Grid Enabled Remote Instrumentation with
Distributed Control and Computation

Pre-Printing ID: INFN-LNL-212(2006)

Enabling the Web
Service Quality of Service

F. Lelli’?, G. Maron’ , S. Orlando’
!Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, ITALY

’Dipartimento di Informatica, Universita Ca’ Foscari di Venezia, ITALY

Version 1.0

9/13/2006
Version: 1.0
Date: 9/13/2006
Authors: F. Lelli"", G. Maron’, S. Orlando’

CI identifier =~ INFN-LNL-212(2006)

Information Society
Infrasmuctures

Date: 9/13/2006

Revision History

Date Version Description Author
9/10/2006 0.9 First Public Draft Francesco Lelli
9/13/2006 1.0 Document Finalization Francesco Lelli

Page 2 of 74

Date: 9/13/2006

CI Record

Field Description

Description Web Service Dead Line Computation Methodology

Submission Date 9/10/2006

Submitted By Francesco Lelli

Components 1 document

Dependencies/Related none

External Identifier INFN-LNL-212(2006)

Point of Contact Francesco.Lelli@Inl.infn.it

Comments This document addresses and solves the Quality of Service (QoS) issues in
a Web Service scenario

Physical Location INFN Laboratori Nazionali di Legnaro

Page 3 of 74

38

Date: 9/13/2006

Table of Contents

1 Introduction
1.1 Document Organization
2 Executive Summary
3 Quality of Service in a grid Scenario and in a Web Service Scenario
3.1 QoS in a Grid Scenario
3.2 QoS in a Interactive Grid Scenario
3.3 QoS ina Web Service Scenario
4 Approaching the Web Service Quality of Service
4.1 Related Work
4.2 Critical Times in a Remote Procedure Call
4.3 Factors that Influence a Remote Method Invocation:
5 An Homogeneous and Consistent Data Repository for Web Services QoS
case of Study.
5.1 Test Sample: Definition and Memorized Information
5.2 Test Sets Dissertation and Recommendations
5.3 Test Sets Candidates Description
6 Test Bed Architecture, Implementation Detail and Experimental Error on

the Sample Measures.

6.1 Test Bed Architecture.
6.2 Implementation Details
6.3 Experimental Error on the Sample Measures

A taste on the collected information

7.1 Samples Distribution for Invocation with Big Input and Output
7.2 Server De-Serialization time for Different Input Size.

7.3 One Way Service Invocation with Different Input Size.

7.4 Conclusions and Final Remarks on the Data Set

Dead Line Estimation Methodology

8.1 Empiric Function Estimation

8.2 2"factorial analysis design on the dataset

8.3 Gaussian upper bound of a Sample distribution
8.4 Total Execution Time Estimation

8.5 A Special Case: Server Deserialization

8.6 Different f(x) estimations

8.7 Different g(x) estimations

8.8 Dead line function estimation

9 Web Service QoS Proof of Concept

O O 0 0

11
)
12
14

15
15
15
16

18
18
20
20

21

21
23
26
30

31

32
33
36
37
39
41
42
43

44

Page 4 of 74

D end O

Date: 9/13/2006

10

11

12

13

14

9.1 Proof of concept in a synthetic scenario
9.2 Proof of concept in a real scenario
9.3 Final remarks

Web Service Profile Algorithm

Suggested Web Service QoS Enabled Architectures
11.1 Full client side logic

11.2 Server and clients factors break down
11.3 Third party QoS Enabler

Bibliography

Appendix I: a taste on the 2* factorial analysis
13.1 The 2> Design

2
13.2 The2 Design for k> 3 Factors
13.3 Other Methods for Judging the Significance of Effects

Appendix II details on the performed 2* factorial analysis

14.1 Total Execution Time
142 One way Time

14.3 Client Serialization
14.4 Client Deserialization
14.5 Server Serialization
14.6 Server Deserialization

44
46
53

54

55

55
56
57

59

61
61

63
66

67

67
68
69
70
71
73

Page 5 of 74

Date: 9/13/2006

Enabling the Web Service Quality of
3 Service

1+ 1 Introduction

5 This document addresses and solves the Quality of Service (QoS) issues in a Web Service
& scenario. The main contributions of this report include (1) the creation of a uniform and
7 coherent dataset that enable QoS studies and (2) a methodology that allows the clients
& estimation of a remote method execution time. (3) Experimental results in real environments
¢ validate the proposed algorithms that allow the dead lines estimation of a method invocation
{0 and (4), finally, 3 different QoS enabled architecture solutions that adopt the proposed
11 methodology and algorithms have been outlined.

1.1 Document Organization
This document is organized as follow:

{6 Chapter 2 resumes the main contributions of this document providing an overview of the
17 obtained results.

{9 Chapter 3 report and introduce the QoS in a distribute environment mapping the key features
26 in a Grid and ina WS environment

Chapter 4 introduces the main QoS issue in a WS environment presenting the status of art
23 and analyzing the critical parameters that influence the Quality of Service

25 Chapter 5 propose a dataset organization that enable QoS studies

Chapter 6 describes how the proposed dataset has been created and verify the data
28 consistence

30 Chapter 7 describe a subset of the collected raw data

32 Chapter 8 describe a methodology that enable the estimation of a remote method execution
33 time

35 Chapter 9 validate the proposed methodology in a real scenario

37 Chapter 10 propose an al algorithm that automatize the procedures of the developed
38 methodology

40 Chapter 11 suggest 3 different software architectures where the developed algorithm could
be integrated

Appendix I and II provides some detailed on the used methodology.

Page 6 of 74

Date: 9/13/2006

2 Executive Summary

This document analyzes the present QoS status of art and prose a set of solutions that enable
a remote service invocation with a given Quality of Service.

Chapter 3 and 4 formalize the problem and recognize the need of a uniform dataset where
study the QoS in a Web Service context. The created data set consists in 2304000 samples (of
9 significant values each) organized in 2304 different tests; the information organization
(Ch5), the test bed architecture (Ch6) and the obtained raw data (Ch7) unsure the quality of
the produced information.

In the second part this document analyzes the realized dataset in a more exhaustive way. 2
variants of a methodology that utilize a Gaussian approximation of the dataset distributions in
combination with regression model of the key factors that influence the average and the
standard deviation have been developed in chapter 8 and validate with experimental results in
a real scenario in chapter 9. Finally, in chapter 11, this document proposes 3 different
software architectures that can utilize the developed algorithms presented in chapter 10.

Page 7 of 74

Date: 9/13/2006

3 Quality of Service in a grid Scenario and in a Web

> Service Scenario

3 This paragraph tries to introduce the quality of service from a general point of view while
4 next will personalize this approach into a grid, interactive grid, and WS scenario.
5 The Quality of service (QoS) is a combination of several qualities or properties of a service
4 [20], such as:

7 e Availability is the percentage of time that a service is operating.

e Security properties include the existence and type of authentication mechanisms the
service offers, confidentiality and data integrity of messages exchanged, non
10 repudiation of request or messages, and resilience to denial-of service attacks.

{1 e Response Time is the time a service takes to respond to various types of requests.
Response time is a function of load intensity, which can be measured in terms of
arrival rates (such as requests per second) or number of concurrent requests. QoS
14 takes into account not only the average response time, but also the percentile (95th
{3 percentile, for example) of the response time.
16 e Throughput is the rate at which a service can process requests. QoS measures can
17 include the maximum throughput or a function that describes how throughput varies
(g with load intensity.

e Application Dependent Parameters are values that belong to the particulars service

semantic such as the money cost, recall in a Google query and so on.

Considering a set of service request (Transaction) additional parameters must be considered.
A Service Transaction is an inseparable list of operations which must be executed either in its
entirety or not at all. In database parlance, it is a sequence of actions that must be executed as
a unit. For example, when a Web site sells a travel package to a customer, the site must
confirm all components of the package (flights, hotels, and car rental reservations). It is
common to require distributed transactions to have the ACID property in the presence of any
type of site or network failures:

e Atomicity: A transaction is an atomic unit of processing; it is either performed in its

entirety or not at all.

o Consistency: A correct execution of the transaction must take the system from one
52 consistent state to another.
33 e Isolation: A transaction should not make its updates visible to other transactions until
34 it is committed. That is, it should run as if no other transaction is running.
3 Durability: Once a transaction commits, the committed changes must never be lost in
the event of any failure.

A
[]

3& As final remark we need to observe that the QoS measure is observed by services users.
39 These users are not only human beings but also programs that send requests for services to
40 service providers.

42 3.1 QoSin a Grid Scenario

42 Standard Grid only considers batch job execution where:

44 e A user can require the execution of a single job or the coordinated execution of a set
of jobs, typically modeled as a workflow;

e A user can specify requirements for one or more resources that should serve the

Page 8 of 74

Date: 9/13/2006

request;
e A user can specify requirements on the network connectivity of the resource
3 executing the job and the input data that can be present in different replicas at several
| locations;
e A user may express policies about the job, or the user job itself can be subject to
policies provided by the resource provider or by the virtual organization to which the
; user belongs. ~
& Mapping the presented use cases in QoS scenario and considering a single job execution:
Auvailability represent the possibility to submit a job with optionally given constrain; security
10 represents the different types of user authorization and identification capability while, taking
1 into account that we are considering batch job execution, parameters like the response time
2 and throughput represent the job handling capability. Finally the users’ job policies are
application dependent parameters. Considering a set of job (workflow) the ACID properties
| must be taken into account and for guarantee these request standards and software component
!5 that provide advance reservation, like the Agreement Service [25], has been proposed and
i¢ developed.

19 3.2 QoS in a Interactive Grid Scenario

Interactive grids systems not only refer to batch execution job but also the need to control the

job flow is outlined. We can repeat the same QoS remarks presented in paragraph 1.1 and in

22 addition we need to consider that in this particular case the jobs execution times are typically

2% shorter than the one that runs in a standard grid. Finally, considering that interactivity is a key
i requirement, the jitter of the job execution time assumes a non negligible meaning.

26 3.3 QoS ina Web Service Scenario

In this document we refer to a Web Service as a platform and implementation independent
software component that can be:

o P
L G w3

e Described using a service;

e Published to registry of service;

e Discovered through a standard mechanism (at run time or design time);
e Invoked through a declared API, usually over a network;

e Composed with other services;

fad led lid Le

... - _upopl
Vi i N R
L SO 3 iscover
s . 4, Consume
) \
Web o, ArcWeb
Applications e Services

Figure 1: Web Service Archiiecture.

According with the given definition one point we would like to stress out is that Web

Page 9 of 74

@
&

Date: 9/13/2006

Services need not necessarily to exist on the World Wide Web; a web service can live
anywhere on the network, inter or intra-net. Some Web Services can be invoked by a simple
invocation method in the same operating system process, or using shared memory between
tightly coupled processes running on the same machine. Another important point is that a
Web Service implementation and deployment platform details are not relevant to a program
that is invoking the service; a Web Service is available through its declared API and
invocation mechanism (network protocol, data encoding schemes and so on). Finally we
would like to remark that web services are just building blocks that can be composed in order
to create the final application therefore this software layer do not care about the invocation
semantic remanding it to the WS-developers.

Considering a single service invocation and this last remark Availability, Security, Response
Time and Throughput are important QoS parameters and they have a fundamental impact on
the WS-Quality of Service while Application Dependent Parameters should be taken into
account to higher software layers.

Finally, considering that the service semantic is not part of this software layer and that web
service just provide an interface that allow the remote access to a generic software
component, ACID properties can not be part of the WS level but, again, are business of the
web service developers.

Page 10 of 74

Date: 9/13/2006

4 Approaching the Web Service Quality of Service

As mentioned in paragraph 3.3 the first remark is that web services are method semantic
agnostic, therefore an application non intrusive framework that is and able to provide high
quality of service parameters, like the money or electrical energy needed, can not be provided
without enforce a modification of the final programmer application. These QoS parameters
% and others, like particular software compliance or the method semantic in general, are
» application dependent and belong to the software layers that use web services as hardware
and software independent invocation framework in order to execute a remote service.

If we consider a Web service call as just a remote procedure execution, how often a the
server can be successfully connected by a client or how frequently an exception is detected
by the client due to a server failure (Availability), are interesting parameters; a scenario
where a set of servers offer the same service to a pool of clients is the typical use case that
require a distinction between “good” and “bed” servers. QoS parameter related to the
Security can be considerate static or quasi-static information because typically are properties
established at deployment time.

An additional parameter could be a sort of “magic number”, either a number (or a set of
them) that statically characterize the responsiveness of the server. This number(s) is a
measure of the hardware and software quality and do not take into account the network
and/or the machines load; it just describe the potentiality of the remote service. Unfortunately
this number (s) can not be used in order to determinate the End to End Response Time and/or
the Throughput of a service from the client point of view because the server and the clients
load have a considerable and not negligible impact. By the way achieving this type of QoS is
quite easy. If we assume that these parameters are not client dependent this information could
be inserted into the UDDI description or in a centralized repository; as opposite, if the client
could influence the particular remote method failure, it could maintain this information
locally. Considering that the “magic number” is a static value it can be computed using a set
of tests that could run during the installation procedure.

3 As last parameter, and most crucial in remote procedure calls, is the remote method execution
i1 time. The estimation of this factor, unlike the previous mentioned, is not trivial and quite
#Z more important in real time, near real time and interactive distributes applications.

i3 The following table resumes the QoS parameters type for a WS scenario:

% o

QoS Parameter Type Component Trivial
Influence Determination
Availability dynamic Server, Network Yes
Security Static Server Yes
Response Time dynamic Client, no
Network,
Server
Throughput dynamic Client, Network Yes
Server
Application ~ Dependent | Out of WS scope | --- ---
Parameters
ACID Out of WS scope | --- -

Table 1: Parameters characterization in Web Service QoS

Page 11 of 74

Date: 9/13/2006

i This problem is quite new and some preliminary results were presented in [6] [7] [8] [9] [10],
2 [11][12], [13], [14] as we will outline in the next paragraph.

& 4.1 Related Work

In [6] authors develop a service composition architecture that optimizes the aggregate
5 bandwidth utilization within an operator’s network. In [7] authors propos a new Web
9 services discovery model based on UDDI in which the functional and non-functional
10 requirements (i.e. quality of services) are taken into account for the service discovery while
{1 [9] propose a fault tolerance solution or performance prediction [14] for distributed systems
12 based on Web service technology by extending the UDDI. [8] address service selection
13 coupled with a QoS ontology proposing architecture based on an agent framework while [10]
4 presented a QoS-assured composed service delivery framework, called QUEST, and design
15 efficient approximate optimal algorithms to compose service paths under multiple QoS
] constraints. In [11] authors propose a service composition architecture that optimizes the
.7 aggregate bandwidth utilization within a operator’s network while in [12] Cardoso et all
{8 present a predictive QoS model that makes possible to compute the quality of service for
v workflows automatically based on atomic task QoS attributes. Finally in [13] authors study
20 the Web Service end to end QoS proposing a centralized broker that is responsible for
21 coordinating individual service components to meet the quality constraint for the client.
We need to note that researches are focussing there attentions on a techniques and/or
23 architecture that assume the response times well known and they leave the parameter
24 estimation to future investigation. In addition some works assume instantaneous and costless
> the propagation of the QoS information between the system peers.

4.2 Critical Times in a Remote Procedure Call

Is well known that the majority of the web service request are performed across a LAN or
31 internet so the used network channel have an important role during a remote procedure call
22 and it can deeply influence the execution time. Several projects [1], [2], [3], [4], [5] are trying
33 to estimate the end to end network quality of service between 2 remotely devices.

Unfortunately not only the wire influence the performance of a WS invocation but the

serialization and deserialization process on both, server and client side [18], [19], and the
3¢ remote method algorithm have a important role. By the way a good estimation of the network
37 quality is an important piece of the puzzle if we are invoking a service using a channel with
© limited bandwidth or high latency.
From a generic point of view a remote method invocation can be spitted into 7 crucial parts
[24] as explained in figure 2:

Page 12 of 74

Date: 9/13/2006

A Remote method Invocation:

ey T
43 Pd et

Deserialization —

Transmission

Operation
execution

Transmission Serializati
/t? rialization /
NS/ A

Client side | | Network Service side

Remote Method Invocation activities

» t1-t0 input serialization Crucial Times are:

* t2-t1input communication t7-t0 Remote Method Execution Time

* t342input deserialization t4-t0 Remote Method Elaboration Time

» t4-t3 remote method execution time
¢ » t5-t4 output serialization
» t6-t5 output communication
* t7-t6 output deserialization

t3-t0 Remote Method Invocation Time

Figure 2: Critical Intervals in a Web Service invocation

During the interval t1-t0 the client serializes the invocation input in SOAP format and sends
it during the time t2-t1. The remote peer receives the serialized message at the time t2 and
19 start the deserialization process that will finish at the time t3. During the interval t4-t3 the

» remote method will be executed and the output will be produced. As last operation the remote

21 service will serialize in SOAP format the output during the interval t5-t4 and it will start the
22 sending process. The invoker will receive the serialized message at time t6 and during the
2% interval t7-t6 start deserialize the output message in the proper language.
24 According with this time division, from the client quality of service point of view, we can
2% identify 3 critical times intervals, that are:
' e t7-t0 Remote Method Execution Time

e t4-t0 Remote Method Elaboration Time

e (3-t0 Remote Method Invocation Time (One Way)
t7-t0 interval represent the total execution time of a remote invocation. In other words, in a
1 synchronous method invocation, the time that the invoker will wait before start processes the
21 output of the remote invocation.
32 t3-t0 represent the remote procedure execution delay that is introduced by the serialization-
23 deserialization process. This is particular important in One Way [17] invocation method.
34 Finally t4-t0 is the time needed to finish the remote elaboration process. In Notification base
i systems [17] represent the minimum time before the first reception of a notification.
36 With this formalization equip Web Services with QoS can be translated in try to guaranteed a
service execution in a given interval of time.
Of course, noting that no real time Web Service engine has been provided, the Service
_ Requestors can not negotiate a particular service but still can try estimate the execution time
40 of a remote method invocation. In order to give an intuitive idea of the problems difficulty,
we can note that all critical intervals (t3-t0, t4-t0, and t7-t0) depend on both server and client
parameters; in addition some intervals (t3-t0, t4-t0) can not be estimate without allowing
i3 cooperation between these 2 peers.

Page 13 of 74

Date: 9/13/2006

4.3 Factors that Influence a Remote Method Invocation:

Generally speaking the method execution time depends on several factors; first of all, the
algorithm complexity, particular input parameters that could modify its behavior and the
machine hardware where both the service and the invoker are running. In addition, other
important factors are the machines load, the software layers used, network bandwidth and
delay.

Finally other method parameters like input and output size and type could have a crucial
impact on the effective execution time of a method. The following table resumes, the
mentioned factors:

Parameter Type Label
Hardware Client Side Static A
Hardware Server Side Static B
Software Layers Client Side Static C
Software Layers Server Side Static D
Client Load Dynamic E
Server Load Dynamic F
Algorithm of the Method Semantic G
Key Factor that change the algorithm behavior Semantic H
Input Size Run Time Static | I
Input Type Run Time Static | L
Output Size Run Time Static | M
Output Type Run Time Static | N
Network channel bandwidth Dynamic 0]
Network channel delay Dynamic P

Table 2: factors that influence a remote method cal

Parameters like A, B, C, D can be considered static, they depend on hardware and software
update. Parameters G and H depend on the particular method semantic and a characterization
must be provided by the user of a WS-framework. Factors like I, L, M, N can be considered
note before starting the method execution even if, from a general point of view, M could be
noted only before the time t4. Finally parameters like E, F, O, P can be considered fully
dynamic and, in general, out of the program control.

Page 14 of 74

H

00wl O L D b

Pl Led Ml i e P P B

Date: 9/13/2006

5 An Homogeneous and Consistent Data Repository
for Web Services QoS case of Study.

The main motivation of this preliminary work it that QoS over a Web service system is a
relatively new topic. Some results were presented in [10] [13] but the problem has never been
approached in a homogeneous way, as result it is impossible to evaluate the effective
performance of different techniques. We believe that, in analogy with the Data Mining
discipline, the creation of Data Set Repositories can allow the possibility to run comparison
tests between different QoS methodology developed by the research community.

As we will point later, an addition important motivation for this work is the problem breaks
down; retrieve the metric needed for the analysis require advanced programming and
software architecture knowledge in order to put the proper time measurement in the software.
As opposite, in order to elaborate the acquired data and propose a set of prediction algorithm
a mathematic expert is needed.

Finally, if different expert programmers decide to construct there own test sets they could put
the time measures in different place of the programming code and this does not contribute to
the constitution of a uniform test stand for the WS QoS.

What is following is a description of the information memorized in this first proposed data
set.

5.1 Test Sample: Definition and Memorized Information

A generic data set that must be used in conjunction with different techniques should contains
all possible information that different methodologies can use in order to estimate the
execution of remote invocation. Considering a remote method invocation as a test sample
and, according with the model described in the previous chapter, we decide to store all
possible web service crucial intervals:

» t1-t0 Client Serialization

« t2-t1 Client Network Transmission

e t3-t2 Server Deserialization

* t4-t3 Effective Remote Method

* t5-t4 Server Serialization

* t6-t5 Server Network Transmission

» t7-t6 Client Deserialization

In addition will be useful the computation of the mentioned QoS crucial interval in an
independent way:

« t7-t0 Remote Method Execution Time

* t4-t0 Remote Method Elaboration Time

+ t3-t0 Remote Method Invocation Time

5.2 Test Sets Dissertation and Recommendations

Factors that influence a remote method invocation time was described in paragraph 4.3
therefore each single factor must be considered choosing the candidates for the data base test
sets.

Parameters that depend on the hardware and software layers (A,B,C,D) in a single set can be
considered fix but the test software code must be portable in order to allow the possibility to
repeat the tests in different configuration. Parameters like G and H belong to the semantic of

Page 15 of 74

Date: 9/13/2006

I the method and a characterization of these factors can not be performed without knowing the
2 method meaning therefore we decide to leave these parameters out of the first test sets.

LL,M,N factors, that belong to the input and output size, mast be included in the test set
4 because the exchanged messages size have a big impact on the system performance, and
5 consequently in the method execution time, as demonstrate in several benchmark [18] [19].
Dynamic and unpredictable parameters like E,F,O,P must be handler in 2 different way. First
of all in a real and concurrent scenario, where different clients try to access to the same
& service secondly where concurrent processes are running in a random way in both the client
% and the server machine. And finally in a synthetic scenario where all the dynamic parameters
0 are under the test control in order to be able to predict this factor during the previous more
! concrete scenarios.
12 To summarize we can divide the test sets in 2 different categories

e Synthetic test

14 e Real tests
{5 In the first one test factors are under the control of the test, while, in the second set dynamic
parameters are leaved out of the test control.
17 We can conclude this dissertation noting that, due to the amount of software layers and the
& usage of not real time operative system, even if we are able to fix all the mentioned factors
we will still experience a fluctuation on the estimated time interval so every single test must
be repeated a sufficient number of times.

o
-

23 5.3 Test Sets Candidates Description

24 According with the previous paragraph we run the 2 different types of tests set Synthetics and
25 Real.

2& The variables that we consider in the Synthetic test are:

27 e Input Type= [none, String, double, String and Double]

28 e Output Type= [none, String, double, String and Double]

Input Size, = [0, 100, 1000, 10000]

Output Size, = [0, 100, 1000, 10000]

CPU usage Server=[0%, 70%,80%]

CPU usage Client=[0%, 70%,80%]

34 Inall test both, client and server, where running in a Dual Xeon 2.40GHz, 1.5GB RAM machines
3% running the CERN Scientific Linux 3.0.4 Operating System, with Kernel 2.4.21-27.0.2.EL.cernsmp
‘6 and Java 1.4.2_08-b03, linked to each other by a 100 MB Ethernet switch. Finally on top of this
hardware and software layers we install Tomcat 5.0.28 and Axis 1.4 as Web Service
provider.
For every single test 1000 samples was taken and a full test set consists in all possible
40 combination of the above mentioned parameters. In other words the data set consist in
41 2304000 samples (of 9 significant values each) organized in 2304 different tests.
2 Still some variable are not covered from this first dataset and are:

e Long, float, integer in the input of a method

e Long, float, integer in the output of a method

e String size different from 10 character in both input and output size
In addition the network connection, the hardware and the software were always considered
7 fix
4% e Network occupancy different than 0%

Page 16 of 74

Date: 9/13/2006

e Network delay different than less that 1 ms.
e Hardware and Software Server side
e Hardware and Software Client side

The above mentioned variables are currently in evaluation and will be included in future
improvement of this dataset. By the way, we believe that the analysis of this preliminary set
of sample can be sufficient for the developing of a prediction methodology that can allow
service invoker to predict the execution time of the remote method.
We also believe that an analysis of the web service performance varying the network channel
is the most important miss think in this dataset. But, as we point in paragraph 4, different
projects [1], [2], [3], [4], [S] are currently studying this problem and are trying to provide a
service oriented system for estimate the effective performance of a link connection across
internet so, considering the a web service call consist in exchanging 1 or 2 messages with a
given size the result coming out from this project could help in the network delay estimation.
As Real test we consider a scenario where a heterogeneous set of clients is performing a web
service invocation whit a random input and output size and types:

e Input Type= random between [none, String, double, String and Double]

e Output Type=random between [none, String, double, String and Double]

e Input Size, = random between [0, 10000]

e Output Size, = random between [0, 10000]

e Number of connected clients = [0, 1, 2, 3, 4, 6, 10]

Clients were continuously and randomly choose the input and the output of the remote
method and than requesting the service; The CPUs of all the nodes were totally dedicated to
the tests where we were collecting and memorizing 5000 samples.

We believe that this second independent set of tests can help the validation of developed
estimation techniques with the synthetic dataset without the need of use part of the previous
dataset for the validation phase.

Page 17 of 74

Date: 9/13/2006

6 Test Bed Architecture, Implementation Detail and
Experimental Error on the Sample Measures.

8o

4 This chapter describes the test bed architecture providing all the implementation details that
ensure the validity of the collected information.

6 From an intuitive point of view when the WS client perform a service invocation send also t0,
t1, t6, t7 times to a QoS Metric Collector component. In the same time the WS Server reply
to the client invocation and send t2, t3, t4, t5 to the Collector too.

The Collector receives the information, correlate the times and construct the interval
mentioned in paragraph 4 and store it.

A mandatory requirement is that both, client and server should minimize the additional
operation in order to let the Collector component compute the intervals without introduce
unpredictable overhead.

What is following is a short description of the architecture and a discussion on the error
{5 introduced in measures using the developed software.

L4y

e

ind s DN

bt RED

17 6.1 Test Bed Architecture.

& Figure 3 resume the test bed architecture that has been realized as a P2P system that run in
{9 parallel with the web service invocation. As mentioned in the introduction of this chapter
different software components have been developed:

QoS Metric Collector

v | . . .
‘ P i i CommunicationTopic
27 1 ' :
N End Test ,.” H L
i e - rn———— [B Ry A -— ‘
e i i ! .
: : i QoS Metric 1 QoS Message
i.: ._,7 ‘;v._...J :
e v 7 7 I, \\
33 4, 1,77 .3 WS | tion/Repl
14 /" Clean Buffer - nvocation/Reply
RES [I ’I ,I S &= \\
35 L b .
:ﬁ/' o' —_———— ‘\NA
28 “
. WS Client WS Server
40

Figure 3: Testbet software architecture

WS-Server that:
e Reply to remote to the client remote call
e Send its time information to the Collector component.
e Synchronize itself with the client in order to let the collector receive coherent time

Page 18 of 74

b

Date: 9/13/2006

from both client and server

WS-Client that:
e Remotely invoke the server
e Send its time information to the Collector component
e Synchronize itself with the client in order to let the collector receive coherent time
from both client and server
e Notify the QoS Metric Collector when the current test is finishing

QoS Metric Collector that:
e Receive tests description coming from the WS-Client
e Receive and Collect times information coming from both Server and Client
e Receive an test notification related to the test status coming from the WS-Client
e Save all the QoS significant intervals

In order to allow the interaction between the system peer 3 communication channel have
been set upped. The first one for dispatch time metric to the QoS Metric Collector (QoS
Metric), the second for the Client-Server synchronization (Clean Buffer) and the last between
the Client and the Collector in order to send notification related to the current test status (End
Test).

From a temporal point of view the component interactions are described by figure 4 and are
also remarked in figure 3. Firstly the client initiate a new test sending the test description to
the Collector; secondly it send a clean message to the server in order to force a clean up of
the server information thirdly the real test begin and times information are collected during
the web service invocations. Finally, once all the test needed invocations are finished, the
Client notifies the collector.

Client Collector Server
. Test Description
Test Init. I ~~~~~~~~~~~~~~~~~~
phase

‘D Clean Buffer

[
WS Invocation T
Times Col.| [f———==—tpr——————»
Phase | | Fo . N ¥
e N
Tie | [i easires|
measures M
End Test e
phese End Test

Figure 4: component interaction diagram

Page 19 of 74

Date: 9/13/2006

6.2 Implementation Details

3 A critical importance in these tests is the position of the timing probe in both the client and
4 the server; a wrong position can cause unpredictable behavior in the time slice. Times like t0
5 and t7 can be easily collected just after and before the method execution while t3 and t4 can
be taken just after and before the beginning/end of the remote method.
Unfortunately t1,t6 client side and t2,t5 server side are inside the web service engine
£ therefore we was force to chose an open source product for our tests. The source code of Axis
¢ (version 1.4) was modified introducing our probe and than used in order to create the web
14 service client and server.
{1 To reduce additional code overhead the collector was running in a separate machine and the
12 collected times was buffered on both client and server side and sent in a single messages to
{3 the collector using a simple TCP connection. A JMS Library [21] was used in order to create
{4 the communication channels and it was instruct to send messages in background. Before start
15 the constitution of the dataset, in order to measure the overhead introduced by this
+ modification, was performed a comparison test between a standard web service and the same
17 remote service equipped with the above outlined software and the result was negligible.
{8 As final remark the Collector was realized as a java stand alone application and was
1% instrumented using a JMX [22] library in order to provide on-line information about the tests.

>t 6.3 Experimental Error on the Sample Measures

Is well known that java systems introduce 1ms of incertitude in every measure [15] while the
client-server clocks synchronization has a better precision considering that the machines are
directly linked by an Ethernet switch [16].

In conclusion, considering that the experienced time intervals are O(100ms) or more we can
consider this error negligible.

Page 20 of 74

Date: 9/13/2006

7 A taste on the collected information

2 This section presents the obtained experimental results. As mentioned in paragraph 5.3 the
3 data set consists in 2304000 samples (of 9 significant values each) organized in 2304
different tests. We believe that provide 20736 plots related to the samples distribution of each
5 significant value of the entire test bed is just mining less; we prefer show and discuss a subset
& of the collected raw data in order to let understand the reader what are the effective
7 possibilities of the produced dataset. For the same reason in this chapter we will present and
& comment just the raw data distribution without any additional analysis that could be
o performed on top.

18 7.1 Samples Distribution for Invocation with Big Input and Output

19 In this first set of plots we consider a remote method invocation with 10000 String and
20 Doubles in input and output. The following 4 figures show the samples distributions of the
21 total invocation time (t7-t0) when the CPU occupancy on both client and server side
27 occupancy varying between 0% and 80% (figure 5-a,b,c,d). The remote method algorithm is
23 empty; in other words the server immediately start the serialization of a pre-generated output,
once the deserialization of the input is accomplished,.

Avg Samples Distribution S-CPU 0% C-CPU0%

28000

23000

18000

time (mSec)

13000

8000
0 100 200 300 400 500 600 700 800 900 1000
Samples
26 Figure 5a: Sample distribution S-CPU 0% C- CPU 0%

Page 21 of 74

fru

Ld

L4

Date: 9/13/2006

time (mSec)

28000

23000

18000

Avg Samples Distribution S-CPU 0% C-CPU 80%

13000
8000
0 100 200 300 400 500 600 700 800 900 1000
Samples
Figure 5b: Sample distribution S-CPU 0% C- CPU 80%
Avg Samples Distribution S-CPU 80% C-CPU 0%
28000
23000
3
n
E
'“g’ 18000
13000
8000 - ‘ ‘

100 200 300 400 500 600 700 800 900 1000

Samples

Figure 5c: Sample distribution S-CPU 80% C- CPU 0%

Page 22 of 74

LR B R

-y
5
o

Date: 9/13/2006

Avg Samples Distribution S-CPU 80% C-CPU80%

28000
23000

18000

Time (mSec)

13000 |

8000 +
0 100 200 300 400 500 600 700 800 900

Samples

1000

Figure 5d: Sample distribution S-CPU 80% C- CPU 80%

As the intuition suggests, we can note that both the mentioned factors (CPU Client and server
side) influence the raw data distributions; more the machines are busy more the average and
the standard deviation increase. We can also note that the CPU occupancy client side factor
is more influent than the CPU occupancy server side and finally the remote method execution

time increase remarkably when both the machines are busy.

7.2 Server De-Serialization time for Different Input Size.

In this example we consider only the server de-serialization time varying the method input. In
this particular set of plots the machine was totally dedicated to remote method handling
except for the plot 6¢c where we replicate the experiment showed in 6b with a server

occupancy fixed to the 80%.

Page 23 of 74

[

S

w3 O g

Date: 9/13/2006

Time (mSec)

Server Deserialization Time Empty Method

100 -pu

0 7 e sy *
0 200 400 600 800 1000

samples

Figure 6a: Sample distribution of the Server Deserialization Time (empty method)

Time (mSec)

Server Deserialization Time 100 Double in

Input
1000
100
10
0 200 400 600 800 1000
samples

Figure 6b: Sample distribution of the Server Deserialization Time (Input 100 Double)

Page 24 of 74

Date: 9/13/2006

server Deserialization Time 100 Double in
Input CPU occupacy 80%

1000

100

10
0 200 400 600 800 1000

Figure 6¢: Sample distribution of the Server Deserialization Time (Input 100 Double) whit server
CPU occupancy of 80%

Server Deserialization Time 1000 Double in
Input

1200
1000
800
600
400
200

Time (mSec)

0 200 400 600 800 1000

samples

Figure 6d: Sample distribution of the Server Deserialization Time (Input 1000 Double)

Page 25 of 74

Date: 9/13/2006

Server Deserialization Time 10000 Double in
Input

Time (mSec)

0 200 400 600 800 1000

Figure 6e: Sample distribution of the Server Deserialization Time (Input 10000 Double)

4 As expected the deserialization server side of the SOAP message has a non negligible impact
5 on the remote method execution time. The time needed by the deserialization process
¢ increase with the input size. For short input we can also note a consistent number of coherent
anomalies typical of cache miss phenomena or to the process migration in a different CPU.
% We can also note that for big input messages these phenomena disappear. Finally as proved
9 by a comparison between figure 6b and 6c the CPU occupancy server side has a key role in
i3 the deserialization process.

7.3 One Way Service Invocation with Different Input Size.

12 This set of plots is related to a set of one way invocation keeping empty the CPU occupancy
client and server side and varying the number of string in input. In addition plot 7c repeats
the condition of the test 7b with 80% CPU usage server and client side. Finally plot 7e
considers a one way invocation with 10000 strings in input and output.

Page 26 of 74

Date: 9/13/2006

One Way Invocation empty input

i
(e
o

Time (mSec)
)
o

[
o

0 200 400 600 800 1000

samples

Figure 7a: Sample distribution of a one way invocation of an empty method

One Way Invocation 100 String in input

1000
o
[}]
(]

£ 100
()
E
|-

10

0 200 400 600 800 1000
samples

Figure 7b: Sample distribution of a one way invocation (Input 100 String)

I Page 27 of 74
”%}Kg - i

T
FERE T -

WAt

Date: 9/13/2006

One Way Invocation 100 String in Input CPU 80% server and
Client
1000 o
)
Q
(2]
£ 100 |
o .
E
10 '
0 100 200 300 400 500 600 700 800 900 1000
samples

Figure 7c: Sample distribution of a one way invocation (Input 100 String) whit server CPU
occupancy of 80%

One Way Invocation 1000 String in input

900 -
800

Time (mSec)
= N W hDh OO
O O O OO O o
O O OO o o o

0 200 400 600 800 1000

samples

Figure 7d: Sample distribution of a one way invocation (Input 1000 String)

Page 28 of 74

Date: 9/13/2006

One Way Invocation 10000 String in input

Time (mSec)

0 200 400 600 800 1000

samples

Figure 7d: Sample distribution of a one way invocation (Input 10000 String)

One Way Invocation 10000 String in input and output

Time(mSec)

0 100 200 300 400 500 600 700 800 900 1000

samples

Figure 7e: Sample distribution of a one way invocation (Input and output 10000 String)

7 As expected the number of string in input deeply influence the one way execution time of a
& remote method. Like the serialization plots presented in 7.2 also these plots present a
9 phenomenon typical of cache miss or process rescheduling in different CPU. By comparing
{6 figure 7b and 7c we can also note that the CPU usage server and client side influence the one
11 way service time. Finally, comparing plots 7d and 7e the output size in a first appreciation do

Page 29 of 74

Date: 9/13/2006

not influence the method execution time while in a more detailed analysis this sentence is not
correct.

7.4 Conclusions and Final Remarks on the Data Set

The main contributions of this first part of the document include: firstly a presentation of the
quality of service of a generic service and an analysis of the key factors that influence the
QoS ina WS scenario. Secondly the outlined of the status of art and the on going activity in
this research area and thirdly the identification of the method execution time prediction as
one of the most critical and difficult part of the WS QoS.

Finally, in order to try to estimate the service execution time, we analyze the WS behavior in
a synthetic and in a real scenario producing a database that contain 2304000 samples (of 9
significant values each) organized in 2304 different tests. In addition the raw data of a really
small tests subset has been presented and discussed.

Page 30 of 74

Date: 9/13/2006

8 Dead Line Estimation Methodology

In this chapter we propose a method that predicts the execution time of a remote service
invocation. From a mathematical point of view a remote method invocation represents a time
4 interval where the method will be executed with a given percentile (95th percentile, for
example). In other words if

6 f(x)

Represent the probability distribution of a statistic variable that describes the service
invocation execution time:

o Bud

Y=P(x<X)= [f(x)

10 Represent the minimum time interval that can guaranteed the execution time with a given
i1 probability. Considering that we are trying to estimate a possible dead line an upper bound
estimation Y is still an acceptable value while can not be considered a lower bound.

An additional remark is that the probability function must take into account all the factors
that are represented in table 2 of paragraph 4.3.

‘5 Finally we need to point that the exact probability distribution depends from many factors
6 and it is quite difficult to estimate, so we could try to give an upper bound like the following:

P(x<X)< Pk < X)

Where k is described by a Gaussian distribution larger that the x distribution with a given
average (Avg) and standard deviation (sDev)

N(w,o) pu=f(x) o=gx)

We can note that p and o are deterministic function of the key factors (see paragraph 4.3) that
26 influences the WS invocation. If we succeed in the estimation of the average and the standard
27 deviation of the presented Gaussian we will be able to provide an upper bound of the remote
2% method execution time noting that:

Y=P(x<X)<g- =gx)- + f(x)

Where @y represent the quantile of order X.

R

Considering that both f(x) and g(x) must be determinate in an empiric way we can not ignore
35 the experimental error due to this estimation, in particular

p=rxxte, o=g(x=s,

Again, considering that we want to estimate an upper bound of a time only positive errors
must be considered.
In conclusion the final dead line estimation will be:

Page 31 of 74

Date: 9/13/2006

Y, =g.(x)05+£,05+ 1. (0)+e,

If some factors influence can not be considered under the client control we need to substitute
the worst case scenario into the just presented equation.

As final remark we need to consider factors like the algorithm of the method (G) and the Key
input that change the algorithm behavior (H); they must be provided by the server because, as
discussed in paragraph 4, web services to not take into account the semantic of the remote
methods. Assuming that the remote algorithm execution time is Ra(x) and that it will be
provided by the programmers the final estimation of the critical intervals (see paragraph 4.2)
will be:

171-10=T, =g, (x)0y +¢&, Py+/,.(x)+e, +Ra(x)
t3_t0 == TOW — gow(z)q)y +8#0w@} +f0w()_C)+go_mr

t4 B tO = 7-;1 = gow (E)q)} + ‘c"luowq)} + fow (E) + go'a“, + Ra(i)

Next paragraphs will present and discuss a methodology for the estimation of the functions
according with the experimental data of the dataset.

8.1 Empiric Function Estimation

We would like to consider 2 different approaches to the functions estimation problem. Fist of
all we could directly estimate the needed functions from the QoS time factor t7-t0, t4-t0 and
t3-t0; as second possibility we could derive the same functions from each single interval of a
web service invocation. In other words considering an empty remote method invocation we
could have:

p=f@=f(te, = £+ [, (D)+ f,(x)+ f,,(x)+

+fsn(£)+fdc(£)i5#m igﬂm igﬂsd igﬂm igﬂ i g

sn Hac

oc=gxFg X te, =g, (0)+g,x)+g,(x)+g, (x)+

+ gs” (E) + gdc (E) i go-cs i go-cn i_ go-xd i— gO'xs i gO' i go-dc

sn

With the following functions meaning:

| Function | Meaning]

Page 32 of 74

Date: 9/13/2006

fc] ()_C) Describe the Average of the Client Serialization process

£, (%) Describe the Average of the input message transmission process
foa(x) Describe the Average of the input deserialization process

F. (%) Describe the Average of the Server Serialization process

Son (%) Describe the Average of the output message transmission process
S (%) Describe the Average of the output deserialization process

g..(x) Describe the Standard Deviation of the Client Serialization process
s \—

g.,(x) Describe the Standard Deviation of the input message transmission process
g.,(x) Describe the Standard Deviation of the input deserialization process

g.(x) Describe the Standard Deviation of the Server Serialization process

g, (%) Describe the Standard Deviation of the output message transmission process
g, (%) Describe the Standard Deviation of the output deserialization process

Table 3: Functions break down description descriptions

Where for one way message types (t4-t0 and t3-t0):

fsX)=f,(0)=f.(x)=g,(¥) =g, (x) =g, (x)=0

because the output transmission do not influence the execution time.

The second presented approach can allow an interval composition avoiding clock
synchronization problems for one way messages type and the possibilities to perform
independent measures for the clients, servers and networks channels computing the
estimation time just as a linear composition of factors.

We need to remark that we will consider an upper bound of each real function so the dead
line computed in this second way probably will be larger.

82 2 factorial analysis design on the dataset

In this paragraph we will design a factorial analysis [23] around the experimental data in
order to present a linear regression model that give an approximation of the function g(x) and
f(x) as discuss in the previous paragraph.

According with the test set description presented in paragraph 5.3 we consider the following
factors:

A= Number of String in Input of the method [0......... 10000]
B= Number of String in Output of the method [0..........10000]

C= Number of Double in Input of the method [0..........10000]

D= Number of Double in Output of the method [0..........10000]
E= CPU Usage Server Side [0..........80%)]

F= CPU Usage Client Side [0.........80%]
2 Page 33 of 74

Date: 9/13/2006

That generates the following full 2° factor design composed by 64 tests:

Run C D E F labels
1 = = - - [€))
2 - - - - a
3 = = - b
4 B & = - ab
5 b - = - c
6 + - - = ac
7 * = - be
8 + 2 - - abc
9 = + L - d
10 = + - - ad
11 + - - bd
12 - + - - abd
13 + + - - cd
14 + + & - acd
15 + + - - bed
16 + * - - abed
17 = % + - e
18 - - + - ae
19 - - + - be
20 - - + - abe
21 + & + - ce
22 + - + - ace
23 + + - bece
24 + - + - abce
25 - + + - de
26 - + + - ade
27 - + + - bde
28 - ok i - abde
29 + + # - cde
30 + + + - acde
31 + + + - bede
32 <t + + - abede
33 = = - + f
34 3 % > + af
35 = - % + bf
36 - < - + abf
37 5 - = + cf
38 + £ = + acf
39 + - + bef
40 + - # * abef
41 - + - + df
4 - + - + adf
43 + - 4 bdf
44 2 + = + abdf
45 3 + % + cdf
46 * + - + acdf
47 + i - £ bedf
48 + + - + abedf
49 G 7 + + ef
50 - - + + aef

Page 34 of 74

Date: 9/13/2006

51 - + - + + bef
52 + - - + + abef
53 - - + - + + cef
54 + B + # + acef
55 + + + beef
56 * + - + + abeef
57 - - - + + + def
58 e - - + + + adef
59 B + - + + + bdef
60 + 4 = + + + abdef
61 _ - + # + + cdef
62 + - + + + 4+ acdef
63 - + + + + + bedef
64 Y + + + + + abedef

i Table 4: Full factorial analysis
The functions that we would like to estimate are:

5 e Average Method Invocation

Standard deviation Method Invocation

e Average One Way Invocation

e Standard deviation One Way Invocation

e Average Computation Remote Site Executed

e Standard deviation Computation Remote Site Executed
e all the functions presented in table 3

“on
[]

Considering that the dataset was build considering that all the remote method execution was
empty there are no difference between the intervals t4-t0 and t3-t0. In addition the network
transmission (O(1ms)) can be considered negligible compared to others web service
invocation process (O(100ms) like the serialization and the deserialization.

Finally once the key inplicant will be determinate we would like to understand if the
functions to estimate can fit in the following regression model:

41 y= B+ Bix,+ Byxy + Bixe + Bixy + fix; + Pex 1%y + X X + Pexox; +
+ Boxpxy + PioXp + Bix xp + BiyXxgXp + Biyxo Xy + Puxpx. t&

B, are constant coefficients and x, represent a generic value between [-1,+1] where -1

26 represent the lowest value of the considered interval factor and +1 the biggest.
>7 This particular regression model is very useful because the coefficient have the following
2% intuitive meaning:

Page 35 of 74

P4

Date: 9/13/2006

Coefficient | Average

B, Constant

B, String Input Influence

B, String Output Influence

B Double Input Influence

B, Double Output Influence

By CPU Load Server Side Influence

B, How CPU Load server side influence the string deserialization
B, How the CPU load server side influence the string serialization
B How CPU Load server side influence the double deserialization
B, How the CPU load server side influence the double serialization
Bio CPU Load Client Side Influence

B, How CPU Load client side influence the string deserialization
B, How the CPU Load client side influence the string serialization
B How CPU Load client side influence the double deserialization
B How the CPU Load client side influence the double serialization
2 Error

Table 5: Linear regression coefficients description

What is follow are the factor analysis and the regression model fitting based on the estimated
key factors. After that a regression model with the above mentioned function was computed
and, if the two functions show the same residuals, just this last one, which is more
compressible, is presented.
We will show the complete analysis just for the Total Execution time (paragraph 8.3) wile for
all other factors we will present only the results leaving intermediate computation in

appendix II.

8.3 Gaussian upper bound of a Sample distribution

For each of the 64 tests samples average and standard deviation was computed using the
following standard estimators:

f= L, et
n

After that we run the following hypothesis test:

54 0= N(HtE,O0+ f) is a larger distribution than the one experience during the test

Where ¢,& are the minimum non negative numbers that allow the success of the hypothesis
test. The just determinate values was used as tests values for the contrast analysis and the

Page 36 of 74

Date: 9/13/2006

regression model estimation

8.4 Total Execution Time Estimation
The hypothesis test was satisfied with &,¢& =0 and the following table resume the contrast and
the sums of square of each factor for both average and standard deviation

Factor AVG Cont. x105 | SSx108 Red. SS SDev Contrast x10 4 SS x10 6 Red. SS
a 0.7751 0.9387 0.9387 1.8293 5.2288 52288

b 0.8445 1.1144 1.1144 0.5331 0.4440 0.4440
ab -0.0677 0.0072 0 -1.0265 1.6463 1.6463
& 1.8746 54908 5.4908 1.6064 4.0322 4.0322
ac 0.0724 0.0082 0 1.2243 2.3420 2.3420
be -0.0434 0.0029 0 -1.0314 1.6621 1.6621
abc -0.0781 0.0095 0 -0.8466 1.1200 1.1200
d 0.9356 1.3678 1.3678 1.6363 4.1836 4.1836
ad 0.0565 0.0050 0 0.1765 0.0487 0
bd -0.0028 0.0000 0 -0.1600 0.0400 0
abd -0.0007 0.0000 0 0.0873 0.0119 0
cd 0.0618 0.0060 0 0.0887 0.0123 0
acd 0.0361 0.0020 0 0.3341 0.1745 0
bed 0.0173 0.0005 0 0.1173 0.0215 0
abed -0.0069 0.0001 0 -0.0313 0.0015 0

e 0.3057 0.1460 0 0.5529 0.4776 0.4776
ae 0.0983 0.0151 0 0.6345 0.6291 0.6291
be 0.0463 0.0033 0 -0.2737 0.1170 0
abe 0.0182 0.0005 0 -0.2682 0.1124 0
ce 0.1651 0.0426 0 0.5397 0.4551 0.4551
ace 0.0215 0.0007 0 0.5662 0.5010 0.5010
bce 0.0286 0.0013 0 -0.1623 0.0412 0
abce 0.0285 0.0013 0 -0.1531 0.0366 0
de 0.0734 0.0084 0 0.2396 0.0897 0
ade 0.0252 0.0010 0 0.2506 0.0981 0
bde -0.0085 0.0001 0 -0.0197 0.0006 0
abde -0.0035 0.0000 0 -0.0116 0.0002 0
cde -0.0113 0.0002 0 0.1517 0.0360 0
acde 0.0141 0.0003 0 0.2584 0.1043 0
bede -0.0495 0.0038 0 -0.2318 0.0839 0
abcde -0.0068 0.0001 0 -0.0718 0.0081 0

f 0.8019 1.0048 1.0048 1.6066 4.0333 4.0333
af 0.0497 0.0039 0 -0.4161 0.2705 0.2705
bf 0.2982 0.1389 0 1.0788 1.8184 1.8184
abf 0.0126 0.0002 0 0.3477 0.1889 0
cf 0.2399 0.0900 0 -0.1031 0.0166 0
acf 0.0006 0.0000 0 -0.3850 0.2316 0
bef 0.0355 0.0020 0 0.2604 0.1060 0
abcf 0.0061 0.0001 0 0.3381 0.1786 0
df 0.2994 0.1401 0 0.9519 14157 1.4157
adf 0.0488 0.0037 0 0.3412 0.1819 0
bdf -0.0308 0.0015 0 -0.4191 0.2745 0.2745
abdf -0.0251 0.0010 0 -0.3624 0.2053 0
cdf 0.0624 0.0061 0 0.2386 0.0889 0
acdf 0.0415 0.0027 0 0.3401 0.1808 0
bedf -0.0053 0.0000 0 -0.1735 0.0470 0

Page 37 of 74

Date: 9/13/2006

abedf -0.0253 0.0010 0 -0.2943 0.1353 0
ef -0.0599 0.0056 0 -0.2455 0.0942 0
aef 0.0063 0.0001 0 -0.0952 0.0142 0
bef -0.0308 0.0015 0 -0.0874 0.0119 0
abef -0.0118 0.0002 0 -0.0522 0.0043 0
cef -0.0345 0.0019 0 -0.0652 0.0066 0
acef 0.0218 0.0007 0 0.0115 0.0002 0
beef -0.0045 0.0000 0 -0.0133 0.0003 0
abcef 0.0055 0.0000 0 0.0112 0.0002 0
def -0.0044 0.0000 0 0.0988 0.0152 0
adef -0.0074 0.0001 0 0.1085 0.0184 0
bdef 0.0053 0.0000 0 -0.1273 0.0253 0
abdef 0.0167 0.0004 0 -0.0725 0.0082 0

Table 6: Contrast and Sum of Square analysis for the total execution time linear regression

The regression model with the estimate key factors and the one presented in paragraph 8.2
present the same residual analysis so we decide to use this second for future analysis. As final
result the regression model is represent by the following table:

Coefficient Average Standard Deviation
5, 6788.1 970.5104
B, 1211.1 285.8330
B, 1319.6 83.2913
B 2929.1 251.0055
B, 1461.9 255.6742
Ji2 477.6 86.3843
B, 153.5 99.1425
B 72.3 -42.7626
B 258 84.3240
By 114.7 37.4323
Bio 1253.0 251.0383
B 77.7 -65.0114
B, 465.9 168.5594
B 374.9 -16.1034
By 467.8 148.7315
£ +- 1000 +- 1000

Table 7: total execution time linear regression coefficients

Page 38 of 74

H
H

Pk

Date: 9/13/2006

While the following figure show the residual analysis for the Average formula

1200
1000
800
600
400
200

Residual (mSec)

-200
-400
-600
-800

Residual Analysis

Test Number

Figure 8: Residual analysis for the total execution time linear regression

As we can see the experimental error is not negligible compared to values that the functions
assume, especially for invocation with short input and output.

8.5 A Special Case: Server Deserialization

For this particular formula computation the linear regression of the average suggested by the
contrast analysis is different that the one presented in paragraph 8.3 therefore 2 possible
regressions are presented. For future analysis we decide to keep the second formula
considering that the error introduced by this simplification will be negligible compared with

the final results.

y=B+Bix + Boxg + Bix, xg + Bixc + Pix,xo + BosXpxc + Blas X 4 X p X, +B.xp
+ Bsxp + Bex xg + Byxpxp + PeXcXp + BissX Ko Xy + By %p + Bigky +

+ By X % + PXpxe + Biuxoxs + Pxpx, +€

Coefficient Average Standard Deviation
B, 2704.3 463.7945
B, 872.8 400.4378
B, -115.1 -142.0726
B -109.2 -142.8330
B, 1907.9 280.6679

Page 39 of 74

Date: 9/13/2006

B, 79.8 224.9553
A -1215 ~154.7009
6. 1154 -151.8307
By 0 0

5. 4245 136.3823
5, 140.6 119.7188
5, 0 0

5, 301.7 112.2975
B 18.1 97.2722

2 0 0

s 0 0

3 0 0

2., 0 0

2. 0 0

5. 0 0

g +- 850 +- 1000

Table 8: Linear regression coefficient with the key factors analysis

y=B8y+Bx,+ Byxy+ Baxp + Byxp + Bsxy + Bex,x, + 25X, + Bk, +

+ Boxpxg + Bioxp + Byx xp + Byxg Xy + Biaxcxp +Buxpx; te

Coefficient Average Standard Deviation
B, 2704.3 463.7945
B, 872.8 400.4378
B, 0 0
B, 1907.9 280.6679
B, 0 0
5 424.5 136.3823
B, 140.6 119.7188
B, 0 0
B 301.7 112.2975
B, 0 0
ﬁ]O O 0
B 0 0
1612 O O
Bis 0 0
1814 O O
£ +- 1000 +- 1000

Table 9: Linear regression coefficient with the standard linear regression model

Page 40 of 74

Date: 9/13/2006

8.6 Different f(x) estimations

The following table resumes the different functions estimation related to the average function
discussed in paragraph 8.1 while the last 2 colons try to describe the average of the total
execution time (t7-t0) and the one way times (t4-t0, t3-t0) by computing the influence of
each interval. As anticipate the error is bigger that the one experienced using a direct

computation.

Total One Client | Server | Server Client | Comp Comp

Exec way Ser Deser | Ser Deser | Total One

Time Time Exec way

Time Time

5, 6788.1 4101.6 1396.6 | 27043 658.8124 | 20242 6783.9124 4100.9
B, 1211.1 12215 348.6 872.8 0 0 1221.4 1221.4
5, 1319.6 0 0 0 298.3185 1065.9 1364.2185 0
B, 2929.1 2934.7 1026.7 1907.9 0 0 2934.6 2934.6
B, 1461.9 0 0 0 362.8475 987.7 1350.5475 0
B 4776 371.8 0 4245 124.0629 0 548.5629 4245
B 153.5 136.6 0 140.6 0 0 140.6 140.6
yia 723 0 0 0 582112 0 582112 0
B 258 254.6 0 301.7 0 0 301.7 301.7
5, 114.7 0 0 0 68.9741 0 68.9741 0
Bio 1253.0 5319 5254 0 719.2 1244.6 5254
B, 77.7 107 124.3 0 0 0 1243 1243
B, 4659 0 0 0 0 389 389 0
B 374.9 390.3 395.2 0 0 0 3952 3952
B, 467.8 0 0 0 0 356.6 356.6 0
B +- 1000 +-1000 | +-500 | +-1000 +-200 +-500 +-2200 +- 1500

Table 10: coefficients for the linear regression estimation of different f{x)

Page 41 of 74

Date: 9/13/2006

1 8.7 Different g(x) estimations

2 The following table resumes the different functions estimation related to the standard
3 deviation function as discussed in paragraph 8.1; we can outline the same observations
presented in the previous paragraph

Total One Client | Server | Server Client | Comp Comp

Exec way Ser Deser | Ser Deser | Total One

Time Time Exec way

Time Time

5, 970.5104 | 6523936 | 352.0763 | 463.7945 711530 | 5264341 | 14134579 815.8708
B, 285.8330 | 366.4459 | 73.9326 | 400.4378 0 0 4743704 4743704
B, 83.2913 0 0 0 39.1351 | 226.0633 | 265.1984 0
B, 251.0055 | 397.8573 | 193.0729 | 280.6679 0 0 473.7408 473.7408
B, 255.6742 0 0 0 317847 | 2306709 | 2624556 0
B 863843 | 104.7193 0 136.3823 36.6325 0 173.0148 136.3823
B, 99.1425 | 1132111 0 119.7188 0 0 119.7188 119.7188
5, 42,7626 0 0 0 17.2659 0 17.2659 0
B 84.3240 83.7679 0 112.2975 0 0 112.2975 1122975
5, 37.4323 0 0 0 16.2223 0 162223 0
B, | 2510383 | 91.6492 | 171.6536 0 0 2364690 | 408.1226 171.6536
B, -65.0114 | -45.0087 | 31.4990 0 0 0 31.4990 31.4990
B, | 168559 0 0 0 0 1121133 | 1121133 0
B -16.1034 | 43.8107 | 105.9269 0 0 0 105.9269 105.9269
B, | 1487315 0 0 0 0 109.0708 | 109.0708 0
g +-1000 | +- 1000 | +- 500 | +- 1000 +- 200 +- 450 +- 2150 +- 1500

Table 11: coefficients for the linear regression estimation of different g(x)

Page 42 of 74

Date: 9/13/2006

8.8 Dead line function estimation

The combinations of the linear regressions presented in the previous 2 paregrpash according
with the last formula of paragraph 8 are presented in the following table:

Total Exec | Oneway | Comp Comp Total Exec | Oneway | Comp Comp
Time 95 Time 95 Total Exec | Oneway Time 975 | Time975 | Total Exec | Oneway Time
Time 95 Time 95 Time 975 | 975

i 8384.4 5175.0 9108.8 54429 8690.3 5380.7 95542 5700.0
B, 16813 18243 2001.7 2001.7 17713 1939.7 2151.1 2151.1
,32 1456.6 0 1800.4 0.0 1482.8 0.0 1884.0 0.0
B, 3342.0 3589.1 3713.8 3713.8 3421.1 3714.5 3863.1 3863.1
/B4 1882.4 0 1782.2 0.0 1963.0 0.0 1865.0 0.0
/Bs 619.7 544.0 833.1 648.8 646.9 577.0 887.7 691.8
B 316.6 3228 3375 3375 347.8 3585 3752 3752
187 2.0 0 86.6 0.0 -11.5 0.0 92.1 0.0
B, 396.7 3924 486.4 486.4 4233 41838 521.8 521.8
5, 176.3 0 95.7 0.0 188.1 0.0 100.8 0.0
Bio 1665.9 682.6 1915.9 807.7 1745.0 7115 2044.5 861.8
i 292 33.0 176.1 176.1 -49.7 18.8 186.0 186.0
B, 7432 0 573.4 0.0 796.3 0.0 608.7 0.0
i 348.4 4624 569.4 569.4 3433 476.2 602.8 602.8
B, 712.4 0 536.0 0.0 759.3 0.0 570.4 0.0
£ +-2644 | + 2644 +- 5736 +- 3967 +-2960 | +-2960 +- 6413 +- 4439 j

Where S, represent the coefficient of the following formula

Table 12: coefficients for the linear regression for the dead line estimation functions

y=p0y+Bix,+ Boxy+ Bixc + Bix, + Bixy + Bex xp + Boxpxy, + BeXo Xy +

+ Borpxy + Bio¥y + PuXaXs + PryXsXy + Praxo X + BiXpXxs +&

The first and the second colon present the total execution time and the one way time
functions with a directly estimation and a 95 percentile while the third and the 4™ present the
same results estimated with the interval decomposition technique presented in paragraph 8.1.
Finally the last 4 colons present the same results of previous with the 97.5 percentile.

Next chapter will prove that using these functions we will be able to predict the method
execution time of a web service in both a synthetic and a concurrent scenario where the
server is not overloaded.

Page 43 of 74

Date: 9/13/2006

. 9 Web Service QoS Proof of Concept

In this chapter we will show the prediction capability of techniques discussed in chapter 8.
We will validate the methodology using the second independent part of the dataset presented
in paragraph 5.3 in order to use different samples than the one used for build the dead line
estimators. In addition, in order to validate the methodology in the worst case scenario we
6 will assume that the client CPU Load is always bigger than 80%.

el P

LA TR

& 9.1 Proofof concept in a synthetic scenario

9 Considering that in a real scenario it is impossible maintain the server CPU usage constant
10 during the entire remote method invocation we decide test our predictor considering the case
where the server is in the worst case scenario. In other words we consider the case where the
server CPU usage from different service is always 80%. In addition we analyze the behaviors
of predictors in the case where the server is completely empty in order to understand how
much impact this wrong assumption.

We need to point out that via an agreement between the client and the server [25] a client
could totally reserve the remote machine in order to be sure that the server CPU occupancy is
always 0% and be able to build a more accurate a short dead line.

e lpd Ead e

WA

[

e

The test was computed using all 5000 samples of the test bed counting the number of dead
line (DL) miss. As expected in both cases less than the 5% and 2.5% of dead line miss was
experience due to the upper bound that we was forced to consider in the dead line functions
estimations. '

Instead of plot all the 5000 samples the following 2 figure represent a samples subset that
show the behaviors of the estimators, in both, one way and end to end method invocation, in
a scenario where the client CPU load is 80% (x,.=1) while the server is completely unloaded

26 (x,=1).

i
19
N

QoS One Way

16000 e
14000

12000

< 10000 -+ o

; : —a—0neWay95
& 0 -~ OneWay975
o

- it COMPIS

£ 6000

—x%— Comp975 ’
4000 -

2000

13 5 7 9 11131517 1921 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

samples

28
50y

29 Figure 9a: One Way Estimation CPU server 0% CPU Client 80%

Page 44 of 74

.

s B g
S ek

Ay

Date: 9/13/2006

QoS End to End

25000

20000

15000

10000

time (mSec)

—a— Real
—a— Tot95
—a—tot975
—o— Comp95
—a—comp975

5000

11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Samples

1 3 5 7 9

Figure 9a: End To End Estimation CPU server 0% CPU Client 80%

The “Real” line represent the experience invocation time while the “total95”

and “total975”

plots represents the dead line estimation using a direct computation of the linear regression
with a quantile of 95 and 97.5 respectively . Finally “comp95” and “comp975” lines show the

dead line estimations using the interval decomposition technique.

This second set of plots represents where the CPU usage server side was forced to be
constant at 80% (x,.=1). As we can note the dead line start to be more close to the real

system behavior but still the number DL misses are less than the expected 5%

and 2.5%.

QoS One Way

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

time (mSec)

16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

samples

4 7 10 13

—e— Real
—a— OneWay95

—x— Comp975

Figure 10a: One Way Estimation CPU server 80% CPU Client 80%

Page 45 of 74

[R

.
{2

Ll

vk peer g sl K osd

A

Date: 9/13/2006

QoS End to End

30000

25000

20000 —e—Real
§ —u-— Total95
E 15000 fremmeemmree s e e e g e e ed | - TOtal975
E . ey COMPYS
5 46060 —#— Comp975

5000

1 3 5 7 911131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
samples

Figure 10b: End To End Estimation CPU server 80% CPU Client 80%

QoS End to End

25000

20000

. —e— Real

5 15000 - TOtal95s

E & Total975
o

E 10000

= —¥—comp975

5000

13 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

samples

Figure 10c: End To End Estimation CPU server 80% CPU Client 80%

9.2 Proof of concept in a real scenario

As second tests set for the methodology validation we consider the concurrent scenario where
more than one client uses the remote method. In this test the assumption of the server CPU at
80% (x,=1) is mandatory considering that the number of service requestor is unknown by
the clients.

The following plots are related to a scenario where 2 clients are concurrently request the
service:

Page 46 of 74

§o s

ok

LA

Date: 9/13/2006

QoS One Way

20000
18000
16000 e
14000
12000
10000 |
8000
6000 |
4000
2000

time (mSec)

16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

samples

1 4 7 10 13

—e—Real
—m— OneWay95

—x— Comp975

OneWay975
Comp95

Figure 11a: One Way Estimation with 2 clients connected

QoS End to End

30000

25000

20000

15000

time (mSec)

10000

5000

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

samples

—a—Real
—am— Total95

= Total975
. Comp95s
—x— Comp975

Figure 11b: End To End Estimation with 2 clients connected

QoS End to End

25000

20000

15000

10000

Time (mSec)

5000

1.3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
samples

—e— Real
—=— Total95
s Total975
~z— COMp95
—#—comp975

Figure l1c: End To End Estimation with 2 clients connected

Page 47 of 74

Date: 9/13/2006

Except for the number of clients connected to the system the plots line meaning is exactly the
same explained in the previous paragraph. The methodology has been validated with all the
5000 samples of the test set but in the previous figure we just report a small subset to give an

idea of the proposed estimation methodologies behaviors.

The following plots are related to a scenario where 3 clients are concurrently requesting the

service:

QoS One Way

16000
14000
12000
10000

8000

time (mSec)

6000

—e— Real
—m— OneWay95

—s¢— Comp975

OneWay975
Comp95

4000

2000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69
samples

Figure 12a: One Way Estimation with 3 clients connected

QoS End to End

Time (MmSec)
o A
o N
o o
o o
o o

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69
samples

—eo— Real
e — o) =1L
- Total975
- Comp95
—%— Comp975

Figure 12b: End to End Estimation with 3 clients connected

Page 48 of 74

[P S

L RO B R

T Nm S

Lod Lad e T

winiie

Ly

o

Date: 9/13/2006

QoS End to End

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

—e— Real
-~ Total95
- Total975
. Comp95
—— Comp975

Time (mSec)

1 65 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69
samples

Figure 12c: End to End Estimation with 3 clients connected

Again, like all the previous tests the methodology was validated with all 5000 samples and in
the plots we just report a small subset, as we can see the number of dead line miss is
increasing due to the extra overhead of the server but it is still less than 5% and 2.5%.
According with [18], 3 concurrent clients that try to use the remote service as fast as they can
bring the server to the maximum request throughput that it can handle. In other words if we
try to increase the number of remote method invocation we expect a service time increase
because the server is overloaded; consequently the number of dead line miss will increase in
an unpredictable way.

The following figure are related to a test where 4 different clients are trying to access to the
remote server.

QoS One Way

18000
16000
14000
12000 —e— Real
g 10000 —m— OneWay95
OneWay975

8000

- Comp95
—x— Comp975

Time(;

6000

4000

2000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 f

samples

Figure 13a: One Way Estimation with 4 clients connected (Server Overloaded)

Page 49 of 74

ios bude

el

NEP

Date: 9/13/2006

QoS End to End

20000

15000

10000

Time (mSec)

5000

samples

—e—Real
—as— Total95
Total975

i COMPOS
—x— Comp975

Figure 13b: End to End Estimation with 4 clients connected (Server Overloaded)

QoS End to End

20000

5000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
samples

—e— Real
i TOtal95
i TOtalQ75
i COMPOS
—x— Comp975

Figure 13c: End to End Estimation with 4 clients connected (Server Overloaded)

As expected the number of dead line miss is increase but still it appear to be under control
due to the upper bound that we perform during the dead line function computation.
Finally the following plots are related to 2 different tests where 6 and 10 clients are trying to

request the service concurrently:

Page 50 of 74

Lp £ g et

4
b

Date: 9/13/2006

QoS One Way

18000

16000

14000
. 12000 —e— Real
'g 10000 —m-— OneWay95
E S600 g ONEWay 975
£ 3¢ COmMp95

6000 —¥— CoOmp975

4000

2000

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Samples

Figure 14a: One Way Estimation with 6 clients connected (Server Overloaded)

QoS End to End

20000
18000
16000
14000
B 15660 —e— Real
‘g —m Total9s
£ 10000 e TOtal9Q75
E 8000 s COMPOS
6000 - Comp975
4000 »
2000 '
o]

19 22 25 28 31 34 37 40 43 46 49

samples

1 4 7 10 13 16

Figure 14b: End to End Estimation with 6 clients connected (Server Overloaded)

QoS End to End

20000

18000

16000 . . Ceweeeemes

14000 ’
? 12000 —e—Real
'g —g— TOtal95
= tanue vz TOtal975
g 8000 i COMP9S
F 6000 v LA 3 i v ~—¥%-— Comp975

4000 | ¢ |

2000

)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
samples

Figure 14c: End to End Estimation with 6 clients connected (Server Overloaded)

W

%\

Page 51 of 74

LAY e Ll

Date: 9/13/2006

QoS One Way

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

samples

35000
30000
25000
~ —eo— Real
é N - ONneWay95
¢ e ONEW Ay 975
E i£660 iy COMPOS
F —%— Comp975
10000 -
5000
[¢]

Figure 15a: One Way Estimation with 1() clients connected (Server Overloaded)

QoS End to End

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

samples

35000
30000
25000
P —e— Real
é 20000 <t Toal 95
£ Total975
g 15000 Comp95
= —%— Comp975
10000 -
5000
0

Figure 15b: End to End Estimation with 10 clients connected (Server Overloaded)

QoS End to End

25 29 33 37 41 45 49 53 57 61 65 69

samples

1 6§ 9 13 17 21

35000
30000 _ v . .
25000
—e— Real
g 20000 —m— Total95
¢ i TOtAIO7 6
g 15000 e COmp95
F —x— Comp975
10000
5000
(o]

Figure 15c: End to End Estimation with 10 clients connected (Server Overloaded)

Y

Page 52 of 74

Date: 9/13/2006

2 As expected the number of dead line miss is out of control due to the fact that the server is
overloaded.

5 9.3 Final remarks

We believe that the tests showed in this chapter demonstrate the validity of the presented

7 methodologies for estimation of e service execution time not only from a mathematical point

& of view but also in a concrete scenario. We also experience that in the case of server

9 overloaded the number of dead line miss increase and this suggest possible approach for an

{0 automatic organization of the clients that balance the servers load: if the number of dead line

{1 miss is more than the expected probably the server is overload so one or more connected
2 clients could decide to use a different machine where is deployed the same service.

Page 53 of 74

Date: 9/13/2006

10 Web Service Profile Algorithm

The methodology developed in chapter 8 and validate in chapter 9 can allow the development
of an algorithm for estimation of the remote execution time:

1) Run the characterization tests according with the input and output region that you
& need to characterize
2) For each test find the minimume,& where

N(p+e,0+¢)

Is a Gaussian distribution with a sample distribution larger than the one experienced

in the tests.
i 3) Using the generated sz+& and o +¢ values of each test find the best set of B, for the
(2 function:

3 y=Po+Bix,+ PBrxy + Bixe + Bix, + Bsx, + Bex X, + B, + fexcox, +
+ BoxpXp + Pioxp + Bx X + PpXpx, + Bixcxp + Buxpx; e

5 That minimize the error & by solving the equation:

f=X'X)"y

4) Compute the error of the estimated functions looking the residual:
y=Xp e=y-y

4b) (optional) sum the linear regression in the case of the interval decomposition
technique

5) Compute the dead line function as the requested percentile of the set of Gaussians
generated by

N(u(x),0(x))

Page 54 of 74

Led D

A T £

Date: 9/13/2006

11Suggested Web Service QoS Enabled Architectures

In this chapter we will discuss 3 possible high level software architectures that will utilize the
developed methodology in order to predict the remote method execution time. For each
option we would like to provide an intuitive service orchestration and an advantage and
disadvantage description of this solution.

11.1 Full client side logic

In this approach each client will utilize the algorithm present in section 10 in order to directly
compute the dead line functions:

Client A

Dead Line

Function

Computation Remote
Tests Service
Exscutor

T e Test

i Moo ! Resarvati

i e on Engine

| Stubs !

i :\ Tests

i i Engine

i Method

Cllent B exagution

Dead Line provider

Function '_ ——ee

Computation Weh i

L ‘ Service |

Tests i i
Exscutor L | i

e e = ! i

i Web ! i i

i Service | i ;

i Stubs | Lleaiaaiig -

: i

! i

i :

B]

Figure 16: Full client Side logic Architecture description

For each client the Tests Executor component reserve the remote service using the
Reservation Engine and perform the needed tests; than it compute the dead line functions via
the Dead Line Function Computation component.

The remote service provide also a method execution characterization via the Method
execution provider

Note on this solution:

o The server must provide a description of the remote methods execution time (t4-t3)
for each method

e The clock synchronization is not needed during the test procedure

e During the client tests (step 1 of the algorithm) the server need to be totally dedicated
to the client.

o Considering that all the tests will be computed on client side the one way computation
could be not trivial and probably an upper bound estimation will be the only
possibility

e During the tests procedure the network channel properties must be maintained
constant

Page 55 of 74

Date: 9/13/2006

11.2 Server and clients factors break down
The key ideas of this approach is to break the dead line function in several piece and let the

server and the client compute each part separately. Than the dead line function will be
computed aggregating the functions of each factor.

Client A

Dead Line
Function
Computation

H Tests
1 Builder
& (o i ow
i Web ! Remote
: Service | X
14 i Stubs | Service
15 i ™~
i3 { i Tests
15 L Builder
LR Client B g{fﬁggm
{8 = provider
N Dead Line
IR Eunction i_ ,,,,,,,,,,,,,,,, -
Corputation ;. Web !
“ === ! Service i
Tests ! i
Builder ! i
~~~~~~~~~~~ - ! i
web | i j
Service | ! i

Stubs ' -

Figure 17: Server and clients factors break down Architecture description

In this case the servers build the characterization related to the intervals

e t3-t2 input deserialization

e t4-t3 remote method execution time

e t5-t4 output serialization
using the tests Builder component and make it public to the client using the Method
execution provider component

The client profile itself providing a characterization of just following intervals

e t1-t0 input serialization

e t7-t6 output deserialization
using the test builder component, and, in addition, it compute the dead line functions
retrieving the server characterization values via the Dead Line Function Computation
component.
If a network characterization channel is required the client can retrieve it from a third party
element.

Note on this solution:

e The server must provide a description of the remote methods execution time (t4-t3)

48 for each method

e The server profile is build just once and does not change using different clients
. Page 56 of 74




Date: 9/13/2006

i e The client can build its test without asking the server cooperation

e The testing procedure do not care about the network channel

: e The clock synchronization is not needed during the test procedure

4 e The estimate dead line will be bigger compared to a direct estimation due to the
5 experimental errors introduced in each functions.

6 e A modification of the source code of the web service provider in both client and
server side is mandatory since time like t1,t2,t5,t6 are internal part of the WS-Engine

11.3 Third party QoS Enabler

{1 During the test procedure the server and the clients send the experienced times to a third
12 party component that build the dead line functions and send it to the client.

QoS Enabler

ia Dead Line

1y Function

o Computation Rem _Ote

_ Service

(8 Client A Data Tests

“ Receiver

I 1 ROV, 3 - Test

Tests L--" # M Reservati

- Builder rd N on Engine
§i g | —————————— _—' ',‘ ~“‘,

P . Web | P .

3 ! Service | S y

- i : Engine
o i Stubs |

X , M Methad

) i ! exacution
e ] pravider
Client B Web i
,\ Service i
g Tests '
Builder !
e = : 5
5 Web | ! !
: : Service ] : |
o { swbs i—T | T
34 ! i
Lo

i __i

iR Figure 18: Third party QoS Enabler Architecture description

: For each client the Tests Builder component reserve the remote service using the Reservation

41 Engine and perform the needed tests. During the tests procedure both server and client send

2 information related to t3-t2, t4-t3, t5-t4, t1-t0, t7-t6, intervals to the QoS Enabler component
that builds the dead line functions.

+5  Note on this solution:
e The server must provide a description of the remote methods execution time (t4-t3)
{7 for each method

48 e The external component can directly build the functions without the interval
composition technique allowing a more accurate estimation

Page 57 of 74




Date: 9/13/2006

The testing procedure does not care about the network channel since al the intervals
are part of the server or of the client.

The clock synchronization is not needed during the test procedure since al the
intervals are part of the server or of the client.

A centralized external component introduce a single point of failure and an additional
software complexity

A modification of the source code of the web service provider in both client and
server side is mandatory since time like t1,t2,t5,t6 are internal part of the WS-Engine

Page 58 of 74



Lt

Date: 9/13/2006

12 Bibliography

[1] INTERMON project. http:/ /www.intermon.org/ .

2] MONitoring Agents using a Large Integrated Services Architecture
g Ag g g g
(MonALISA), California

[3] Institute of Technology. http://monalisa.caltech.edu/.
[4] PlanetLab project. http:/ /www.planet-lab.org/.
[5] PerfSonar Project: http:/ /www.perfsonar.net/

[6] Xia Gao, Ravi Jain, Zulfikar Ramzan, Ulas Kozat, "Resource Optimization
for Web Service Composition ", SCC 2005, Jul. 2005

[7] Ran, Sh.: "A Model for Web Services Discovery With QoS", ACM SIGecom
Exchanges, Vol. 4, No.1, 2003, pp. 1-10

[8] Maximilien, E.M., Singh, M.P.: "A Framework and Ontology for Dynamic
Web Services Selection", IEEE Internet Computing, 5, 2004

[9] Jeckle, M., Zengler, B.: "Active UDDI - an Extension to UDDI for Dynamic
and Fault-Tolerant Service Invocation", Web and Database-Related
Workshops on Web, Web-Services and Database Systems, LNCS, 2003, pp.
91—99

[10] Gu, X., Chang, R.: "O0S-Assured Service Composition in managed

Service Overlay Networks", In Proc. of The IEEE 23rd International
Conference on Distributed Computing Systems (ICDCS 2003), 2003

[11] Gao, X., Jain, R., Ramzan, Z., Kozat, U.: "Resource optimization for
Web Service Composition", in Proceedings of IEEE SCC2005, 2005

[12] Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: "Quality of
service for workflows and web service processes", Journal of Web
Semantics, Vol. 1, No. 3, 2004, pp. 281 —308

[13] Yu, T, Lin, KJ.: "Service Selection Algorithms for Web Services
with End-toend QoS Constraints", Journal of Information Systems and E-
Business Management, Volumn 3, Number 2, July 2005

[14] Zhou, C., Chia, L.-T. & Lee, B.-S, QoS-Aware and Federated
Enhancement for UDDI, International Journal of Web Services Research,
Vol. 1, No. 2

[15] Java Clock precision:
http:/ /www javaworld.com/javaworld /javaqa/2003-01/01-qa-0110-
timing.html

[16] Network Clocks synchronization:
http:/ /zone ni.com/devzone/conceptd.nsf/ webmain/ B40CBBA4A2B06A
0B862570AF0055BDBA

Page 59 of 74




Law

S
41

3

Date: 9/13/2006

[17] P. T. Eugster, P. A. Felber, R Guerraoui, A Kermarrec The many
faces of publish/subscribe ACM Computing Surveys (CSUR) Volume 35,
Issue 2 (June 2003) Pages: 114 - 131

[18] F. Lelli, G. Maron, S. Orlando, Improving the Performance of XML
Based Technologies by Caching and Reusing Information, in proceeding
of IEEE International Conference of Web Service (ICWS) September 2006

[19] A. Slominski, M. Govindaraju, M. R. Head, K. Chiu, M. ]J. Lewis, R.
van Engelen, P. Liu, N Abu-Ghazaleh. A Benchmark Suite for SOAP-based
Communication in Grid Web Services. In Proceedings of SC|05
(Supercomputing): International Conference for High Performance
Computing, Networking, and Storage, Seattle WA, November, 2005.

[20] D.A. Menascé, “QoS Issues in Web Services,” IEEE Internet
Computing, vol. 6, no. 6, 2002, pp. 72-75.

[21] Mantaray Project: http:/ /www.mantamgq.org

[22] Vivek Chopra, Amit Bakore, Ben Galbraith, Sing Li, Chanoch
Wiggers, Professional Apache Tomcat 5 Wrox May 2004

[23] D. C. Montgomery, Design and Analysis of Experiments 5th
edition, John Wiley & Sons Inc, December 2004

[24] S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y.

Nakamura, R. N. Building, Web Services with Java: Making Sense of XML,
SOAP, WSDL, and UDDI. Sams , December 2001

[25] G. Maron, A. Lenis, S. Moralis, M. Grammatikou, T. Karounos, S.
Papavassiliou, V. Maglaris, P. Sphicas, S. Papavassiliou, T. Ferrari, C. A.
Kotsokalis, A. S. McGough, T. Kalganova, P. Hobson, R. Pugliese, F. Lelli,
D. Colling, The GridCC Architecture( GridCC Architecture design also
available at www.gridcc.org) May 2005. (Authors are in no particular
order).

Page 60 of 74



Date: 9/13/2006

13 Appendix I: a taste on the 2X factorial analysis

Certain special types of factorial design are very useful in process development. One of these
is a factorial de51gn with k factors, each at two Ievels Because each complete replicate of the
design has 2" runs, the arrangement is called a 2 factorial design. These designs have a
greatly simplified analysis, and they also form the basis of many other useful designs.

13.1 The 2° Design

The simplest type of 2" design is the 2” - that is two factors A and B, each at two levels. We
usually think of these levels as the "low" and "high" levels of the factor. The 2* design is
shown in the graph below. Note that the design can be represented geometrically as a square
with the 2> = 4 runs forming the corners of the square.

High(+) b= e ab=
B
Low(-) (1)=e ®a=
Low(-) High(+)
A—>

A special notation is used to represent the runs. In general, a run is represented by a series of
lower case letters. If a letter is present, then the corresponding factor is set at the high level in
that run; if it is absent, the factor is run at its low level. For example, run a indicates that
factor A4 is at the high level and factor B is at the low level. The run w1th both factors at the
low level is represented by (1). This notation is used throughout the 2* design series. For
example, the run in a 2' with 4 and C at the high level and B and D at the low level is
demoted by ac.

The effects of interest in the 2° design are the main effects 4 and B and the two-factor
interaction 4B. Let the letters (1), a, b, and ab also represent the totals of all » observations
taken at these designs points. It is easy to estimate the effects of these factors. To estimate the
main effect of 4, we would average the observations on the right side of the square when 4 is
at the high level and subtract from this the average of the observations on the left side of the
square where 4 is at the low level, or

A:a+ab_b+(1)

2n 2n
A= favap-5-Q)
2n

Similarly, the main effect of B is found by averaging the observations on the top of the square
where B is at the high level and subtracting the average of the observations on the bottom of
the square where B is at the low level,

Finally, the AB interaction is estimated by taking the difference in the diagonal averages.

ab+ @) _a*d 1y y-q-s]
AB= 27 2n =2n

Page 61 of 74




6]

Gy

Date: 9/13/2006

The quantities in brackets in the above equations are called contrasts. For example, the A

contrasts is:

Contrast

—g+ab-b-(1)

In these equations, the contrast coefficients are always either +1 or -1. A table of plus and
minus signs can be used to determine the sign on each run for a particular contrast.The
column headings for the table are the main effects A and B, in the AB interaction, and I,
which represents the total. The row headings are the runs. Note that the signs in the AB
column are the products of signs from columns A and B. To generate a contrast from this
table, multiply the signs in the appropriate column of the table by the runs listed in the rows

and add.

To obtain the sums of squares for A, B, and AB, we use:
contrasted )’

S8 = ( )

Therefore, the sums of squares for A, B, and AB are
_[a+ab-b-))
.=
4n

S5

5,

SS 45

2
Signs for effects in the 2 design

_[prab-a- ()]

dn

_[ab+()-a-oF

4n

nz(ComrmsrC’oeﬁicienfS)Q

Factor Effects
Run I A B AB
1(1) + - . +
) 3 b.. + - - _
...4;1b..... v n — -

The analysis of variance is completed by computing the total sum of squares L (with 4n

- 1 degrees of freedom) as usual, and obtaining the error sum of squares S5 [with 4(n-1)

degrees of freedom] by subtraction.

Page 62 of 74



e R v i v AR S I A ]

Date: 9/13/2006

13.2 The 2 Design for k>3 Factors

The method presented in the above section for factorial designs with k = 2 factors each at two
levels can be easily extended to more than two factors. For example, consider k = 3 factors,

each at two levels. This design is a 23factoria1 design, and it has eight factor-level
combinations. Geometrically, the design is a cube as can be seen below, with eight runs
forming the corners of the cube. This design allows three main effects to be estimated (A,B,
and C) along with three tow-factor interactions (AB, AC, and BC) and the three-factor
interactions (ABC).

The main effects can be estimated pretty easily. Remember that the lower case letters (1), a,
b, c, ac, bc, and abc represent the total of all n replicates at each of the eight runs in the
design. Referring to the cube below, we would estimate the main effect of a A by averaging
the four runs on the right side of the cube where

be

abc
[+
ac
Al b d)
C B )
T/' @
a
| 4
A

A is at the high level and subtracting form that quantity the average of the four runs on the
left side of the cube were A is at the low level. This gives:

A= 4i[a + ab ik act abo ~b—c ~be — ({1}]
Fl

In a similar manner, the effect of B is the average difference of the four runs in the back face
of the cube and the four in the front, or:

:—l—[bzab:cb:abc—a—c—ac?—(l)]
dn

and the effect of C is the average difference between the four runs in the top face of the cube
and the four in the bottom, or:

C = %[c tac+bc tabec —a-b-ab-(1)]
A

Now consider the two-factor interaction AB. When C is at the low level, AB is just the
average difference in the A effect at the two levels of B, or

AB(Clow) = é[cxb b i[a @]

Page 63 of 74




Date: 9/13/2006

Similarly, when C is at the high level, the AB interaction is:

1
AB(Chigh) = S [abc —bc] - —[ac —¢]
2n 2n
The AB interaction is just the average of these tow components, or:
1
= I[ab+(1) tabc +c—b—-a-bo-acl
7l

Notice that the AB interaction is just the difference in averages on two diagonal planes in the
cube. Using similar approach, we can show that the AC and BC interaction effects estimates
are as follows:

AC Z%[ac+(l)+abc +h=a —c ~gb-be]
n

Bc:;—[bﬁmmbsm _b-c—ab-as]
Fl

The ABC interaction effect is the average difference between the AB interaction and the two
levels of C, thus:

ABC = %{[abc —be] —[ac —c] - [ab — B] +[a - (D]}
23

:ﬁ%[abc—ba—ac te-—ab+b+a—(1)]
7

The quantities in brackets in the above equations are contrasts in the eight factor-level
combinations. These contrasts can be obtained from a table of plus and minus signs for the

2 3design, shown in the following table. Signs for the main effects (columns A,B, and C) are
obtained by associating a plus with the high level. Once the signs for the main effects have
been established, the sighs for the remaining columns are found by multiplying the
appropriate preceding columns, row by row. For example, the signs in column AB are the
products of the signs in column A and B.

Page 64 of 74




Date: 9/13/2006

Signs for effects in the 2 design

( Treat. I A B | AB C AC  BC | ABC

Combo

i

- (1) + s e |+ - 0+ = B

3 a + + - - - - + +

5 b + - + |- - + - +

17 ab + + o+ 4+ - - . )

c + I R gt + - B} 5

30

21

373 ac + + - - + + - -

be + -+ - + - 0+ -
abc |+ + 0+ |+ + 4+ + +

What about this table?

1. Except for the identity column I, each column has an equal number of plus and minus
signs.

2. The sum of products of signs in any two columns is zero; that is, the columns in the
32 table are orthogonal.

3. Multiplying any column by column I leaves the column unchanged; that is, I is an
identity element.

35 4. The product of any two columns yields a column in the table, for
— A2p2
example, AxB = AB , and ABsABC = A*B°C=C , since any column
multiplied by itself is the identity column.
3% The estimate of any main effect or interactions is determined by multiplying the factor-level
#9  combinations in the first column of the table by the signs in the corresponding main effect or
40 interaction column, adding the result to produce a contrast, and then dividing the contrast by
41 one-half the total number of runs in the experiment. Expressed in good old math terms looks
42 like:

Contrast
Eﬁ%ct = W

Page 65 of 74




Date: 9/13/2006

i The sum of squares for any effect is:

5

(Conrrasf)Z
n2

S5 =

B

P

5 13.3 Other Methods for Judging the Significance of Effects

¢ The analysis of variance that we have already covered is a formal way to determine which
7 effects are nonzero. Two other methods are useful. In the first method, we can calculate the
§  standard errors (which we have also seen in class/homework) of the effects and compare the
% magnitude of the effects to their standard errors. The second method uses the normal
10 probability plots (quantile plots) to assess the importance of the effects.
11 The standard error of an effect is easy to find. If we assume that there are n replicates at each

k o .
12 ofthe2 runs in the design, and if y™, y#* ...y are the observations at the ith run then :

] = — .2
§F = = =Y,
: H_IJ§_=I Uy )

. . k . .
is an estimate of the variance at the ith run. The 2 variance estimates can be pooled to give
an overall variance estimate:

2 1 z

_ - =%
- 2% (n == ) e ;Ug %)

17 This is also the variance estimate given by the error mean square from the analysis of
!%  variance procedure. Each effect estimate has variance given by:

Vieffect) = MIT P

2
The estimated standard error of an effect would be found by replacing ¢ by its estimate

2
72 S and taking the square root of:

V(efect) = V—;ﬁ 7

Lod

-t

Page 66 of 74




Date: 9/13/2006

14 Appendix I details on the performed 2* factorial
analysis

14.1 Total Execution Time

Factor AVG Cont. x105 | SSx108 Red. SS SDev Contrast x10 4 SS x10 6 Red. SS
a 0.7751 0.9387 0.9387 1.8293 5.2288 5.2288

b 0.8445 1.1144 1.1144 0.5331 0.4440 0.4440
ab -0.0677 0.0072 0 -1.0265 1.6463 1.6463
c 1.8746 5.4908 5.4908 1.6064 4.0322 4.0322
ac 0.0724 0.0082 0 1.2243 2.3420 2.3420
be -0.0434 0.0029 0 -1.0314 1.6621 1.6621
abc -0.0781 0.0095 0 -0.8466 1.1200 1.1200
d 0.9356 1.3678 1.3678 1.6363 4.1836 4.1836
ad 0.0565 0.0050 0 0.1765 0.0487 0
bd -0.0028 0.0000 0 -0.1600 0.0400 0
abd -0.0007 0.0000 0 0.0873 0.0119 0
cd 0.0618 0.0060 0 0.0887 0.0123 0
acd 0.0361 0.0020 0 0.3341 0.1745 0
bed 0.0173 0.0005 0 0.1173 0.0215 0
abed -0.0069 0.0001 0 -0.0313 0.0015 0

e 0.3057 0.1460 0 0.5529 0.4776 0.4776
ac 0.0983 0.0151 0 0.6345 0.6291 0.6291
be 0.0463 0.0033 0 -0.2737 0.1170 0
abe 0.0182 0.0005 0 -0.2682 0.1124 0
o 0.1651 0.0426 0 0.5397 04551 0.4551
ace 0.0215 0.0007 0 0.5662 0.5010 0.5010
bee 0.0286 0.0013 0 -0.1623 0.0412 0
abce 0.0285 0.0013 0 -0.1531 0.0366 0
de 0.0734 0.0084 0 0.2396 0.0897 0
ade 0.0252 0.0010 0 0.2506 0.0981 0
bde -0.0085 0.0001 0 -0.0197 0.0006 0
abde -0.0035 0.0000 0 -0.0116 0.0002 0
cde -0.0113 0.0002 0 0.1517 0.0360 0
acde 0.0141 0.0003 0 0.2584 0.1043 0
bede -0.0495 0.0038 0 -0.2318 0.0839 0
abcde -0.0068 0.0001 0 -0.0718 0.0081 0

f 0.8019 1.0048 1.0048 1.6066 4.0333 4.0333
af 0.0497 0.0039 0 -0.4161 0.2705 0.2705
bf 0.2982 0.1389 0 1.0788 1.8184 1.8184
abf 0.0126 0.0002 0 0.3477 0.1889 0
cf 0.2399 0.0900 0 -0.1031 0.0166 0
acf 0.0006 0.0000 0 -0.3850 0.2316 0
bef 0.0355 0.0020 0 0.2604 0.1060 0
abcf 0.0061 0.0001 0 0.3381 0.1786 0
df 0.2994 0.1401 0 0.9519 14157 1.4157
adf 0.0488 0.0037 0 0.3412 0.1819 0
bdf -0.0308 0.0015 0 -0.4191 0.2745 0.2745
abdf -0.0251 0.0010 0 -0.3624 0.2053 0
cdf 0.0624 0.0061 0 0.2386 0.0889 0
acdf 0.0415 0.0027 0 0.3401 0.1808 0
bedf -0.0053 0.0000 0 -0.1735 0.0470 0

Page 67 of 74




Date: 9/13/2006

abedf -0.0253 0.0010 0 -0.2943 0.1353 0
ef -0.0599 0.0056 0 -0.2455 0.0942 0
aef 0.0063 0.0001 0 -0.0952 0.0142 0
bef -0.0308 0.0015 0 -0.0874 0.0119 0
abef -0.0118 0.0002 0 -0.0522 0.0043 0
cef -0.0345 0.0019 0 -0.0652 0.0066 0
acef 0.0218 0.0007 0 0.0115 0.0002 0
beef -0.0045 0.0000 0 -0.0133 0.0003 0
abcef 0.0055 0.0000 0 0.0112 0.0002 0
def -0.0044 0.0000 0 0.0988 0.0152 0
adef -0.0074 0.0001 0 0.1085 0.0184 0
bdef 0.0053 0.0000 0 -0.1273 0.0253 0
abdef 0.0167 0.0004 0 -0.0725 0.0082 0
14.2 One way Time

Factor AVG Cont. x105 | SSx108 Red. SS SDev Contrast x10 4 SSx107 Red. SS
a 0.7818 0.9549 0.9549 2.3453 0.8594 0.8594

b -0.0292 0.0013 0 -0.3956 0.0245 0
ab -0.0631 0.0062 0 -0.7751 0.0939 0.0939
¢ 1.8782 5.5119 55119 2.5463 1.0131 1.0131
ac 0.0484 0.0037 0 0.8959 0.1254 0.1254
bc -0.0564 0.0050 0 -0.7303 0.0833 0.0833
abc -0.0877 0.0120 0 -1.0694 0.1787 0.1787
d 0.0705 0.0078 0 0.7706 0.0928 0.0928
ad 0.0496 0.0039 0 0.4239 0.0281 0
bd -0.0260 0.0011 0 0.0645 0.0007 0
abd -0.0093 0.0001 0 0.0849 0.0011 0
cd 0.0445 0.0031 0 0.4701 0.0345 0
acd 0.0272 0.0012 0 0.1570 0.0039 0
bed -0.0167 0.0004 0 -0.1255 0.0025 0
abed -0.0017 0.0000 0 -0.1185 0.0022 0

e 0.2380 0.0885 0 0.6702 0.0702 0.0702
ae 0.0874 0.0119 0 0.7246 0.0820 0.0820
be 0.0212 0.0007 0 -0.1714 0.0046 0
abe 0.0148 0.0003 0 -0.1811 0.0051 0
ce 0.1629 0.0415 0 0.5361 0.0449 0
ace 0.0126 0.0002 0 0.6063 0.0574 0.0574
bee 0.0259 0.0011 0 -0.1716 0.0046 0
abce 0.0198 0.0006 0 -0.1668 0.0043 0
de 0.0197 0.0006 0 0.2254 0.0079 0
ade 0.0197 0.0006 0 0.2762 0.0119 0
bde -0.0201 0.0006 0 -0.0465 0.0003 0
abde -0.0016 0.0000 0 0.0105 0.0000 0
cde 0.0136 0.0003 0 0.2572 0.0103 0
acde 0.0140 0.0003 0 0.3122 0.0152 0
bede -0.0251 0.0010 0 -0.1336 0.0028 0
abcde -0.0066 0.0001 0 -0.0703 0.0008 0

f 0.3404 0.1811 0 0.5866 0.0538 0.0538
af 0.0685 0.0073 0 -0.2881 0.0130 0
bf 0.0487 0.0037 0 0.5781 0.0522 0.0522
abf 0.0205 0.0007 0 0.4485 0.0314 0
ef 0.2498 0.0975 0 0.2804 0.0123 0
acf -0.0129 0.0003 0 -0.4535 0.0321 0

Page 68 of 74



Date: 9/13/2006

bef 0.0264 0.0011 0 0.3585 0.0201 0
abcef 0.0011 0.0000 0 0.2676 0.0112 0
df 0.0707 0.0078 0 0.4879 0.0372 0
adf 0.0486 0.0037 0 0.3778 0.0223 0
bdf -0.0479 0.0036 0 -0.3697 0.0214 0
abdf -0.0360 0.0020 0 -0.3473 0.0188 0
cdf 0.0530 0.0044 0 0.3784 0.0224 0
acdf 0.0346 0.0019 0 0.3019 0.0142 0
bedf -0.0335 0.0018 0 -0.3138 0.0154 0
abedf -0.0240 0.0009 0 -0.3390 0.0180 0
ef -0.0272 0.0012 0 -0.1795 0.0050 0
aef 0.0093 0.0001 0 -0.0558 0.0005 0
bef -0.0073 0.0001 0 -0.0197 0.0001 0
abef -0.0122 0.0002 0 -0.0195 0.0001 0
cef -0.0216 0.0007 0 -0.0473 0.0003 0
acef 0.0151 0.0004 0 0.0710 0.0008 0
beef -0.0005 0.0000 0 -0.0057 0.0000 0
abcef -0.0054 0.0000 0 -0.0017 0.0000 0
def -0.0040 0.0000 0 0.0562 0.0005 0
adef -0.0080 0.0001 0 0.0956 0.0014 0
bdef -0.0034 0.0000 0 -0.1741 0.0047 0
abdef 0.0127 0.0003 0 -0.0876 0.0012 0
14.3 Client Serialization
Factor AVG Cont. x104 | SSx108 Red. SS SDev Contrast x10 4 SSx107 Red. SS
a 22312 0.7779 0.7779 0.4732 0.3498 0.3498
b 0.4443 0.0308 0 0.6124 0.5860 0.5860
ab 0.0680 0.0007 0 0.2032 0.0645 0
¢ 6.5707 6.7459 6.7459 1.2357 2.3857 2.3857
ac -0.0270 0.0001 0 -0.3843 0.2307 0.2307
bc 0.2139 0.0071 0 0.1654 0.0427 0
abc -0.1380 0.0030 0 -0.2094 0.0685 0
d 0.3885 0.0236 0 0.4853 0.3680 0.3680
ad 0.0845 0.0011 0 0.1093 0.0187 0
bd -0.1381 0.0030 0 0.0002 0.0000 0
abd -0.0014 0.0000 0 0.0476 0.0035 0
cd 0.1921 0.0058 0 0.1465 0.0335 0
acd -0.0777 0.0009 0 -0.1981 0.0613 0
bed -0.0052 0.0000 0 -0.0667 0.0069 0
abcd 0.1113 0.0019 0 -0.0499 0.0039 0
e -0.3366 0.0177 0 -0.0974 0.0148 0
ae -0.0256 0.0001 0 0.0060 0.0001 0
be 0.0737 0.0008 0 0.0294 0.0014 0
abe -0.0059 0.0000 0 0.0146 0.0003 0
ce -0.3026 0.0143 0 -0.1100 0.0189 0
ace 0.0099 0.0000 0 -0.0012 0.0000 0
bce 0.1202 0.0023 0 0.0168 0.0004 0
abce 0.0424 0.0003 0 0.0093 0.0001 0
de 0.0335 0.0002 0 -0.0328 0.0017 0
ade -0.0023 0.0000 0 0.0097 0.0001 0
bde -0.1080 0.0018 0 -0.0483 0.0037 0
abde 0.0602 0.0006 0 0.0192 0.0006 0
-0.0167 0.0000 0 -0.0369 0.0021 0

Page 69 of 74



Date: 9/13/2006

acde -0.0508 0.0004 0 0.0034 0.0000 0
bede -0.1594 0.0040 0 -0.0433 0.0029 0
abcde 0.0092 0.0000 0 0.0209 0.0007 0

f 3.3623 1.7664 1.7664 1.0986 1.8858 1.8858
af 0.7956 0.0989 0 0.2016 0.0635 0
bf 0.3363 0.0177 0 0.2286 0.0816 0
abf 0.0515 0.0004 0 0.0904 0.0128 0
cf 2.5291 0.9994 0.9994 0.6779 0.7181 0.7181
acf 0.0541 0.0005 0 -0.0687 0.0074 0
bef 0.1468 0.0034 0 -0.0094 0.0001 0
abef -0.1124 0.0020 0 -0.1104 0.0190 0
df 0.2968 0.0138 0 0.1120 0.0196 0
adf 0.0830 0.0011 0 -0.0037 0.0000 0
bdf -0.1049 0.0017 0 0.0262 0.0011 0
abdf 0.0192 0.0001 0 0.0559 0.0049 0
cdf 0.1469 0.0034 0 0.0906 0.0128 0
acdf -0.0311 0.0002 0 0.0104 0.0002 0
bedf 0.0242 0.0001 0 0.0036 0.0000 0
abedf 0.1266 0.0025 0 -0.0012 0.0000 0
ef -0.3623 0.0205 0 -0.1349 0.0284 0
aef -0.0368 0.0002 0 -0.0280 0.0012 0
bef 0.0596 0.0006 0 -0.0341 0.0018 0
abef -0.0113 0.0000 0 -0.0258 0.0010 0
cef -0.3087 0.0149 0 -0.0682 0.0073 0
acef 0.0184 0.0001 0 0.0454 0.0032 0
beef 0.1201 0.0023 0 0.0442 0.0031 0
abcef 0.0513 0.0004 0 0.0615 0.0059 0
def 0.0336 0.0002 0 -0.0304 0.0014 0
adef -0.0028 0.0000 0 0.0165 0.0004 0
bdef -0.1115 0.0019 0 -0.0621 0.0060 0
abdef 0.0619 0.0006 0 0.0167 0.0004 0
14.4 Client Deserialization

Factor AVG Cont. x104 | SSx107 Red. SS SDev Contrast x10 4 SSx10 6 Red. SS
a -0.1698 0.0045 0 -0.0352 0.0019 0

b 6.8217 7.2711 7.2711 1.4468 3.2707 3.2707
ab -0.1010 0.0016 0 -0.0887 0.0123 0

c -0.1359 0.0029 0 -0.4759 0.3539 0.3539
ac 0.1946 0.0059 0 0.0540 0.0046 0
be 0.0803 0.0010 0 -0.1502 0.0353 0
abc 0.0561 0.0005 0 0.0576 0.0052 0

d 6.3211 6.2432 6.2432 1.4763 3.4054 3.4054
ad 0.0186 0.0001 0 0.0068 0.0001 0
bd 0.2136 0.0071 0 -0.4075 0.2595 0.2595
abd 0.0853 00011 0 -0.0571 0.0051 0
cd 0.1009 0.0016 0 -0.1198 0.0224 0
acd 0.0515 0.0004 0 0.1226 0.0235 0
bed 0.3181 0.0158 0 0.1991 0.0620 0
abed -0.0845 0.0011 0 0,1379 0.0297 0

e -0.1194 0.0022 0 -0.0743 0.0086 0
ae 0.0302 0.0001 0 -0.0300 0.0014 0
be -0.1226 0.0023 0 -0.0920 0.0132 0
abe -0.0011 0.0000 0 -0.0599 0.0056 0
ce -0.0526 0.0004 0 0.0324 0.0016 0

Page 70 of 74



Date: 9/13/2006

ace 0.0897 0.0013 0 0.0156 0.0004 0
bce -0.0114 0.0000 0 -0.0027 0.0000 0
abce 0.0842 0.0011 0 0.0286 0.0013 0
de 0.0958 0.0014 0 0.0375 0.0022 0
ade 0.0191 0.0001 0 0.0069 0.0001 0
bde 0.0937 0.0014 0 0.0246 0.0009 0
abde -0.0113 0.0000 0 -0.0158 0.0004 0
cde -0.2902 0.0132 0 -0.0867 0.0118 0
acde -0.0033 0.0000 0 -0.0168 0.0004 0
bede -0.2483 0.0096 0 -0.1158 0.0209 0
abcde -0.0092 0.0000 0 -0.0093 0.0001 0
f: 4.6031 3.3107 3.3107 1.5134 3.5787 3.5787
af -0.1970 0.0061 0 -0.0404 0.0025 0
bf 2.4893 0.9682 0.9682 0.7175 0.8044 0.8044
abf -0.0911 0.0013 0 -0.0556 0.0048 0
cf -0.1110 0.0019 0 -0.1914 0.0572 0
acf 0.1257 0.0025 0 0.0104 0.0002 0
bef 0.0806 0.0010 0 -0.0415 0.0027 0
abcf 0.0411 0.0003 0 0.0173 0.0005 0
df 22823 0.8139 0.8139 0.6981 0.7614 0.7614
adf 0.0003 0.0000 0 0.0191 0.0006 0
bdf 0.1705 0.0045 0 -0.0989 0.0153 0
abdf 0.1052 0.0017 0 -0.0016 0.0000 0
cdf 0.0780 0.0010 0 -0.0210 0.0007 0
acdf 0.0608 0.0006 0 0.0373 0.0022 0
bedf 0.2696 0.0114 0 0.1275 0.0254 0
abedf -0.0227 0.0001 0 0.0506 0.0040 0
ef -0.3314 0.0172 0 -0.0827 0.0107 0
aef -0.0308 0.0001 0 -0.0319 0.0016 0
bef -0.2313 0.0084 0 -0.0764 0.0091 0
abef 0.0016 0.0000 0 -0.0256 0.0010 0
cef -0.1305 0.0027 0 0.0112 0.0002 0
acef 0.0634 0.0006 0 -0.0103 0.0002 0
beef -0.0451 0.0003 0 -0.0188 0.0006 0
abcef 0.1046 0.0017 0 0.0257 0.0010 0
def -0.0080 0.0000 0 0.0375 0.0022 0
adef 0.0124 0.0000 0 0.0208 0.0007 0
bdef 0.0913 0.0013 0 0.0395 0.0024 0
abdef 0.0443 0.0003 0 0.0244 0.0009 0
14.5 Server Serialization
Factor AVG Cont. x104 | SSx106 Red. SS SDev Contrast x10 3 SSx104 Red. SS
a 0.1042 0.0170 0 0.8216 1.0548 1.0548
b 1.9092 5.6956 5.6956 2.5046 9.8019 9.8019
ab 0.0535 0.0045 0 0.7675 0.9204 0.9204
© 0.1039 0.0169 0 0.1019 0.0162 0
ac 0.0468 0.0034 0 1.2623 2.4897 2.4897
be 0.0520 0.0042 0 0.2283 0.0814 0
abc 0.0396 0.0025 0 0.7084 0.7842 0.7842
d 2.3222 84261 8.4261 2.0342 6.4657 6.4657
ad 0.0505 0.0040 0 0.3925 0.2407 0
bd 0.0217 0.0007 0 0.1757 0.0482 0
-0.0008 0.0000 0 0.2361 0.0871 0

Page 71 of 74



Date: 9/13/2006

cd 0.0722 0.0081 0 0.7977 0.9944 0.9944
acd 0.0401 0.0025 0 1.1975 2.2408 2.2408
bed 0.0197 0.0006 0 0.8103 1.0260 1.0260
abed 0.0338 0.0018 0 0.8014 1.0036 1.0036
e 0.7940 0.9851 0.9851 2.3445 8.5884 8.5884
ae 0.0775 0.0094 0 0.8416 1.1067 1.1067
be 0.3726 0.2169 0 1.1050 1.9079 1.9079
abe 0.0342 0.0018 0 0.3319 0.1721 0
ce 0.0757 0.0090 0 0.7250 0.8214 0.8214
ace 0.0013 0.0000 0 -0.0231 0.0008 0
bce 0.0379 0.0022 0 0.2122 0.0703 0
abce 0.0029 0.0000 0 -0.1398 0.0305 0
de 0.4414 0.3045 0 1.0382 1.6842 1.6842
ade 0.0352 0.0019 0 0.3900 0.2376 0
bde 0.0208 0.0007 0 -0.1164 0.0212 0
abde -0.0081 0.0001 0 -0.1524 0.0363 0
cde 0.0412 0.0027 0 0.3139 0.1539 0
acde 0.0063 0.0001 0 -0.0826 0.0107 0
bede 0.0035 0.0000 0 -0.2325 0.0844 0
abcde 0.0083 0.0001 0 -0.1109 0.0192 0
f 0.0122 0.0002 0 0.0188 0.0006 0
af 0.0080 0.0001 0 0.1130 0.0199 0
bf 0.0053 0.0000 0 0.0369 0.0021 0
abf 0.0139 0.0003 0 0.1580 0.0390 0
cf 0.0110 0.0002 0 0.1149 0.0206 0
acf 0.0098 0.0002 0 0.0462 0.0033 0
bef 0.0091 0.0001 0 0.0853 0.0114 0
abcef 0.0100 0.0002 0 0.0104 0.0002 0
df 0.0066 0.0001 0 -0.0189 0.0006 0
adf 0.0006 0.0000 0 0.0835 0.0109 0
bdf -0.0002 0.0000 0 0.0477 0.0036 0
abdf 0.0063 0.0001 0 0.0598 0.0056 0
cdf 0.0144 0.0003 0 0.2072 0.0671 0
acdf 0.0089 0.0001 0 0.0423 0.0028 0
bedf 0.0124 0.0002 0 0.1016 0.0161 0
abedf 0.0091 0.0001 0 0.0482 0.0036 0
ef 0.0043 0.0000 0 0.0285 0.0013 0
aef 0.0016 0.0000 0 -0.0489 0.0037 0
bef -0.0048 0.0000 0 -0.1706 0.0455 0
abef 0.0037 0.0000 0 0.0650 0.0066 0
cef 0.0015 0.0000 0 -0.1691 0.0447 0
acef 0.0041 0.0000 0 0.0151 0.0004 0
beef 0.0041 0.0000 0 0.0458 0.0033 0
abeef 0.0028 0.0000 0 -0.0473 0.0035 0
def 0.0039 0.0000 0 -0.0139 0.0003 0
adef -0.0050 0.0000 0 -0.0321 0.0016 0
bdef -0.0046 0.0000 0 -0.1013 0.0160 0
abdef -0.0035 0.0000 0 -0.0527 0.0043 0

Page 72 of 74



g

Date: 9/13/2006

14.6 Server Deserialization

Factor AVG Cont. x105 | SSx108 Red. SS SDev Contrast x10 4 SS x10 7 Red. SS
a 0.5586 0.4876 0.4876 2.5628 1.0262 1.0262
b -0.0736 0.0085 0 -0.9093 0.1292 0.1292
ab -0.0699 0.0076 0 -0.9141 0.1306 0.1306
c 12211 2.3298 2.3298 1.7963 0.5042 0.5042
ac 0.0511 0.0041 0 1.4397 0.3239 0.3239
be -0.0778 0.0095 0 -0.9901 0.1532 0.1532
abc -0.0738 0.0085 0 -0.9717 0.1475 0.1475
d 0.0316 0.0016 0 0.5211 0.0424 0
ad 0.0412 0.0026 0 0.5255 0.0431 0
bd -0.0122 0.0002 0 0.0484 0.0004 0
abd -0.0091 0.0001 0 0.0392 0.0002 0
cd 0.0253 0.0010 0 0.3888 0.0236 0
acd 0.0349 0.0019 0 0.3925 0.0241 0
bed -0.0161 0.0004 0 -0.1070 0.0018 0
abced -0.0128 0.0003 0 -0.0943 0.0014 0
e 02717 0.1153 0 0.8728 0.1190 0.1190
ae 0.0900 0.0126 0 0.7662 0.0917 0.0917
be 0.0138 0.0003 0 -0.1027 0.0016 0
abe 0.0154 0.0004 0 -0.1110 0.0019 0
ce 0.1931 0.0583 0 0.7187 0.0807 0.0807
ace 0.0116 0.0002 0 0.6225 0.0606 0.0606
bce 0.0139 0.0003 0 -0.1103 0.0019 0
abce 0.0156 0.0004 0 -0.1089 0.0019 0
de 0.0163 0.0004 0 0.2754 0.0118 0
ade 0.0199 0.0006 0 0.2726 0.0116 0
bde -0.0092 0.0001 0 -0.0194 0.0001 0
abde -0.0076 0.0001 0 -0.0158 0.0000 0
cde 0.0153 0.0004 0 0.3061 0.0146 0
acde 0.0191 0.0006 0 0.3131 0.0153 0
bede -0.0092 0.0001 0 -0.1090 0.0019 0
abcde -0.0075 0.0001 0 -0.0949 0.0014 0
f 0.0041 0.0000 0 -0.0932 0.0014 0
af -0.0111 0.0002 0 -0.2246 0.0079 0
bf 0.0150 0.0004 0 0.3035 0.0144 0
abf 0.0154 0.0004 0 0.2953 0.0136 0
cf -0.0031 0.0000 0 -0.1126 0.0020 0
acf -0.0183 0.0005 0 -0.2305 0.0083 0
bef 0.0118 0.0002 0 0.2710 0.0115 0
abcf 0.0123 0.0002 0 0.2831 0.0125 0
df 0.0410 0.0026 0 04285 0.0287 0
adf 0.0404 0.0025 0 0.4278 0.0286 0
bdf -0.0374 0.0022 0 -0.3886 0.0236 0
abdf -0.0379 0.0022 0 -0.3949 0.0244 0
cdf 0.0383 0.0023 0 0.3669 0.0210 0
acdf 0.0377 0.0022 0 0.3629 0.0206 0
bedf -0.0360 0.0020 0 -0.3230 0.0163 0
abedf -0.0366 0.0021 0 -0.3396 0.0180 0
0.0090 0.0001 0 -0.0536 0.0004 0
0.0130 0.0003 0 0.0234 0.0001 0

Page 73 of 74




L4

Date: 9/13/2006

bef -0.0132 0.0003 0 0.0427 0.0003 0
abef -0.0111 0.0002 0 0.0499 0.0004 0
cef 0.0093 0.0001 0 0.0265 0.0001 0
acef 0.0132 0.0003 0 0.0892 0.0012 0
beef -0.0125 0.0002 0 -0.0110 0.0000 0
abcef -0.0105 0.0002 0 -0.0044 0.0000 0
def -0.0074 0.0001 0 0.0960 0.0014 0
adef -0.0077 0.0001 0 0.0923 0.0013 0
bdef 0.0078 0.0001 0 -0.1302 0.0026 0
abdef 0.0065 0.0001 0 -0.1151 0.0021 0

Page 74 of 74



