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1. Introduction

A generation of gravitational wave antennae, resonant ultracryogenic [1,2,3] and
interferometric [4,5], is expected to be in operation in the second half of the 90’s, with
sensitivities which should be sufficient to detect the most energetic events predicted
by current astrophysics [6,7]. In particular resonant antennae should be more apt
to the detections of gravitational wave bursts, as those predicted with numerical
gravitation methods to occur in type I supernova collapses, when either a vibrating

black hole [8] or a neutron star [9] is formed.

Taking as reference these predictions, which consistently give a total energy
emission in gravitational waves of the order of 1072 Mg per event and taking into
consideration the burst sensitivity, defined as the minimum amplitude of “standard
pulse” detectable at unity signal to noise ratio, A, ~ 3 x 1072%, as calculated
[10] with an electromechanical model for the AURIGA ultracryogenic antenna, we
estimate [11] that some 13 galaxies with masses larger than ~ 1/10 of the Galaxy,
are in range, &~ 5 Mpc, to produce detectable supernova signals. Given the predicted
rates of type II supernova explosions in galaxies [12], the expected rates of detectable
signals should significantly increase, with respect to the predicted rates of Galactic

supernova events, to approach the not unreasonable value of one per year.

The strategy planned to assign unequivocally to gravitational waves the signal
detected by the few antennae in operation consists in making coincidences, within
the optimal post—detection bandwidth [13]. Of course this strategy will be the only
one to be implemented as soon as two or three ultracryogenic antennae will be in
contemporary operation. However such a strategy has limits, which may weaken
considerably the confidence in assigning events. First, even in the ideal case in which
the statistics of noise is perfectly known, it is easy to see that three antennae, with
thresholds set at ~ 3hm;n, Will go in coincidence, just because of thermal noise, at
least once per year, a figure comparable with the expected event rate. Second, the
optimal postdetection bandwidth are calculated to be at most 10 + 50 Hz; even if
the antennae are far apart on Earth, still it will be difficult to look for light-time
delays among them. Third, other signals as the light emission in the visible and in
X and v rays, the neutrino flash, etc. may be either undetectable or show up on so
different time scales, that it may be difficult to confidently correlate to the few msec
duration of the gravitational wave burst. It should also be noticed that, taking as
reference the neutrino emission in occasion of the SN1987A, the largest supernova
neutrino detectors under construction will not be able to see extragalactic neutrinos.
This is particularly disturbing because the neutrino flash from a type II supernova

develops in some 10 sec, a time scale much more amenable to a coincidence with a
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gravitational wave burst than, for instance, the rise of the visible luminosity.

Thus should one be in the condition to receive candidate signals, candidate in
the sense that they correspond to a coincidence of say three antennae, but which are
not in correlation of any other astrophysical observation, it seems to us that it might
be difficult to put up the case for a confident detection of gravitational waves.

These considerations have motivated us to explore the possibilities of a strat-
egy of detection such that the properties of the Riemann tensor of the gravitational
perturbation, which are distinctive to characterize a gravitational wave, would be rec-
ognized in a suitable combination of the response of a (minimal) number af resonant
antennae, suitably located on the surface of the Earth. We have explicitly devel-
oped these ideas to propose such a network of ultracryogenic resonant antennae to
behave as an intercontinental observatory. The observatory would be able to assign
autonomously and unequivocally a multiple coincidence event within the network as
the detection of a gravitational wave burst. Moreover it would give amplitude, direc-
tion of propagation and polarization of the gravitational wave burst, would measure
the velocity of propagation of the perturbation and would give internal vetos uniquely

obeyed by gravitational waves.

2. Distinctive properties of the action of a gravitational wave Riemann
tensor on a network of resonant antennae

The Riemann tensor of a plane gravitational wave in the linear approximation

can be easily shown to be, in the Transverse Traceless (TT) system X,Y, Z

1 .
0 — TT
R; =52~ hij» (2.1)
where h,, is the metric perturbation in the weak field approximation g,, = 7,,+
huy. Choosing the Z-axis in the direction k of propagation of the wave and the X-axis

along the major axis of the polarization ellipse (as in ref. [14]) we have

TThy; =hi(t)(Ex @ €x — &y ® EY)ij +2hx(t)(€x ® €Y)

g (2.2)
= hy(t)(es)i; + hx(t)(ex)ij7

where €x and €y are the unit vectors in the direction of X and Y axes while e, and
ex are the polarization tensors with the properties of being transverse (e;jk* = 0)
and traceless (e;; = 0). As it is well known the Riemann tensor is gauge invariant
(as its background value is zero) and therefore its properties are the same in any

other reference system in particular in the reference frame of the antenna (i.e. the
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locally inertial rest frame of its center of mass). In this frame the equation of the

fundamental mode of the bar is given by (see e.g. ref. [1])

6‘{‘136 +wg€ == —;r—Z—CZLROinTL‘Ln] = 71_—2 TTh;J 'nlnj, (2.3)

where L is the length of the bar, @ is the unit vector parallel to the axis of the
bar and ¢ is the displacement induced by the wave in the % direction. Given an
orthogonal reference frame with 2’ axis in the direction of the axis of the antenna,
the contraction between the tensors n'n’ and e;; gives the usual antenna pattern
sin® 6 cos(2¢) for + polarization and sin® 6 sin(2¢) for x polarization where 8,4 are
two of the three Euler angles between the two systems of coordinates: 6 is the angle
between Z and z', ¢ between X and the line of the nodes [15] (the third angle ¢,
between the line of the nodes and z', does not appear in the antenna pattern because
of the cylindrical symmetry of the antenna itself). From a simple calculation it
follows that for unpolarized radiation a gravitational antenna “covers” (in the sense
that the energy coming from any source in that region is at least half of the maximal
one) about 1/2 of the celestial sphere. It would seem that this dependence on the
angles were particularly unfavourable for the search of gravitational waves but one
should notice that, as it reflects the tensor nature of the gravitational force (spin
two graviton), it can be used to discriminate between gravitational waves and other
physical disturbances, as we shall see below.

Let us consider several antennae that operate in coincidence. For the full re-
construction of a gravitational signal it turns out particularly useful the reference
frame z,y, z which we shall call geocentric. It is defined with its origin in the center
of the earth, z axis pointing to the north pole, z axis in the direction of the 4 point
of Aries and y axis orthogonal to them and forming a left-handed system (see Fig.
1). To this system we shall refer both the source and the detectors of the network.
In fact one can easily connect the position of a source in these coordinates with the

usual equatorial coordinates right ascension R.A. and declination § by means of

®=RA. —7/2
(2.4)
0=6+m/2,

where ©,® are two of the three Euler angles between the T'T' and the geocentric
systems (the third angle ¥, between the node line and X axis is the polarization
angle); O is the angle between Z and z, ® is the angle between the node line and

z. We need also the orthogonal transformation matrix O;; between the two systems
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given by (see e.g. ref. [16])

cosPcos V¥ —sinPsinWcos® —sin®cos¥ cos® — cos P sin ¥ sin @ sin ©
cosPsinWcosO +sin®cos¥  cos P cos ¥ cos ® — sin b sin ¥ —cosPsin O
sin ¥ sin © cos ¥sin © cos ®
(2:5)
In the geocentric system the polarization tensors are therefore expressed by ez el =
’ i3
=1
Oike(+.><)kzolj . NP
A

Fig. 1

The definition of the antenna azes (z',y',2'), the gravitational
wave azes (X,Y,Z) and the geocentric azes (z,y,2z). B and v
are the latidute and longitude of the antenna, respectively, and o
is the angle between the bar azis and the local Est- West direction.
O and ® give the direction of the wave with respect to geocentric

system while ¥ determines the polarization angle.
If we call a the angle which the detector makes with east-west direction, f its
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latitude and v = wgt (where wg is the angular velocity of the earth and t is the
Universal Time) the Euler angles between the detector system z',y',2' (where z' is
parallel to 7, z' is the vertical and y' is such as to form a left-handed orthogonal

system) and the geocentric system are given by (see Fig. 1)

0==n/2-p
¢=v—3r/2 (2.6)
Y =a—m/2.

In this system the antenna pattern depends on the detector angles («,3,~), which are
known, and on the source angles (0, ®, ¥), which are unknown and to be determined
by our method together with the amplitude of the wave. At first glance it would
appear that the unknowns in the problem are five: the two amplitudes h4(t) and
hx(t) and the three Euler angles ©, ® and ¥ but actually h,(t), hx(t) and ¥ are
not independent as we can choose X and Y axes such as it holds, at any time, the
equation tan(2¥) = hy /hyx. As the unknowns of the problem are 4 it would appear
that 4 antennae would suffice to solve it completely. This is true when one already
assumes that the signal is transverse and traceless i.e. it is indeed a gravitational
wave. However in the experimental situations in which the signal may be as well a
disturbance of unknown origin these two conditions must be tested in order to have
confidence that a gravitational wave is actually being seen. This entails that the
minimum number of antennae must be six. In this case it turns out also that the
problem can be dealt with algebraically without having recourse to transcendental
equations associated with the antenna pattern.

We now show how it is possible to solve the inverse problem for gravitational
plane waves from the responses of 6 detectors. We consider first the case of six
noiseless antennae located in the same place and then, in §4, we relax this condition
and we consider six noisy antennae arranged in an intercontinental network.

The response of each detector (labelled with o =1...6) is given by
R¥(1) = (nind)® / H(t =) TThij(r)dr; (2.7)
0

where H(t) is the transfer function of the antennae that in the simple harmonic
oscillator approximation reduces to Eq. (3.1) below; of course the output of each
antenna is obtained adding to the R the noise 7® which will be fully described in
the next section.

We consider now linearly polarized radiation (as it is expected to come from

supernova explosions evolving in black-holes [8]); what follows, however, still holds
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for other states of polarization or even for unpolarized radiation. In order to simplify

further our notation we write
TTh,. = hoh(2)O; O;:' = hoh y
ij 0h(t)Oiret 1y = "o (Wi, (2.8)
which, substituted in (2.8), gives
= AE()Wi(n* n7)* a=1...6 (2.9)

where £(t) = [ H(t — 7)h(7) and A = 2hoL/x2.
If the antenna axes 7% are not parallel and no three of them lie with their
axis on the same plane, we can write the tensor W;; as a linear combination of the

responses R®

()W;; = Z B&R*(t (2.10)

where Bj; are six 3 x 3 matrices which depend only on the set of n® and which can
be determined by solving the linear system Zij B (n*n?)P = §%B. There exist three
quantities which are invariant under the rotation group i.e. Tr(W), Tr(W?) and
Tr(W?). These quantities, because of the distinctive properties of the gravitational
wave Riemann tensor, must be respectively equal to 0, 2 and 0. Any combination of
such invariants is itself an invariant (for instance the determinant of W is equal to
Tr(W?)/3 — Tr(W?*)Tr(W)/2 + Tr(W)*/6). So we have the following invariants in
terms of the R®

Linear T = AL()Tr(W) = > QaR*(2), (2.11)

where Qo = T'r(B®) are the solutions of the algebraic system Y Qq(nin)® = §%;

Quadratic H= A25 () Tr(W?) = Z QapR>(t) RP(t),  (2.12)
a,B=1
where Qo = Tr(B*BP) are the solutions of the algebraic system > ap Qap
(nind)® (nFnt)P= §i* §3t;
6
Cubic D=AH)Tr(W*) = > Qap,R*(t) RP(t) R'(2), (2.13)
a,B,v=1
where Qu3y = Tr(B*BPBY) are the solutions of the algebraic system >
(ninj)a (nknl)ﬂ(nrn")'yz §is §ik gir

afy Qaﬁ’Y



The linear invariant 7" can be used as a veto because it must be zero for a true
gravitational wave. The mean of the quadratic invariant H is proportional to the
energy released by the wave to the network and so its square root will give a measure
of the amplitude of the wave. The cubic invariant D is a measure of the transversality

of the wave: in fact D = 0 is equivalent to the existence of a zero eigenvalue of W.

Obviously the condition that the antennae are located in the same place is
incompatible with the requirement that no two of them be parallel and no three
of them lie with their axis on the same plane as the antenna axes must always lie
(for technical reasons) in the local horizontal plane. Our network should therefore
be scattered over the Earth surface. This however entails that one must know the
arrival times of the signal on the antennae in order to recombine the responses in
the wavefront and therefore apply correctly the analysis of invariants. Moreover in
order to have a realistic treatment of the behavior of the network one has to take
into account the noise. This poses the problem of the determination of the arrival

time which we solve in the next section.

3. Estimate of the arrival time of a gravitational signal

The ability to measure the arrival time of a pulse signal on a resonant antenna
depends on the signal to noise ratio [17]. In order to better elaborate on this point
we will consider a simplified model of the antenna in close analogy with the point of
view suggested by Giffard [18]. In this model the antenna is considered as a simple
harmonic oscillator with resonant angular frequency wy and decay time 7, excited
by a short pulse of force f(t). The position £(t) of the oscillator mass M is read by
a suitable position transducer. The oscillator is driven in random motion both by
the brownian force fg(t) and by the back-action force noise fy,(%) of the position
transducer, this one contributing also an additive position noise £, (t). The brownian
force has a white noise spectrum Sp = 2kgT'3, with 8 the coefficient of friction of the
oscillator. Both fj,(¢) and the added noise ¢,(t) are assumed to have white spectra
with values Sy, and S¢ respectively.

The model can be taken as a realistic approximation for a single mode of oscilla-
tion of the antenna-transducer-electric port system, as far as the mode is well isolated
from the remaining ones. The model is expected to become somewhat inadequate
when different modes come so close in frequency that they cannot be considered any-
more as isolated. However we do not expect the basic conclusions of the following
discussion to be very much affected by this complication. Within the above model

the antenna acts as a linear device with f(¢) as the input and £(¢) as the output. Its
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impulse response is:

1 t\ .
H(t) = Vo exp (— ;) sin(w; ) (3.1)
with w? = w? — 1/(472), and its frequency response is

1 1
H(w) = —
) M wi —w? +iw/T (3.2)

The antenna output £(%) is given by

€=+ [ B~ (3.3)

where 7(t) is the total output noise, a stationary stochastic process assumed to be

gaussian and zero mean. Its power spectrum, according to the model above, is
S(w) = (8B + Spa)|H(w)|> + S¢ = Sy|H(w)|? + S, (3.4)

where we have introduced the total force power spectrum St =S58+ Sha.

The estimation of the arrival time of a signal in the presence of noise is a well
established problem in signal analysis [17]. If the shape of the signal is known and
only the amplitude and the arrival time have to be estimated, the standard Wiener
filtering theory can be applied. In the framework of this theory the force signal
f(t) = I,g(t —t,) contains an unknown amplitude I, and an unknown time of arrival
ta. To estimate both I, and ,, one first selects a value of ¢,, let us call it %y, and
builds, for that choice of t,, the linear unbiased estimator of I, of minimum variance:

T(t0) = W (to — t)é(t)dt (3.5)

— 00

where the weight function W (t) has a Fourier transform

29" (@) H*(w)

Ww)=¢ 5(@)

(3.6)

the variance o? being

52— {/+°° lg(w)IS"’(I(‘I:S(W)I2 dw}_l (3.7)

— oo

The value , of ¢, for which |f(t0)| reaches its maximum is then taken as an estimate
of t,.



In order to evaluate the uncertainty of the estimation of ¢y, let us consider first

~

that, in the absence of any signal (I, = 0), I(¢¢) reduces to a zero mean stochastic
process fn(to) with #y playing the role of the time. The power spectrum of this

process is
S:,{w) — 54 |g(w;i)(;”)’ _ 04S§M2 |lg(w)] (3.8)

(@2~ w?)? + w?/?

where wi = wi + S¢/(SeM?) and 772 = 772 4+ 2(w? — w?). For real antennas
wy = wy and 7, & M/, with 8, = /S;/S¢w? a noise “impedance” with physical
dimensions of a friction coeflicient. SHw) is the power spectrum of an harmonic
oscillator, of frequency w, and damping time 7,, driven by a random force with
spectrum |g(w)|?/(0*S¢). If |g(w)|* varies slowly in the range range w ~ w, + 1/7,
then |g(w)|? can be substituted by |g(w,)|? in eq. (3.8) and the fluctuations of f(to)
consist in practice of oscillations at frequency w, that keep their coherence on a

typical time of order 27,. When the signal is present I(¢o) will then result in a signal

part

fs(to) _ I_O /+°° |g(w;i(;”)|2 eiw(t=t0) 7.,

o2

(3.9)
—c0
added to the noise part I,,(to). If again |g(w)|? varies slowly in the range w ~ w,+1/7,
then f,(to) is an oscillating function of ¢y —1,, at frequency 2w, exponentially damped
with time constant 27,. This function reaches its maximum for ¢, = ¢,. This is
obviously not true for ]f(tg)] = |£(t0)+ fn(t0)| that will reach its maximum at
time 1. Separating the random part of ¥, we can write t, =ty +t.. An analytic
evaluation of the statistics of the zero mean random variable ¢, in a few situations
was obtained long ago [19]. To discuss the main conclusions that apply to our case let
us first separate the “phase” part 6t of ¢, writing ¢, = 6t + nT,/2, with T, = 27 /w,,
6t < T,/4 and n an integer. The first result is that the standard deviation of 8t, os¢

is given by:

T
0§t = e~
%~ 2n(SNR)’
where the signal to noise ratio SN R is defined by SNR = I, /0. The second impor-
tant remark is that for SNR >> 1 (SNR > 2 + 3 with 10 % approximation) the

standard deviation of n is given by

(3.10)

o = M—QN*W (3.11)

with Q. = w.Ty, if again [g(w)|® can be considered a constant in the range w ~
w, £ 1/7,. In this limit I,(¢,) shows a cusp for ¢, = t, that makes easier the arrival

time detection.
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An important case is that in which g(t) is a wave packet with a center frequency
close to wo and a duration 7,. This is probably the closest approximation to the
expected gravitational wave signals. One finds that, if 7, is shorter than 1/wo, then
one recovers the result in Eq. (3.11). If instead 7, is longer than that, and the signal

has no cusps by itself, then one obtains for o,

27p

Op — T—*(m (312)

where the duration 7, is properly defined in Ref. [20] and is &~ 2At for a gaussian
(exp(—t2/2At?)) envelope of the wave packet. Notice that as soon as o, < 1 the
total uncertainty oy of the arrival time reduces to that in Eq. (3.10). Fora 1 kHz
antenna this gives oy ~ 160/SNR psec a time figure that easily allows time delay
measurement for antennae at different places on the earth.

To better understand what is the meaning of o,, we made a numerical simulation
using g(t) = 6(t) for the signal. In Fig. 2 the statistic of 2o is reported taking t, = 0,
Q. = 30 and SNR = 10. It can be easily seen that the data group in large majority
(> 95 %) around to = 0 while a few are found around +7T%/2 and around £T.

300 N N N IR SN Y N SO NN M MO B

250 - | .
200 - L
Counts 150 -
100 -

50 -

I [ | [ [ [ I [ [ I

-0.0015 -0.0005 0.0005 0.0015
Arrival time (s)
Fig. 2

Distribution of ty (assuming t, = 0) with SNR = 10, Q, = 30

and w, = 2w x 10°® rad/sec.
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The dependence of the value of o4, here defined as that value for which 70 %
of the data give ¢, < o0y, is reported in Fig. 3 as a function of SNR for Q, = 30.
This value of Q). should be within the reach of the generation of detectors that are
presently under construction [2]. It can be seen that as soon as SN R becomes larger
than SNR ~ 7, o, switches from the value oy = (T%/2)o,, with o, given by Eq.
(3.11), to oy = o with o4, given by Eq. (3.10). Numerical simulation [20] also
allowed to clarify that Eq. (3.11), a much more favourable result than that in Eq.
(3.12), still holds for gaussian packets up to At = T,/2 .

0.01 ' : | e :
) ® -
] ® i
4 ® L
®
0.001 — 3
i ® o f
o () i i
10-4 5 3
] % i
] . » i
10-5 , i ' A A
10
SNR
Fig. 3

Total uncertainity of arrival time o4 as a function of SNR; Q4 =
30 and w, = 27 x 10® rad/sec.

4. Detection of a gravitational wave by an intercontinental network of
resonant antennae

In order to illustrate our detection strategy let us consider for simplic-
ity a configuration in which the detectors are parallel to the lines joining

the opposite faces of a dodecahedron. It is easy to see that this is pos-
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sible on the Earth surface and let us call P* the places where the anten-
nae could be located. These directions cover almost isotropically the whole

solid angle and make the calculations particularly simple. With respect to

a suitable reference frame they can be written as #i! = (0 0 1), @2 =
(0 —% 1) 7 = (\/2~/5+10 1-5 L), 7h = (\/10 —2/5 f+1 )
of

v VB 25 2v5 VB 2v5 25 f
A5 \/10 2 v B+l L>,ﬁ6:< V2v5+10 15 1 ) By means

25 2V5 /5
Egs. (2.11), (2 12) and 6 13) we can easily verify the following identities

6
1
T=Tr(W)= 2_: (4.1)
1
2 2 a2
H=Tr(W?)+ Tr(W)* = ZR (4.2)
_ 3 3 g 3 3
25 o~ s 15V5 o
o 2E o o pfB
- Y R+ = Y eacpe,R*RPRY (4.3)
a=1 By
where e, = 1 for « = 1,5,6 and e, = —1 for a = 2,3,4. If a gravitational wave

of wavevector k impinges on this network we can determine, by means of Eq. (3.5)
applied to each to the six detectors, the arrival times of signals for the three antennae
which have the most favourable figure pattern for the given event (and so the best
SNR). If almost three SN Rs are greater than 10 we can determine the arrival time
with the precision given by (3.12) and then reconstruct the direction of propagation
k and so estimate the arrival time of the signal on every detector of the network.
The Wiener filter applied off-line to the data allows to extract the amplitude of the
wave (multiplied by the corresponding figure pattern) at these times. Now all the
invariants can be calculated. From our analysis one expects that 7 and D are not
affected by the wave while H is greatly enhanced.

We have started to perform numerical simulations of the method. Gravitational
wave bursts, in the form of “standard pulses”, are sent with random directions and
polarizations to the network of six antennae. The simulation provides the antennae
with their thermal noise, as calculated previously for the AURIGA antenna [2]. The
responses are analyzed as outlined above. Preliminary results confirm the expected
performances. A full Monte Carlo calculation is in progress to evaluate directly the
level of confidence with which all this can be done as a function of the SN R of the

incoming signal.
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5. Conclusions

We have proposed a method which in principle solves optimally the problem of
the autonomous detection of gravitational wave bursts. The observatory, as it is evi-
dent, would have equal sensitivity for all the celestial sphere and for any polarization
state. The price to be paid is to deal with signals of amplitude A= 10Ain.

The results we give here can be easily adapted to a network of interferometric
antennae, provided their location on Earth in properly chosen. Our analysis differ
from the solution of the inverse problem worked out in ref. [21], where a somewhat
complementary point of view is taken: assuming the properties and the velocity of
propagation of gravitational waves, the minimum number of antennae is used to
reconstruct the gravitational wave burst. It should be noticed that also in this case
it is requested to deal with signals of amplitude A 10h,;y,.

From a practical point of view it may look not unreasonable, at least in cost,
to scatter over the Earth surface some 10 ultracryogenic antennae to set up the
observatory, allowing for some redundancies. Of course the primary problem to be
solved would be to evolve the present generation of antennae to a generation of more

rugged, simple to run, highly reliable ultracryogenic antennae.
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