

Laser Compton scattering in the collider

Illya Drebot

$$\mathbf{V} = \frac{(1 + \underline{e}_k \cdot \underline{\beta})}{(1 - \underline{n} \cdot \underline{\beta}) + \frac{h \nu_L}{mc^2 \gamma} (1 - \underline{e}_k \cdot \underline{n})} \nu_L \approx 4 \gamma^2 \nu_L$$

What is Compton Back Scattering?

28/May/2006

$$E_{ph} = \frac{4\gamma^2 E_l}{1 + X + \gamma^2 \theta^2}$$

$$X \equiv \frac{4\gamma E_l}{mc^2}$$

What is Compton Back Scattering?

$$E_{ph} = \frac{4\gamma^2 E_l}{1 + X + \gamma^2 \vartheta^2}$$

$$X \equiv \frac{4\gamma E_l}{mc^2}$$

Why we CBS need it in the FCC?

Gamma source

Beam intensity control

Beam diagnostic (Polarimetry)

FCC POLARIMETER

FCC

13 june / FCC week

Robert Kieffer

2

Number of scattering particle 10³-10⁴ per one shot

The FCC Compton polarimeter

- Centre of mass energy calibration is obtained from the resonant depolarization scans (RDP) on pilots.
- Direct energy measurement by pattern position
- Precise longitudinal polarization measurement on physics bunches (expected to be zero at 10⁻⁵).
- Free spin precession (looks challenging).

Implementation needs

- Dedicated powerful laser and adapted hutch
- Laser Compton interaction chamber LIP
- Spectrometer magnet stuffed with Hall sensors
- Compton electron/photon extraction line chamber
- Particle sensors (silicon pixels detectors)
- Polarizing wigglers to speedup polarization buildup.
- RF kickers to apply resonant depolarization.

8 x 10 mm²

350 x 2 mm²

From N.Muchnoi

Beam intensity control

Why we need?

Asymmetry in the bunch current leads to Flip-flop instability. To avoid this bunches at IP must be bunches should be tightly controlled, with a maximum charge imbalance between collision partner bunches of less than 3–5%.

How to realise it?

Compton Back Scattering (CBS)

10 m dipole magnet Ti:sapphire laser pulse λ=800 nm

Laser parameters

Specifications THALES	
Version	Alpha kHz
Repetition rate (kHz)	1 to 10
Energy per pulse (mJ) after compression	10 to 50
Pulse duration FWHM (fs)	Down to 25
Pulse to pulse energy stability (% rms)	≤ 1.5
M^2	< 1.8

Beam intensity control

betatron collimation off-momentum collimation

5000
4000
2000
1000
33000 33250 33500 33750 34000 34250 34500 34750 35000
s [m]

Beam ps before CBS

Beam ps after CBS

Loss map

Spectrums

For 50 mJ with rep rate 3.7 kHz

Z E=45 GeV $E_{phmax}=24 \text{ GeV}$

W E=80 GeV $E_{phmax}=52 \text{ GeV}$

ZH
E= 120 GeV
E_{phmax}=89 GeV

tt E= 180 GeV E_{phmax}=149 GeV

2nd FCC Italy & France Workshop 05/11/2024

Antoine CHANCE

FCC booster design

15

Proposal of to use the booster as a light source

Courtesy: Sara Casalbuoni

FCC-ee booster as a Light Source

2nd FCC Italy & France Workshop 05/11/2024

Antoine CHANCE

FCC booster design

cea

5

Proposal of to use the booster as a light source

Courtesy: Sara Casalbuoni

hor. em. = 46 pm rad; vert. em. < 5 pm rad

Non-collider science opportunities at FCC-ee | Noticell Stransform, Sara Casalburn, 25 Nt 3034 3

Laser & Fabry-Perot cavity

Laser and FP cavity	
Laser wavelength	1030 nm $E_{las} = 1.2 \text{ eV}$
Laser and FP cavity Frep	33 MHz
Pulse energy	15 mJ
FP waist	70 μ m
Laser pulse length	1 ps

Laser and Fabry-Perot cavity accumulate photons.
It give us possibility to collide photons with pulse energy of 15 mJ

(3e8*1120/90.7e3)/1e6=3.7 MHz

33MHz/3.7MHz=8.9

Total # of photons 1.59e4*3.7 MHz=5.8e10

(3e8*1120/90.7e3)/1e6=3.7 MHz

33MHz/3.7MHz=8.9

Total # of photons 1.59e4*3.7 MHz=5.8e10

Experiment proposal at FACET-II Facility for Advanced Accelerator Experimental Tests

Leverage the E320 infrastructure at FACET-II to provide an R&D platform for:

- Bunch-to-bunch laser intensity control.
- Halo collimation.
- Diagnostics to demonstrate collimation and control of high energy beams.

FACET-II is the only User Facility in the world that combines 10 GeV beams with high-power lasers to accommodate this type of R&D.

Thank you

Please find here spectrums and photons distribution

https://cernbox.cern.ch/s/4k86vWKlqMD23np

