protons are finally transferred to the two beam pipes of the LHC
to reach their maximum energy of 6.5 TeV. The beam in one pipe circulates
clockwise while the beam in the other pipe circulates anti-clockwise.
Beams circulate for many hours inside the LHC beam pipes under normal
operating conditions. The two beams are brought into collision inside four
detectors, ALICE, ATLAS, CMS and LHCb, where the total energy at the
collision point is equal to 13 TeV. A screenshot from the LHC monitoring tool
is reported in Figure 60.
Every Fill cycle is a sequence made of tightly coupled tasks that need to be
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Figure 60: Screenshot from the LHC vistar page 1 during a standard Fill operation.

carried out in strict order and have to be accomplished successfully to allow
the LHC machine to make a transition from one state to another. A complete
description of the LHC operating modes ca be found in [114], while part
of those tasks, which are interesting for the subsequent considerations, are
described in the following:

• SETUP: Possibly beam in transfer lines with transfer line dumps in.
Includes pre-injection plateau and injection plateau - no beam in ring.

• ABORT: Recovery mode following beam permit drop. This mode can
be entered from any state if there is no beam in the machine.

• INJECTION PROBE BEAM: If either ring 1 or ring 2 will be injected
with or have safe beam circulating. In this mode a number of checks
will be done for the different accelerator sub-systems before injecting
higher intensities. The aim will be to establish a circulating safe beam
with a given lifetime.

• INJECTION SETUP BEAM: During the INJECTION PROBE BEAM
we will be able to make measurements with very limited precision. In
order to make more precise measurements before filling for physics, a
SETUP BEAM will be used. This beam will be wholly representative of
the physics beam to follow, just with fewer bunches to stay below the
damage threshold.

• INJECTION PHYSICS BEAM: At this stage the machine has been
optimized. It proved to be able to have circulating beam with
appropriate lifetime and it is ready to accept higher intensities needed
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for physics. Within this mode, prior to high intensity beam injection, a
pilot beam will be injected since the accelerator will be empty when
this mode is reached.

• PREPARE RAMP: Injection complete, preparing for ramp.

• RAMP: Ready to ramp or ramping or immediate post ramp.

• FLAT TOP: Ramp finished - pre-squeeze checks.

• SQUEEZE: Preparing for or squeezing: the beams are fine-tuned, and
focused at the four points around the LHC where they cross, and the
experiments will record the collisions.

• ADJUST: Preparing for collisions or adjusting beams after the squeeze.
Possible to enter this mode from STABLE BEAMS. Possible to enter
this mode at the end of STABLE BEAMS without the intention of going
back into physics.

• STABLE BEAMS: Stable conditions with collisions in the experiments:
The LHC is now running smoothly, the beams are behaving as expected,
and the experiments can start recording data.

• BEAM DUMP WARNING: This mode is used before a requested beam
dump at the end of stable beams. It is bypassed in case of emergency
dump.

• RAMP DOWN: Ramp down and cycling after programmed dump at
end of physics fill.

4.4.2 iPipe beam induced heating

The thermal behavior of the CMS central beam pipe during a typical LHC fill,
as recorded by the iPipe monitoring system is shown in Figure 61. To achieve
this result the database in which the iPipe data are stored has been merged
with a dedicated LHC database where all the information about the fills are
stored during the LHC operations. Indeed, the black line in the plot in Figure
61 represents the intensity of one of the two LHC proton beams, whose
maximum value is 1.08 · 1011protons. At a first observation, it can be seen
that while the LHC is performing its initial operations, during the ramp, the
CMS central beam pipe temperature is increasing, while when the collisions
start and, consequently, the beam intensity decreases, the temperature on the
pipe is decreasing.
Focusing on the right part of the plot in Figure 61(a) and moving to the plot
in Figure 61(a), it can be seen that the temperature increase is factorable in
two parts. As the beam intensity starts to increase there is a temperature
increase on the pipe between the injection of the physics beam and the
declaration of stable beam, while a further temperature increase is recorded
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by the iPipe sensors after the stable beam declaration. Further data analysis
and correlations with status of subdetectors sorrounding the beampipe, show
that the latter temperature increase corresponds to the heat generated by the
start of the CMS data taking, e.g. the activation of the electronic board of the
detectors (Silicon Pixel detector of the CMS inner tracker) surrounding the
beam pipe.
The first temperature increase is clearly related to the presence of the beam
in the pipe and can be associated to the above described RF beam induced
heating phenomenon, since any other source of beam heating can be excluded.
Indeed, there can be other sources of beam induced heating than wakefields:

• synchrotron radiation, but the CMS central beam pipe is a straight
section of the LHC ring and no synchrotron radiation is forseen; ıtem
direct beam losses, that is why we focus on period before collisions and
resulting losses;

• electron cloud, the presence of the CMS magnetic field inhibit the
electrons of the cloud from interacting with the vacuum chamber walls.

Moreover, the central beam pipe is located in the tracker volume, which is
a thermal and humidity controlled environment. A detailed analysis has
been performed and the results are presented in the following section. To
understand the nature of the beam induced heating on the CMS Central
beam pipe a corresponding analysis between the beam parameters and the
iPipe measured DT has been performed. Figure 62(a) shows the temperatura
increase and the number of bunches (M) for each fill during the 2016 LHC
operations, while in Figure 62(b) the delta temperature are plotted against
the number of bunches, for the temperatura sensor at 50mm from the impact
point. The latter plot is the direct measurement of the correlation between
the temperature increase and the number of bunches per Fill, which goes
in the direction of a linear correlation. From what described in the previous
sections concerning the beam RF induced heating, this linear behavior can
be seen as the confirmation of a broadband impedance for the CMS central
beam pipe.
In Figures 63, 64 and 65 the results for the beryllium, negative and positive,
and the aluminum central beam pipe sectors are shown.

4.5 ipipe upgrade

Following the excellent results achieved in the direct measurement of the
beam RF induced heating on the CMS central beam pipe, the CMS
Collaboration decided that the iPipe monitoring system will be installed also
to the z = ±10 m sectors, with respect to the impact point, located in the
CMS HF pipe zones, referring to the technical drawing in Figure 58. Indeed,
from the calculation discussed in [113] the presence of a mode trapped at the
end of the End-cap pipe, about ±10m from the interaction point, is
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(a)

(b)

Figure 61: Thermal dynamic on the CMS central beam pipe during the LHC Fill
5345 happened in September 2016 (a) and highlight of the temperature
increase during the beams filling and setting phases (b).
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(a)

(b)

Figure 62: Temperature increase between injection of probe beam and stable beam (a)
and correlation between the number of bunches [M] and the temperature
variation of each Fill (b) occurred in 2016 LHC operation.
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(a) (b)

(c) (d)

Figure 63: Temperature increase between injection of probe beam and stable beam (a,c)
and correlation between the number of bunches [M] and the temperature
variation of each Fill occurred in 2016 LHC operation (b,d) on the
beryllium minus region (T-800 and T-400, respectively).
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(a) (b)

(c) (d)

Figure 64: Temperature increase between injection of probe beam and stable beam (a,c)
and correlation between the number of bunches [M] and the temperature
variation of each Fill occurred in 2016 LHC operation (b,d) on the
beryllium plus region (T+400 and T+800, respectively).



104 ipipe measurement of the beam induced heating

(a) (b)

(c) (d)

(e) (f)

Figure 65: Temperature increase between injection of probe beam and stable beam (a,c,e)
and correlation between the number of bunches [M] and the temperature
variation of each Fill occurred in 2016 LHC operation (b,d,f) on the
aluminum region (T-2800, T-2400 and T+2800, respectively).
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highlighted resulting in a potential power loss up to 250W [115] if it is excite
by the wake of the beam. This scenario poses the need for a continuous and
reliable monitoring of this sections of the CMS beam pipe. With the support
of the CMS Central Technical Coordination, we have designed an upgrade of
the iPipe system to satisfy this request, coming from both the CMS and the
LHC communities.
The z = ±10 m zones are characterized by a particular double cone shape
geometry, which is responsible for the predicted trapped mode. The
variation of the CMS beam pipe radius is reported in Figure 59. The HF
beam pipe is made of stainless steel, 3mm thick. The zones to be monitored
consist of 1.5m around the z = ±10.7m flanges; the layout of this upgrade of
the iPipe is shown in Figure 66(a). Referring to the CMS conventional
coordinate system, the iPipe system upgrade includes the sensoring of both
the plus and minus z region, with respect to the IP. For each z = 10 m region
it is divided in IP side and non-IP side, due to the presence of the flanges at
z = ±10.7 m which identify a no-fibers region of 29 cm, as depicted in
Figure 66. On both IP and non-IP sides the monitoring system consists of
four FBGs arrays, each one made of four FBG to be used as temperature
sensors, to be placed on the four cardinal positions. The proposed sensors
distribution is depicted in the schematic in Figure 66(b): the distance
between two consecutive FBG is 25 cm. In Figure 67 some photos taken
during this recent FBGs arrays installation are shown.
This system is designed to stand the high ionizing radiation level that will be
produced during the next years LHC collisions in this region. Indeed, based
on the arguments and test measurements discussed in the previous chapter
and on the studied on the state of the art of the radiation tolerance of the
FBG sensors argued in the first chapter of this Thesis, the iPipe upgrade
arrays are made with fluorine-doped fibers, namely the Fujikura RRSMFA
[116], where the FBG sensors will be written with the use of the femtosecond
laser technology [21].
The system is now under commissioning and will be ready to take data
when the LHC operation will resume at the end of the 2017 year end
technical stop.

4.6 conclusions and future perspectives

The beam RF induced heating is a key effect to be monitored during the
operations of a particle accelerator. In particular, the LHC has faced this issue
during the Run1 collisions when the beam RF induced heating posed some
limitations to the performances of the machine [104]. The LHC chosen strategy
to mitigate the beam RF induced heating comprise also the temperature
monitoring of the critical parts of the LHC accelerator ring. The temperature
monitoring is not always a trivial task and conventional electronic sensor not
always can be used in the specific harsh environments represented by the
LHC accelerator components. Indeed, the presence of magnetic field (up to
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(a)

(b)

Figure 66: Schematic of the zone around the z = ±10.7 m supports of the CMS beam
pipe to be equipped with a FBGs temperature monitoring system and 3D
view of the CMS configuration, with the radiation shielding in position,
needed to install the arrays for the iPipe upgrade (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 67: Picture of the CMS in open configuration with the working platform in
place (a); focus on the radiation shielding around the z = 10.7 m support
(b); installation of the FBG arrays and fan-in fan-out LC-APC patch-panel
(c,d); detailed view of one of the FBGs arrays installed (e,f).
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8.5 T in the bending sector on the LHC ring), as well as the very high level of
ionizing radiation, makes the electronic temperature sensors unreliable for
long term measurement during the LHC operations.
The iPipe monitoring system, which has been the subject of present PhD
thesis work, turned to be a solid and reliable solution for these challenging
temperature monitoring tasks as well. The iPipe system data analysis proved
in particular the precision and reproducibility for the measurement of local
thermal gradients on the accelerator sectors. The data shown in present
chapter highlight the reliability of the iPipe sensing method applied to the
monitoring of the beam RF induced heating: those data can be seen as the
first direct measure of the beam RF induced heating on the CMS central beam
pipe, made possible by the uniqueness of the iPipe monitoring system. Indeed,
as already underlined in the previous chapter, the CMS central beam pipe
is the first, successful, example of direct measurements of the temperature
dynamic of a particle accelerator impact sector.
The data presented in Figures 62, 63, 64 and 65 are a clear evidence of a linear
correlation between the temperature increase and the number of bunches
of each LHC fill, confirming with a direct measurement the hypothesis of
resistive wall impedance for the CMS central beam pipe. Moreover, from the
data shown in Figure 65 we can state that the aluminum sectors turns to
get less warm with respect to the beryllium sector giving an first indirect
indication that the narrow-band impedance resonances, predicted to be at
z = ±10.7 m with respect to the impact point [113], may not have been
excited during the last two year of LHC operations.
The results presented in this chapter have triggered the interest of the CMS
and LHC communities. A first solid outcome is the request of the upgrade
of the iPipe system, in order to directly measure the temperature dynamic
around the z = ±10.7 m zone of the CMS beam pipe. A direct monitoring
of these zones will be of crucial importance in the framework of the HL-
LHC, since the predicted narrow-band impedance resonances can, potentially,
dissipate up to 250 W in these regions. Recently, we installed the new iPipe
sensors and the system is now under commissioning in order to be ready to
record data when the LHC collision will resume at the end of the YETS2017.
Moreover, the data recorded will be integrated also in the TIMBER platform
[117] [118], the user interface to the LHC Logging System [119], in order to
be shared on line with the LHC team.
The whole CMS beam pipe 29 will be changed in LS2 with a new one to cope
with the HiLumi-LHC and CMS-Phase II requests [120]. Since the installation
should take place before the end of 2020, the design and feasibility studies
have already started and the CMS Central Technical Coordination supports
the installation of a completely new iPipe monitoring system from z = �16
m to z = +16 m, that is to say on the entire length of this new beam pipe.



C O N C L U S I O N S

The work presented in present Thesis has focused on the innovative
application of a fiber optic monitoring system to the central beam pipe of the
CMS experiment.
The central beam pipe is a fundamental element of both, the CMS
experiment and the LHC ring: it is the place where the high energy
proton-proton collisions take place in CMS underground site. It has to stand
to an extreme vacuum condition (up to 10�13 atm) and, at the same time, it
must not interfere with the particle resulting from collisions. To satisfy those
conditions, in its final version, the central beam pipe is made of a gossamer
Beryllium tube that needs to be continuously monitored to have information
about its structural and health state. In addition, it is mandatory that, any
monitoring system to be installed on the beam pipe must not interfere with
the particle detectors that wrap around the pipe, nor create interferences on
the operation of surrounding CMS particle detectors. Radiation immunity
represents one of the most important specification required to a monitoring
system operating in a High Energy Physics (HEP) environment, while other
needs are: low complexity layout, multiplexing and multi-parameters
measurement capabilities. On the basis of these technical specifications, we
designed and installed a unique structural system based on Fibre Bragg
Grating (FBG) sensors, that has been called iPipe monitoring system, on the
new central beam pipe of the CMS experiment to monitor the thermal
condition and on-line unpredictable mechanical deformations.
Present Thesis work has been of fundamental importance for the design and
manufacturing of the iPipe system, its installation, commissioning and
operation. The performed, and here presented, data analysis confirm that the
iPipe system fulfilled the initial monitoring requests, quantifying any
deformation induced on the CMS central beam pipe during the experiment
operations. Moreover, the data presented proved the overall high sensitivity
and reliability of this innovative monitoring system.
The measure of the mechanical stability of the CMS central beam pipe was of
critical importance in the view of the reduction of the clearance between the
beam pipe and the surrounding Pixel detector foreseen in the Pixel upgrade
of 2017. The iPipe measurements are a good indication of the stability of the
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structure since strain deformations only of the order of 20 µe has been
measured during the CMS magnet ramps, when the whole CMS structure is
known to be subjected to magnetic field induced deformations of the order
of 10 mm. The iPipe system has indeed proved to be an important
innovation in the framework of the monitoring of crucial parts of the CMS
detector and LHC beam pipe.
Focusing on the thermal measurements, the iPipe system proved the
capability also for direct measurement of the beam induced RF heating on
the CMS central beam pipe. The beam RF induced heating is a key effect to
be monitored during the operations of a particle accelerator. In particular, the
LHC has faced this issue during the Run1 collisions when the beam RF
induced heating posed some limitations to the performances of the machine.
The temperature monitoring of the different elements of the LHC accelerator
is not always a trivial task and conventional electronic sensor cannot be used
in all the harsh environments represented by the LHC accelerator
components. Indeed, the presence of magnetic field (up to 8.5T in the
bending sector on the LHC ring), as well as the very high level of ionizing
radiation, makes the electronic temperature sensors unreliable for long term
measurement during the LHC operations. The iPipe monitoring system,
turned out to be a solid and reliable solution for these challenging
temperature monitoring tasks, in particular for the measurement of local
thermal gradients on the accelerator sectors. The thermal data analysis,
performed in present Thesis work, has highlighted the reliability of the iPipe
sensing method applied to the monitoring of the beam RF induced heating.
Those data can be seen as the first direct measure of the beam RF induced
heating on the CMS central beam pipe, made possible by the uniqueness of
the iPipe monitoring system. Indeed, the CMS central beam pipe is the first,
successful, example of direct measurements of the temperature dynamic of a
particle accelerator in the sector where particles collide. The results
presented in the chapter 4 have triggered a further interest of the CMS and
LHC communities. As a first outcome we collected the request of the
upgrade of the iPipe system, in order to directly measure the temperature
dynamic around the z = 10.7 m zone of the CMS beam pipe. A direct
monitoring of these zones is of crucial importance in the frame of the
HL-LHC, since the predicted narrow-band impedance resonances can,
potentially, dissipate up to 250W in this region. We have recently installed
the new iPipe sensors by and the system is going to be commissioned in
order to be ready for data-taking we the LHC operation will resume.
Moreover, the recorded data will be shared in a common platform with the
LHC team.
Moreover, an extended upgrade of iPipe monitoring system have been
recently confirmed in the framework of the renovation of the whole CMS
beam pipe, that will happen during LS2, before the end of 2020.
The iPipe system is a unique and innovative solution which will represent a
milestone for beam pipe monitoring in high energy physics. Its first
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implementation, documented in present Thesis work, proved the capability
of direct measurements of beam pipe thermal and strain dynamics, opening
new perspectives in the manufacturing of solid and reliable structural health
monitoring system in this domain.
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