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Introduction

* These notes discuss some basic concepts in signal processing.
Through them I will refer to the conceptual picture of a physical
experimeni shown in fig. 1
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Fig. 1

The physical information one whish to extract is carried by some
parameter (amplitude, power, duration etc) of the input signals. The
signals are physical quantities that depend on the time or on some other
physical parameter (frequency, coordinates etc.).

The physical instrumentation is thought as a black box or a
”system”, or as a series of systems, the purpose of which is to convert the
input signals in other signals, the outputs, that can be measured and
eventually converted to a set of digital data. Thus the physical apparatus act
in a sense as a matematical operator that convert a real function to some
other real function. The operator can be "measured” by calibrating the
instrumentation and, for an ideal apparatus free of any disturbance, the
input signal and its parameter would be reconstructed with infinite
precision from the knowledge of the output.

Unfortunately the physical instrumentation is plagued by the
noise. However skilled is the experimentalist in designing the apparatus,
there are fundamental noise sources that cannot be eliminated. The
disturbances that affect the physical instrumentation can be treated as
random signals which add or mix to the real input and output signals and
prevent the one-to-one reconstruction of the inputs from the knowledge of
the output.
Nevertheless the noise has in most cases some feature that
allows a partial discrimination of the signal. For instance a signal that
consists of a fast pulse can be easily discriminated from a noise that consist



in a slow drift of the instrumentation output. To take advantage of these
differences between signal and noise they have obviously to be known and
an essential part of the calibration of a physical apparatus is then the
measurement of the relevant parameters of its noise sources.

The extraction of signal from the noise and the estimate of its
parameters is finally obtained by some other "system”, an analogic or
numeric filter. The purpose of the signal processing theory is to find out
what is the filter design that allows, for given properties of signal and
noise, to estimate the signal parameters with the smallest possible
uncertainty.

These notes will proceed through the steps of the picture above:
signals, systems, stochastic processes, fundamental noise processes,
measurement of noise parameters, filtering and signal detection.



1 The Signal

I will call a signal any physical (measurable) quantity s(t) which is
a function of another physical parameter indicated here with t. I will
assume, unless differently specified, that the uncertainty with which t is
measured is neglegible, that is that the error on s due to that uncertainty,

dt dt, is neglegible in comparison to the overall uncertainty on s.

Os~

For sake of clarity I will mainly focus on the case where t is the
time (time signals), however this assumption is not necessary and t could be
any other parameter like, for instance, a space coordinate or a frequency.

I will not deal with signals depending on more than one
parameter. However the main results that will be obtained for the single
parameter case can often be extended, with no very much effort, to many
parameters signalis.

Fourier Transform
Time signals availables at the output of physical instrumentation
have limited duration and take finite values. Thus they obey the Dirichelet
condition:

oo

L’s(t)}dt <o 1

and can be Fourier transformed:

iwt
s(t)=ﬁ Js(w)elw dw 2
with
-1 t
s(w)= Js(t)e 1 dt 3

The Fourier transform converts the time signal s(t) to the
angular frequency signal s(w) which plays a crucial role in signal
processing.



s(w) is a complex number and consists of two real signals. As
s(t) is a real function however, then s(w)=s*(-w). The transform maps then
one real function given on the whole time axis to the two real functions
Re{s(w)} and Im{s(w)} that one needs to know only on one of the two
angular frequency semiaxis.

Elementary properties of Fourier transforms that will be used in
the next are shown in table 1.

Tablel
Elementary properties of Fourier transforms and selected exemples

Function Transform
1 s(t) s(w)
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Uncertainty Principle
The Fourier transform preserve the signal energy, an important
signal parameter defined by

(o]

E= J' s dt. 4

-00

In fact, from line 8 of table 1 one can see that, besides the factor 2, the
energies of s(t) and of s(w) are the same.

Despite this, the distribution of the energy for the two signals is
quite different. In fact the uncertainty principle that we discuss here shows
that the more the energy of the time signal is concentrated the more the
frequency signal is broadned.

To discuss this priciple let first give a definition of a width of a
signal. To do that one first converts a signal to a normalized energy
density f(t):

2
oL 5

(o.e]

with this density one can define a mean signal time t= ftf(t)dt and a time
-00

(00}

width dt= cI(t’-f)zf(t’)dt’. Notice that by an appropriate shift of the

time origin one can always assume t=0 without changing dt.




As the modulus of s(w) is an even function of w, the mean signal
angular frequency is always zero and the signal angular frequency width

is 5w=/\/ iw’zf(w’)dw’.

With these definition of 3t and of dw one can then evaluate a
lower limit to the product dtdw from

Jt’z s(t’)!zdt’ Jw’z s(w”) *de’
s == — -
oo o9 () 9
2
It’z s(t’) ‘4t J {c% dt’ Jt’s(t’)(%dt’
-00 & ' 65
= B2 = B2 6

Here I have used line 4 of table 1. E in eq. 6 is the energy of the
time signal.
The integral in the right hand side of eq. 6 can be performed by

part
’ ’ dS ’ 1 <2(4° 9 9 1 s
Jt () gt =5l (52 ))pmeo - ((20)pmmco]5 [52(E)d =
l .
—‘2 E 7

where I have used the observation that t's2(t’) has to vanish at t'=+co
Substituting in eq. 6 one gets

Btdw)2 = IZ 8

which is in fact the uncertainty principle. In the following table 2 I list
energies,time width and frequency width for some of the function listed in
table 1
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Notice that only for the gaussian function in the fourth row the
limit set by the uncertainty principle is reached while for the other ones the
product dtdw is much larger than 1/2 or even infinite. This is in part due
to the fact that the width of the signal along the angular frequency axis is
related to the integral of the square modulus of its derivative (eq. 11). Thus
any discontinuity in s(t), contributing by a large amount to the integral,
strongly broadens the spectrum. It can be seen in fact that the transform of
a unit step O(t), that can be obtained as the limit of the exponential

i .1 .
relaxation in line 1 of table 2 for T— o, is © and thus the associated

1
energy density decays only as ) when |w|— o0 so that the integral entering

in the definition of dw becomes infinite.
Narrowband Signals

A consequence of the uncertainty principle is that a physical
signal, which has always a finite duration, cannot have infinitely narrow
lines in its Fourier transform. A narrow line in s(w) around some angular
frequency wo, translates, in the time domain, to an approximately



sinusoidal signal of angular frequency wo. thus, to clarify this issue, let
define a narrow band signal has a signal that can be represented by:

s(t)=a(t)sin(w1t)+b(t)cos(wit) 9

where a(t) and b(t) are slowly varying function of time. With the term
slowly varying I mean that the Fourier transform of a(t) and b(t) approach
zero when w > w¢ with w¢ an angular frequency such that We<<wW1.
Usually a(t) and b(t) are called the quadrature components of the signal.

According to line 3 of table 1 the Fourier transform of the signal
is the convolution of the transforms of a(t) and b(t) with the transforms of
sin(wit) and cos(wit). These last ones are not defined in a strict sense but
can be obtained using the Dirac delta. In fact

1 iwt

sin(wit)= o E[f)(w-ww-é(wwl)lelw dw 10a
1 iwt

cos(wit)= " Jn[é(w-w1)+6(w+w1)]e dw 10b

Performing the convolution one gets that

a(w-wp-a(wtwy)  blw-w)+blw+wi)
s(w)= 2 * 5 1

As a(w) and b(w) vanish for w>we, s(w) will then be different
from zero only in the two angular frequency intervals w=+*w;*w, and
will consist of two lines of width w¢ around w=w1. If s(t) have a finite
duration T, then both a(t) and b(t) have finite duration and their time

1
width is dt=T. Thus wc>»T - If, for instance, s(t) is a gaussian packet
resulting from the product of the function n.4 in table 1 and a pure

sinusoidal term, then s(w) will consists of two lines of width \/%Bt around

wl.

Exercises



1) Find the Fourier transform of a triangular signal s(t)=1+zTE for % <t<0 , s(t)= 1_:2T t for

OStsg. Find also the signal energy, the time width and the energy width.

2) A sinusoidal signal s(t)=sinwt is switched on at time 0 and switched off at time T. What
is its Fourier transform?. Give an estimate the time and frequency width.

3) A pulsed laser beam consists of a train of 100 gaussian bursts separated by a time T=1

ms. The width of the single burst is T=1 ps. Find the Fourier transform of the beam
intensity.

Sampling and Band Limited Signals.

In the preceding sections I considered signals which are continous
functions of the parameter t. In numerical processing of signals however
one deals only with a numerable set of data sp that results from the
sampling of a continous signal at fixed time values. Usually the sampling

occurs at a fixed frequency vsso that sp=s(nT) with T=VL . I will call
S

this set of data a discrete signal.

In this section I discuss some properties of discrete signals and I
give an estimation of the loss of information related to the sampling of a
continous signal.

The Sampling Theorem
Let consider a signal s(t) whose Fourier transform is s(w) and the
sequence of its samples at fixed time interval sy=s(nT). Let form the signal

12

o %sn-sin{g(t - nT)}

pLs
n=-o° T(t = HT)

One can verify that s(nT)=s’(nT) so that the two signals have the
same samples at t=nT. Now I want to show that for a certain class of
signals the two coincide for any value of t.

The Fourier transform of s'(t) is

10



- iwnT
s'(w)=T Esn-e |wl=< 7%

n=-o

i3

0 Iw|>T

ionT

Recalling that Sfﬁ Js(w )elwIl

becomes

S’(w)=2—1;t‘ dw’s(w”) E-e i(e*w)nT

n=-co

-00

Now it can be shown! that

(00]

E. i(w-w)nT_27 Eﬁ(w w+n—)

n=-°° n__oo

so that

s'(w)= Es(w+n—)

n=-oo

13

dw one gets that, for lwlsn— , eq. 13

14

15

16

IConsider the periodic signal f(w)=Xpd(w+nw,). It can be expanded in a Fourier series

w2

with complex coefficients ck=L f(w)e'ikznw/ Wod =

Wo_ a2 e

11

L. Thus f( w)=LZKeik2ﬂw/ Wo
Wo



In order that the two transforms and thus the two signal,

coincide, one needs s(w)=0 for |w|== then s’ (w)=s(w) and

Sn- sm[—(t nT)]

s(t)=s'(t)= E 17

n=-co _(t - nT)

Thus, summarizing, if a signal is bandlimited, i.e. if it has a
Fourier transform which is zero above a certain angular frequency wmax,

Wmax
s
is sufficient to reconstruct the signal at any time. 2vmax is often called the
Nyquist frequency of the signal.
If the signal is sampled at a frequency less than the Nyquist one an
error is made called the aliasing error. It is possible? to estimate an upper
bound to the aliasing error :

than the knowledge of its samples taken at a frequency vs=2vmax=

S5O [ls(w)ldeo 18

Vs

It is also useful to estimate what is the error one makes taking a
truncated reconstruction of the signal

2 |s(t)-s’(t)|si a[ls(w-zns’(wnwm)ldws

Slﬂ [ist@ldar jzmds(wmwmax»dw]—

|wP>Wmax |wl=wmax
ﬁs(w)ldoo+ Is()ldeo- ﬁs(w)ldw LS ﬁs(w)ldw
T 0P Omax lwl<Wmax T\ 0> ®max

12



al sn-sin[%{t = nT)]
s”(t)= - 19
n=-N f(t - nT)

the r.m.s. error can be evaluated3and is given by:

00]

[1s(®)-s*()ldt=TZ pj>NIs@T)I2 20

Discrete data are aquired, processed and stored in digital form.
This means that they consist in a sequence of numbers known with a finite
number of significant digits or bits4. If the aliasing error or the truncation
error become smaller than the resolution, they become neglegible and the
representation of s(t) by s’(t) or by s”(t) become accurate within the
resolution.

Exemple: The gaussian signal in line 4 of table 1 is aquired with an 8 bits a/d converter

(relative resolution z_ﬁ) adjusted so that the full scale corresponds to the peak amplitude

2
wT
of the signal.The aliasing erroris less  then £ Je- 2 duw= iErf(TrvST), with
Tvs \/ T
sn-sin[%(t - nT)}
38s(t)=s(t)-s"(t)=Z||>N :
T
T(t - nT)
00
.| T LT
o0 sm[T(t - nT)}sm[T(t . mT)]

llﬁs(t)lzdt =Z|n|,lml>N SnSm dt)=TZ|nI>N|Sn|2'

%(t -nT) Z[—r(t -mT)

-00

4 Analog to digital converters can be found that convert data at 10-100 KHz sampling

frequency with a resolution in the range of 15-25 bits or with sampling frequency up to the

GHz with resolutions still of 6-8 bits. With N bit a number up to 2N-1 can be represented.
1

This gives a relative resolution oft 51\21—1 zwlﬂ

13



Erf the error function, or 2Erf(mvst) of the full scale. In order that this error is less than

. 3 . . e
the resolution vg=— . The truncation error can be estimated by substituting the sum in eq.
nT

NT
20 by an integral and evaluating the mean error as GVA\/ZNT N[rs(t) -s”(t)[2dt =

IA

. With T=7 this gives N=3. Thus the signal is represented just by its 7
2\ 2n.NTt

center samples taken every T sec.

The Discrete Fourier Transform

As already state the signal s(w) plays a fundamental role in signal
processing technjques. It is of great relevance then to have a practical
method for its evaluation from the corresonding time signal s(t). Here we
discuss a numeric method which is by far the most widely used in practical
experimental chains at least for signal with frequencies below the GHz
range.

As we have seen before, normally any continous signal can be
reducedS to a set of N numbers s, with 0<sn=N-1. Of a sequence of N
numbers one can define a transform, called the discrete Fourier transform
as:

N-1

2m
k
s(k)=Esne N 21
n=0
with an inversion formula given by

S It is worth to notice that strictly speaking a signal of finite duration cannot be band limited
and thus cannot be sampled with arbitrary accuracy. The most serious problem with respect
to that rises when the signal results from the actual truncation, at t=0 and t=Tax, of a
signal which is not zero at those two points. It is possible to show that if a signal is differnt
from zero only between t=0 and t=Tmax and if its derivatives up that of order n have

limited values in this same interval, than s(w) — w1, Thus in order that the signal has
small high frequency tails one needs that he has an high level of "tangency” at both t=0 and

t=Tmax. Discontinuities at the ends will cause slowly damped oscillations of s(w) at
infinity that will contribute to the integral in eq. 18. The practical way to reduce this
truncation phenomenon is to multiply the data sp by a suitably chosen "window” wp, that
goes to zero smoothly at the ends of the measuring interval. A popular window is, for

2
instance, the Hanning one defined by wn= {1 co Nm; ]]

14



N-1
2r
1 irm nk
sn=ﬁ1§) s(k)-e N 22

The sequence s(k) is periodic of period N so that one needs to
know only the terms with 0<k=N-1. In addition s(k)=s*(N-k) and s(0) is
real so that the transform contains only N independent real numbers as the
signal sp.

There exist very efficient algorithms, known as Fast Fourier
Transforms (FFT), to calculate the discrete Fourier transform of a
sequence. It is beyond the scopes of these notes to illustrate these
algorithms, we whish however point out that, because the transform
convert N numbers to N numbers, in principle the memory occupation
needed for the cajculation is just of two N components vectors, one for the
input data and one for the output. It turns out, in addition, that the number
of elementary operations, sum and product, needed to calculate a transform
is proportional approximately to NlogN and not to N2 as one would guess
from the definition in eq 21. These two features, small memory occupation
and small number of operation required, is the base of the efficiency of the
algorithm.

From the coefficients s(k) of the FFT the spectrum of the
truncated signal s”(t) in eq. 24 can be reconstructed. In fact substituting in
eq. 19 s, taken from eq. 22, and taking the Fourier transform of the
resulting expression one gets:

N-1  N-1
2n
i nk-onT
s”(w>=§Es(k)E-elN T
k=0 n=0

23

iN(%}—T k-0T)

N-1
T -
N s (/<)
k=0 1_el(_N' k-(.OT)

15



., 2n
s”(w=k ﬁ)
Notice that s(k)= T so that the coefficients s(k) are the

samples of the Fourier transform of the continous (truncated) signal taken

. . 2n . . .
at integer multiples of the angular frequency NT 1-¢ at integer multiples

of a frequency which is the inverse of the total duration NT of the

truncated signal.
iNo

The term b is an oscillating function of ¢ with period 2.
l-e

It has a large lobe at $=0 and a first zero at (b=2%. It the bears close

sin(x)

similarity to the function that enters in the expansion of the time

signal in eq. 17.3‘Eq. 23 represent thus in a sense a frequency domain
analogue of the sampling expansion of the time signal.

16



Systems

As already stated a physical instrument will be treated here as a
system that performs some mathematical operation on one or more signals,
the inputs, converting them to other signals, the outputs. Focusing on the
case of one input i(t) and one output o(t), the action of a system on the
input can be represented then as a functional operator o=T{i}. The full
knowledge about the operator T can be obtained only through an
experimental calibration procedure. For a generic operator this procedure
can be extremely complicate as it involves measuring the output at any
time for any possible value of the input at any other time. A significant
semplification is obtained in two special but very important cases.

The first case of extraordinary importance is that of linear
systems. A linear system is a system for which a principle of superposition
holds:

£l

T{aiii+aziz}=a1T{i1}+aT{iz} 24

As any signal can expanded as a linear combination of some other
properly chosed signals (orthonormal functions, Dirac delta etc) the
calibration of the instrument reduces to measuring the output due to these
signals only.

Linear systems are not just a mathematical curiosity. The
response of the major part of the physical systems can often be
approximated by a linear response if the input and the output signals have
small enough variations di(t) and do(t) about some given function of time
io(t) and 0,(t). In this small signal linear approximation the role of inputs
and outputs is taken by the signal variations di(t) and do(t) while io(t) and
0o(t) enter in setting the system response.

The second important case is when the output at a given time t is
a function of the input at the same time t

o(t)=fli(t)] 25

where f(x) is an ordinary function of real variable. Such a system is usually
called a system without memory and its calibration needs only the
measurement of the function f(x). A system without memory can only
approximate within a certain accuracy the behaviour of a physical
instrument as an arbitrary fast response would violate at least special
relativity. However one can always think to a real system as composed by
an ideal system with no memory followed by a proper delay element.



In this section we will discuss some properties of linear systems
and we will also consider one non linear systemwithout memory.

Linear Systems

Let first discuss linear systems that have only one input and one
output. A generic input signal i(t) can be written as

i(t)=_ ojo ()3 (t-£)dt=T T12n0 k;;(kT)ﬁ(t-kT) 26

it consists then of a linear conbination of an infinite sequences of Dirac
deltas shifted in time, with coefficients given by the input signals values.
Let call now h(t,t’) the output of the system for an input
consisting of a delta’ centered at time t’, d(t-t"). Due to the principle of
superposition in eq. 24 the output for the signal in eq. 26 will be:

o(t)=T Tn_r{lo k;:o(kT)h(t,kT)=_ i i(t)h(t,t)dt’ 27

and the full knowledge of the system behaviour is obtained if h(t,t’) is
measured.

Time Invariant Systems

A system is called time invariant if for any i(t) and o(t), with
o()=T{i(t)}, then o(t+t)=T{i(t+7)}. For a linear time invariant system
h(t,t")=h(t-t’) and is called the impulse response of the system. Eq. 27
becomes?:

I Not every linear system would respond with an ordinary function to a delta input.
However for almost any system we will treat here, h(t,t") can be defined at least as a
distribution.

2Actually, in order h(t,t')=h(t-t"), for many systems o(t) should be written as the sum of
two pieces one 0o(t) coming from the free evolution of the system and depending only on
the internal status of the system itself or from some initial condition, and the other coming
from the effect of the input. The system being linear, this two pieces just add up according
to:

o(t)=op(t)+ Lh(t’)i(t-t’)dt’



o(t)= jh(t’)i(t-t’)dt’ 28

The response of a linear, time invariant system to any signal can
then been calculated simply knowing the function h(t). To measure this
function in practice one has to apply to the system a pulse shorter than any
relaxation time of the system itself and with an amplitude not too big to
prevent the system to loose its linearity. Such a mesurement can be often
difficult or even impossible in practice. An alternative way is to apply to
the system a unit step signal 6(t) and measure the corresponding output
signal h.(t). h(t) can then be derived from

dh.

d e o
i af’_ih(t )8(t-t)dt’=h(t) 29

: Eq. 29 has a very important consequence. If i(t),o(t) and h(t)
admit a Fourier transform, then from the convolution theorem in line 3 of
table 1 it follows:

o(w)=i(w)h(w) 30

which is the most inportant result of the linear response theory. The
function h(w) is called the frequency response of the system.

Systems in Series

Let consider a cascade of N systems in series, i.e. with the output
on(t) of the nth system being the input in+1(t) of the (n+1)th one, eq. 30 can
be iterated to give

N
oN(w)= th(w)i1(w) 31.

k=1

We will consider this issue in some detail when we will deal with systems described by
ordinary differential equation at constant coefficients



Eq. 31, that involves an ordinary product of function, states that
the order in which the systems are located within the cascade is irrelevant.

Stability

In order that the Fourier transform of the inpulse response exists
h(t) has to obey the condition in Eq. 1. If this is the case it can be
demonstrated3 that the system output o(t) is bounded, |o(t)|< o, if the input
is bounded, li(t)l<e. A system with this property is called inconditionally
stable. Thus only inconditionally stable systems have a frequency response.

Causal Systems

A real physical system can not violate the principle of causality.
This means that the output at a given time t can only depend on the value of
the input at times, t'< t. Such system is called causal. Eq. 28 becomes in this
case: :

o(t)= fh(t’)i(t-t’)dt’ 32
0

This observation has some very important consequences. The first
is that if the system is stable, so that h(w) exists, than the real and the
imaginary parts of this complex function are no longer independent but are
related by a couple of integral equations called Kramers-Kronig dispersion
relations or simply dispersion relations. To illustrate this relations consider
that, because for causal systems h(t) is zero if t<0, then its Fourier
transform is

(o]

h(w)= e ™" 33
(0]

oo 00

31f |i(t)|<o° then th(t’)i(t-t’)Idt’smax(li(t)l) tﬂh(t’)ldt’<°°.0n the other and if for any i(t)
such that |i(t)|<e°, |o(t)|< then applying the input flh—g% , which is bound, one gets the

(ee]

output cﬂh(t)ldt that then is limited.

20



_ This has an important consequence: h(w) remains a well defined
function of w even when this parameters is taken as a complex number

y ) e b2 ] ° 99 . . o -l(x)t
w=w'+iw” provided w”< 0. With this condition e in eq. 33 becomes

1wt -|lw”t . ,
e e and the integral goes to zero if w”— -, One can
then evaluate the integral |
h(w)
J 0w 34

on a closed contour all contained in the lower half-plane (Fig 2) and get

Fig 2. Integration contour to perform the integral in eq. 34.

h i
P Jﬁ%dg +irh(w)=0 35

with P designating the principal value. Eq. 35 can be recasted as

Re{h(w)}=—x P Jh“gf%ff’)}dg 362

and

21



(o0}

Ferifi(s) = B JR—CL_%)}@_

. 36b

-00

which are the dispersion relations.

In order to know h(w) one then needs only to know either its real
part or as well its imaginary one, the other being calculable from eq. 9a or
9b. Notice that the dispersion rules are true for whatever function obeys
the condition s(t)=0 for t<0. Thus also for any signal that begins at t=0 one
needs to know only either Re{s(w)} or Im{s(w)} between O=w=oo, to
calculate s(w) for every value of w.

Exemple 2.1. A real capacitor is often modeled as an ideal one with a loss resistor in

RI(w)

parallel. The current to voltage relation of the device is given by V(w)= . If the

3 1+iwRC
current is considered as the input then the frequency response is causal (verify) and obey
eq. 36a and 36b. On the contrary if the role of V and I is reversed the system is not causal
any more.

Non stable, causal systems and Laplace transforms.

If the system is causal but not stable then a Laplace transform of
h(t) can be defined as

00}

h(p)= Jh(t)e'ptdt 37
(0]

where p is a complex number. h(p) is the Fourier transform of

h’(H)=h(t)e pt where p’ is the real part of p. h(p) exists provided that it
exists a positive nunmber po such that, for p’=po, b’(t) fullfills the
condition in eq. 1 and can be Fourier transformed. h(p) is called the
transfer function of the system. If the system is stable then obviously po can
be taken as po=0 and the transfer function for p=iw coincides with the
frequency response.
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The convolution theorem (Tablel line 3) holds4 for Laplace
transforms too provided both function in the convolution are zero for
negative times. Thus for an input such that i(t)=0 for t<0 one gets

o(p)=h(p)i(p) 38

A summary of Laplace transform properties can be found in
textbooks. Here we remind only some of them we will use in the next:

pt
J% p dt=ph(p)-h(t=0+) 39a
0
lim ph(p)= lim h(t) 39b
p—o0 : t—o o0
lim ph(p)=lim h(t) 39¢
p—® t—o0

Example 2.2. The SQUID

For what we have to discuss here, a SQUID is a non linear system the input of
which is the magnetic flux ® threading the coil in Fig. 3a and the output of which is the
voltage V in the same figure. The V-® characteristics for slow enough signals (fig. 3b) is
an almost triangular periodic pattern with amplitude AV that depends on the amplifier gain

and with period A®=¢poy~2- 10-15 Wb. For small signals 8@ around the point marked @1
in Fig. 3b the system can be treated as a linear one with a voltage to flux gain of

G=2AV/o. The time delays introduced by the whole electronic chain can be represented,
in this small signal approximation, assuming that the system has a single relaxation

constant T. The overall small signal frequency response is then

G
1+HowT

h(w)= 40

To prevent the system to run out of its linearity range, the SQUID is often used in a
feedback configuration (Fig. 3c) where the output voltage V is sent, through a suitable
feedback resistor R to a second coil inductively coupled to the SQUID with mutual

4 The proof can be found in any book mathematical methods like for instance: I. S.
Sokolnikoff and R. M. Redheffer "mathematics of physics and modern engineering” Mc
Graw-Hill
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induction M. The total flux through the SQUID is then ®¢o=® -\%4—=<I>-BV, with p=M/R.

Here we have assumed that M>0 and that the direction of the windings give the minus sign
in front of the feedback term.

input coil

) SQUID y

P
\Y AV
D) %
feedback R

1

coil L1 -
™
&) @ SQUID Y
I 2 —
i |

Fig. 3 The SQUID

The system can be than sketched as in Fig. 4
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Fig 4. The feedback scheme

Using Fourier transforms one gets

G
G 1+Hwt »
V(©)=—2— (B(w)- BV (w))= B(0)=—2— () 41
1+t 12 G 1+iwT
I+Howt

nd P=—"

with G’= a .
1+pG 1+pG

Now it can be seen that if the input to the total system undergoes a variation d®

d
the total input to the amplifier is 5¢-56V=16m . For fG>>1, a condition that can be
+

fulfilled acting either on G or on f, this is a much smaller variation, that can be inside the
linearity range of the system even if d® would not. The input to the feedback branch

undergoes a variation 3VG’ and obviously this variation has to be within the linearity range
of the feedback branch.
The feedback loop has some other interesting features that are worth to be

mentioned. First it can be seen that if GB>>1 then G’=1/B and the overall gain of the
system, for wt<<1, becomes independent of G. Without the feedback branch, any low
frequency fluctuation of the gain dG would have been converted to an output fluctuation
dV=0G-® and thus the relative output fluctuation would have been dV/V=3G/G. With the

feedback loop the effective gain is G’ whose fluctuation is 8G’= that translates to

G
(1+BG)2
0G/G
1+pG

a relative output fluctuation OV/V= <<0G/G.
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A second observation is that the frequency behaviour of the feedback ampilfier has
the same shape of the original one but the bandpass 1/1’ is now larger than 1/1. The
product gain-bandpass is however unchanged as G/T=G’/7’.

Exemple 2.3 Systems described by a linear differential equation with constant coefficients.

Consider the coordinate x(t) of a one dimensional classical damped harmonic
oscillator driven by a force f(t). The equation of motion is:

d2x .dx.,
matT+ﬁE+kX—f 42

The oscillator can be considered as a linear system whose output is x(t) and whose input is
f(t). Taking the Laplace transform of both sides for t=0 one gets.

(mp2+ﬁp+k)§(p)=f(p)+m{[%]t=0++px(o+)]+ﬁx<o+) 43
or

== +pX(0+)]+X(0+)/T
f(p)/m + [[ dt ]t=0+

p2+p/T+wo2 p2+p/T+wo2

x(p)= 44

with wo2=k/m and T=m/f. The transfer function of the system is then
B
M p2+p/1+wo2

system and depends only on the initial conditions. It can be easily cheched that the system
t

is stable and that it inpulse response is h(t)=L e 2t sin(w1t)0(t) with w12=w,2- 1/472.
w]
Any system described by a linear differential equation with constant coefficients can
be described in a similar way. If the equation is

while the second term in eq. 44, represents the free evolution of the

N M
chd&% dedki 45
dik dtk
k=0 k=0

and if we take for simplicity zero initial conditions then
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M
) diek
h(p)=532 46

et

k=0

from eq. 39c it follows that in order the system to be stable one needs M<N.
Multiple inputs and outputs.

All the results obtained above can be generalized to the case of a
system with N inputs and M outputs. the input-output relation in the time

domain will be, for a time-invariant system,

2

N w
ok(t)=z jhm(t’)i](t-t’)dt’ 47

=g -

and in the frequency domain, if the system is stable,

N
ok(w)= Z hii(w)il(w) 48
I=0

A simple exemple of a multiple inputs-outputs system is the
electric( or mechanic or electromechanic) quadrupole (Fig 5). This is a
system with a voltage and a current ( or a force and a velocity) as inputs
and a voltage and a current ( or again a force and a velocity) as outputs.
The role of inputs and outputs can be interchanged but obviously the
causality is obtained only with one of the possible choices.

li () L 1o (y)

N\

A7

v (F) v, (F)

N e

27



Fig 5. Schematic of an electromechanic quadrupole.

Exemple 2.4 The capacitor as an electromechanical quadrupole.
Consider the electromechanic displacement transducer in Fig. 4

/N

\V

Fig 6 A capacitor as an electromechanic transducer

If the capacitor is charged with a constant electric field E¢o ( constant charge
operation) for a small variation dx of the distance x between the plates, the voltage V=Ex
undergoes a variation 3V=Edx while for a small change dq of the charge q=CEx (C is the

d
capacity) the voltage changes by - , with Co the unperturbed capacity. The force on the
P Co

q2
8mepS

plates is F=% E.q= , with S the area of the plates. So a small variation dq brings

qodq
47TSOS

about a change in the force dF= =Eo0q while dx has no effect on it. With these

- .1 . s ... dx .
approximation the system is linearized and, reminding that the velocity is V=4t while the

. w
current is I=d—? , one gets

E06V((.0) " o) |

dV(w)=— .
iw iwCo
49
o) |
OF(w)= +E(.)
iw

Exercise. If a resistor is put in parallel to the capacitor, what is the force to velocity relation
in the frequancy domain

The Mixer
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Here I will discuss one exemple of system without memory that
has great importance in many applications. The system performs the
ordinary product of two input signals and is called a multiplier or a mixer-

o(t)=i1(t)-i2(t)

- Real mixers introduce obviously finite delays but can be usually
treated as ideal systems followed for instance by a low-pass element with
-t/t

impulse response h(t)=eT o(t).
If the same signal is sent to both inputs the mixer performs the
square of the input and it is called a square wave detector.

The Fourier transform of the mixer output is the convolution of
the Fourier transforms of the inputs:

ir(w)iz(w-w’) dw’ 50

8'*—58

o(w)=§7—T

this is the principal property of a mixer which is used to move along the
frequency axis the Fourier transform of any signal.

A very well known application of this property is that to the
synchronous transmission and detection of signals. Suppose that one of the
two input signals is a narrow band signal as that in eq. 9 and the signal at
the other input is a pure sinusoidal function sin(w;t). The output signal
will then be:

o(t)=a(t)sin2(w 1t)+b(t)sin(w t)cos(w 1t)=

51

=%a(t)-%a(t)cos(2w 1t)+%b(t)sin(2w 1t)

whose Fourier transform is

O(w)=a(§o)_a(w-2w1);a(w+2w1)+b(w-2wl)ji)(w+2w1) .

Because both b(w) and a(w) are limited to frequencies <<w; the
output has a line around w=0 and two lines around w=*2wj. If the output

is filterd by a suitable low pass filter with a roll-off frequency much less
than 2w, the output o’(t) will have a spectrum
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_o(w) a(w) 1
l+iwt = 2 l+ioT

0’(w) 53

and will substantially recover the signal a(t) i.e. the conponent of the
narrow band signal in-phase with sin(wt). It is straightforward to
calculate that if the mixer is driven by the signal cos (wt), then it is the
signal b(t) which is recovered. The system composed by a mixer driven by
a pure harmonic signal (or by a square wave signal; see below) and a low
pass filter is often called a phase sensitive detector (PSD)

To multiply a narrow band signal by a a periodic signal at the
carrier frequency is often called a down conversion, as the signal is moved
from the frequency region around wj], the carrier frequency, to that
around w=0. The opposite operation, the up-conversion of a low frequency
signal, is also possible again by sending the low frequency signal s(t) to a
mixer together with a pure sinusoidal or cosinusoidal carrier. In this case
the Fourier transform of the output will be

O(w)=5(w-w1)—2si(w+w1) 2

for a sinusoidal carrier and

O(w)=5(w-w1)+25(w+w1) sab

for a cosinusoidal one. If the input signal was a low frequency one the
output will be narrow-band around wj.

The up-conversion is mainly used in applications where the
transmission or the detection of the signal is easier, (lower noise, lower
attenuation etc) at frequencies higher than those where the signal energy is
originally concentrated. After the transmission or the detection, the signal
can be eventually down-converted by a PSD driven by a local oscillator and
the original behaviour recovered (Fig. 7).

s(t)
- . s(t) low pass
—> Miscer ransmission —> ) ;
5 —> media Mixer —— f1Eer .
sin(®t) cos(it) sin(@t) cos(at)
local
oscillator

Fig 7 Modulation-demodulation scheme
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Exemple. Signal chopping and lock-in amplifier.

The light coming from a point source is detected by a detector subject to low
frequency disturbances like drifts or flicker noise. If a rotating wheel with a certain nunber
of equally spaced windows is inserted on the light path, the intensity of light coming from
the source and reaching the detector will be a square wave whose period will be T/N , With
T the rotation period of the wheel and N the number of windows, and with amplitude
proportional to the intensity of the point source. The signal can then be recovered by a
PSD. In ordinary applications of this kind the PSD is not driven by an harmonic signal but
instead by a square wave signal (lock-in amplifiers) which is much easier to generate
starting from whatever periodic waveform. If the signal to be recovered is itself a square
wave, this is of no consequence (verify). If however only the fundamental harmonic of the
narrowband signal has to be recovered, the signal has to be prefiltered by some lowpass
filter suppressing high order harmonics. In fact a square wave periodic signal can be

expanded as a series of odd harmonics of the signal frequency |, sign[sin(wt)]=

(e e]

IZ fl%r_qsin[(2k+l)w1t] so that the mixing to a square wave down-converts all the odd
=0

2
harmonics in the input signal , though eachone attenuated by a factor 1/(2k+1).

A phase sensitive detector can also be used to measure the Fourier
transform of a signal. In fact the output spectrum being
s(w-wp)-s(w+wy) . . s(w-w)+s(w+wr)
os(w)= 2i(1+iwT) (sine wave drive) or oc(w)= 2(1+iw1)
(cosine wave drive), if T is chosen that long that s(w) can be considered a
constant over any frequency interval Aw<1/1, then one gets that 0g(0)=~-

Im{s(w1)}, oc(0)~Re{s(w1)}.




The Noise

Physical systems are affected by random noise. In the framework
of the theory of probability this translates to two facts. On one side a single
repetition of an experiment has to be considered an element of a statistical
ensemble. As a consequence the value of any signal at a given time t, s(t),
can only be predicted in a statistical way. On the other hand, within the
single repetition of the experiment, s(t) is a fixed function of time that can
be measured and, for instance, recorded on a magnetic disk.

In a statistical experiment, whenever to every possible outcome &
of the experiment a number v(&) is assigned, one says that a random
variable v has been defined. If to every £ a function of a parameter t, let
call it x(t,£), is instead assigned , we say that a stochastic process x(t) has
been defined. Thus a noisy signal in a physical apparatus is considered in
this framework as a stochastic process.

The statistical properties of a random variable v are known when
its probability density function fy(x) is given. A stochastic process consists
of a continous ensemble of random variables which are the values of the
process for all the possible choices of t. Its statistical properties are thus
known only when it is given the infinite set of probability densities fx(1)(x),
fx (1), x(0)&Y), fx(t),x(t),x(t")(X,y,z) etc.. Despite this, most of the
information in physical problems is contained in low order densities and in
their moments! . Among these the most important ones, that we will widely
use in the following, are the mean value?

(o]

n()=<x(0)>= [xfx(()dx 55

-00

the autocorrelation

! The density fX(tO),X(tl),,,,,X(tn)(xo,xl»nnxn) is called a density of nth order. Consider
a set of n random variables v1,,,vn and their probability density fy v (X1,,,,,Xn), a kth
order moment is defined as the ensemble average

(e o]

o n
J LdXIan XIml"xnrnl’l fvl,,,Vn(xlnanxn) with Zmi=k'
- i=1

21 will indicate with <> the ensemble mean value of any quantity
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(o]

R(t,0)=<x(D)x(1)>= J [xvEx(x(e)(x.y)dxdy 56

-00

and the autocovariance
C(t,t)=<[x O-nWIx ©)-n)]=REL)-nOnE) 57

notice that <x2(t)>=R(t,t), that the variance 02 (1)=<x2(t)>-n2()=C(t,1)
and that the autocovariance is the autocorrelation of the zero mean process

x(D-n() .

Example 3.1 Shot Noise
Consider the time interval 0= t <T and choose one time instant t] at random. With
”at random” I mean’that the random variable t{ has a uniform distribution so that the
-1 : -t
probability that ta < t] < tpis P{ta=<t] < tp}= tha for th=ta=0, If the experiment is
repeated N times, so that the N random variables t{,,,,,,tN are independent, then the
probability to get k points in the interval ta < t] < tp, will be given by the binomial
probability

k N-k
N! th-t -t
Pl N)=rN-o! [bTa] [ 1_%3] 58

while the probabilty to get k points in the above interval and k’ in the interval tc=t=<tq,
assuming that these two intervals do not overlap, is given by

NI [tb-ta] : [td-tc] k’( | tota mJ

N-k-k’
59

POk N)=gremN-i)T | T T T T

If N and T both — but N/T=A, then taking the limits of eq. 58 and 59 one gets

60

k
AMtb-ta) [ A(th-
— (tb-ta)[ (tbkt!a)]

and

b

k k
-A(tb-ta) [ A(tp- A(td- '
Bk e tb-ta) (tbkt?)] M tc)[x(tdkt:;!)] _

61
=P(k)-P(k’)
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Thus the random variable k is Poisson distributed, and the number of points in two
non overlapping time intervals are independent random variables.
Consider now the stochastic process:

x(t)=X,t;<t 6(t-t}) 62

that counts the number of points such that ti<t. This process is a good model for all
physical situations where a beam of particles hits a target or a detector located at a certain
position in space. tj is then the arrival time of the ith particle of the beam and x(t) is the
total number of particles that have already hit the detector at time t.

For a specific repetition of the experiment x(t) is just a never decreasing staircase
curve made of steps of random time duration and unit height, while for a fixed time t, itis a
Poisson distributed random variable.

The mean value of x(t) is n(t)=At. The autocorrelation can be evaluated using the
property that the numbers of points in two non overlapping intervals are independent
variables. This means that their joint probability density is just the product of their
respective densities and, as a consequence, the mean value of their product is just the
product of their mean values. The number of points between 0 and t is x(t) while the

number of points between t and ', assuming t=t’, is x(t')-x(t). Thus
<[x(?)-x(D)]x()]>=R(t,t)-R(t,)=A(t-t)-At 63

and considering that R(t,t)=<x2(t)>=7\t+7\2t2 (from basic properties of Poisson
distribution), one gets

R(t't)=A2¢t+At 64
and

C(t',t)=At 65

A special class of stochastic processes is that of normal processes.
A process is called normal if the joint probability density of any order is
normal. With normal I mean that:

fx(to)’x(tl ),,,,,X(tn)(XO,X1,,,,,Xn)=

66

1 n
e

i,j=1
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where the matrix pjj is the inverse of C(ti,t;) and |u| is its determinant.
As it can be seen from eq. the statistical properties of a process
of this kind are all contained in the mean value and in the autocorrelation.

Example 3.2 High density shot noise

In the limit A—, in exemple 3.1, the Poisson distribution tends to the Gaussian
one. Thus in this limit x(t) is a normal random variable. On the other side the process

Ox(t)=x(t+7)-x(t) and x(t) are statistically independent so their joint probability density is
just the product of two Gaussians and is then a Gaussian. Whatever linear transformation

of Gaussian random variables still gives Gaussian variables so that x(t+1)=dx(t)+x(t) and
x(t) are joint Gaussian.

Stationary processes.

If the statistical properties of a process are not affected by a shift
of the time origin, t— t+At, then the process is called stationary. For a
stationary process, the density functions of any order can only depend on
time delays and not on the single time arguments of the process. Thus the
first order density, fx(t)(x), has to be independent of time, fx(t)(x)=fx(x),
and the second order one fx(t,),x(t,)(x,,x;) can only depend on ty-t1 ,

fx,x(X,y,to-t1). As a consequence the mean value is independent of time
n(t)=n and the autocorrelation is R(t,t')=R(r) with t=t-t".

A stochastic processes with time independent mean value and with
the autocorrelation depending only on the delay t-t’ is called wide sense
stationary. A stationary process is wide sense stationary. If a process is
normal and wide sense stationary it is also stationary.

The autocorrelation of a stationary process has some simple
properties that is worth mentioning. From the defintion eq. it follows that

R(t)=R(-1). 67

from <[x(t+1)£x(t)]2>=2R(0)+2R(1)=0 one gets that
R(0)=|R(®) 68

Notice that if for T > 7o R(t) vanishes, then x(t) and x(t+7)
become uncorrelated and, if the process is normal, they become also
independent.

In order to give a physical interpretation of the autocorrelation,
let consider a stationary gaussian process with zero mean. It can be shown
that the conditional probability density of the process x(t+7) at time t+r,
with the condition of having found the value x(t) at time t has a mean
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value <x(t+1)|x(t)>=x(t)R(t)/R(0) and variance 02=R(0)[1-R2(t)/R2(0)].
Thus for T— 0 and R(t)/R(0)— 1 x(t+71) fluctuates with very small
uncertainty around the previous value x(t). As soon as R(t)/R(0)
approaches zero, both the mean value goes to zero, which is the
unconditional mean value of the process, and the variance goes to R(0),
which again is its unconditional value. The autocorrelation is then
considered often as a measure of the "memory” of the process.

Exemple 3.3: Random Telegraph Signal

Consider a physical system that has only two possible states. The states are
identified by the value of some physical quantity x that can take the values x=1 in one of the
two states and x=0 in the other one. We will assume that if the system is found at time t in

the state x=1(0) its probability to be found in the state x=0(1) after a very short time T is p-
T (p+7). These two probabilities are conditional probabilities. In order to get the total

probability for the system to be found in the state x=1 at a time t+T one has to multiply the
total probability P3(t) of having found the system at time t in the x=1 state, by the

probability (1-p-T) that the system had remained in that state during the time t,t+7. To that
one shoud then add the probability of having found the system in the state x=0 at time t,

Po(t)=1-P1(t) times the probability p+T of jumping from this state to the other. Then

P1(t+1)-P1(t
P1(t+)=P1O(1-pH(1-P1(O)p7 or LD LEP (0. (p.+p+)=ps. Taking th limit

dp
for T— 0 one gets d_tl + P1(p++p-)=p+. The solution is

2 A
P1(t)=P1(0)e ' + Pm[ 1-e t] 69

P+
pP+tD-

If P1(0)=Pw then P1(t)=P1(0)=Pe.
Let now define the process x(t) given by the istantaneous value of x at time t. x(t)
can only take the values x=0 or x=1. In the case of the time independent solution P(t)=Pe,

the mean value of the process x(t) is independent of time and is n=Pe . If instead the
process is ”prepared” in the state x=1 at t=0 , then P,(0)=1 and the mean value relaxes to

its stationary value in a time = 1/A.
Let now calculate the autocorrelation. To do that we have to calculate the probability

P11(t,7) that the system is found at x=1 both at time t and at time t+7. The autocorrelation is
then R(t,t+7)= P11(t,7) as in any other case x(t)x(t+1)=0. Now one can calculate that

with A=p++p. Peo=

P11(t,7+3t)=P11(t,7)(1-p-0)+P10(t,T)p+dt
and
P10o(t, 7+0t)=P 1 1(t,D)p-dt+P10(t,T)(1-p-dt)
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where P10(t,7) is the probability to find the system with x=1 at t and x=0 at t+r Taking the
limit for 3t—0 we get

dP11(t,
dP11{t,7) + p-P11(t,1)-p+P10(t,1)=0 70a

and

dPqo(t,
dP1o(t,v) + p+P10(t,7)-p-P11(t,1)=0 70b

that can be integrated using Laplace transforms to give
P11(tiw)(iw+p.)-P10(t,iw)p+=P 1(t,7=07) 70c
Pr1(tiw)p.  +P1o(tiw)(iw+p+)=P1o(t,T=0") 70d

Now P11(t,7=0")=P1(t) and P 10(t,7=0")=0 so that
1

P11(t,iw)=P] 1(iw)=P1(t)|:'L-Poo+_ . (1-Pm)} 71
iw iw+A
that, in the time domain becomes, for =0,
AT
P11(t,m)=R(t,T)=P 1(t)[Poo+( 1-Pwo)e :I 72

while the autocovariance, after some calculation, is

-AT -At
C(t,1)=Pi(t)e  { 1-Po +[P - P1(0)] e } 73

Notice that eq. 72 and 73 both hold even for negative T provided |1 is substituted

to T in the exponentials and provided also that t+1=0. If t—c then R depends only on |1]

and the process is wide sense stationary . A process of this kind is called asyntotically wide
sense stationary. It can be demonstarted that it is asyntotically stationary in strict sense too.

It is worth now to notice that if the system is found at t=0 in the state x=1, after At

seconds the interval in which it is probably found is n(At)*o(At) = n(At)+ Y C(At,0). For

AAt<<1 this gives n(At)xo(At)=12\/(1-Pw)AAt so that the system preserve the memory

of his previous state for a time 1/A which is the time decay constant of its stationary
autocorrelation.

If the system we are speaking of is in thermal equilibrium, then
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Fi-F, Fi-Fo

2 " kgT -(p+p+)ll
=e KBT 4nd C(T)=—em e , where F1 gis the free energy of

1+e- kBT ]
the state x=1,0. We will use this result later on.

P.
P

B[R

Power Spectrum

If a process is wide sense stationary, then its autocorrelation is a
function of the single variable T and can be Fourier transformed. The
Fourier transform of the autocorrelation

o)

S(w)= JR(T)C-indT 74
-

is called the power spectrum or the power spectral density of the stochastic
process and plays a role of paramount importance in noise analysis (see
below). Notice that, because R(t)=R(-1), then S(w)=0. Also notice that

<x2>=RO)=5- [S(w)dw 75

At the and of this section, let briefly extend the basic definitions
to the case of more than one stochastic process. The statistical properties of
two stochastic processes x(t) and y(t) are known when the joint probability
densities of any order are given. As in the case of one single stochastic
process, most of the information is often contained in the densities and in
the moments of lowest order such as the cross correlation:

Rxy(t,t)=<x()y(t)> 76
and the crosscovariance

Cxy(t,1)=Rxy(t,t)-nx(t)ny(t) 77
two processes are joint stationary if their joint statistics are unaffected by a
time origin shift and they are only wide sense stationary if only their mean

values and their auto and crosscorrelations are unaffected by the shift. In
this case the crosscorrelation can be Fourier transformed and a cross-
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power spectrum Sxy(w) can be defined. Further properties of the
crosscorrelation will be discussed in the following.

Stochastic processes and linear systems

As already stated, within a single repetition of an experiment, a
stochastic process is a well defined function of its parameter. It can then be
treated as any other signal and used as an input to a linear system. Suppose
the system is described by a non stationary inpulse response h(t,t’), then the
output of the system will just described by eq. 27 with x(t) in place of i(t).
The output, let’s call it y(t), will now be a stochastic process. Indeed, as in
any other repetition of the experiment x(t) will change in a non fully
predictable way, so will do y(t).

To evaluate the mean value of y(t) consider that an integral is just
a limit of a linear combination and that the mean value of a linear
combination of gandom variables is just the linear combination of their
mean values. As a‘consequence:

<y(®>=< [h(t,0)x(r)dt>= [h(tD)<x(r)>dt 78

With the same rule one can evaluate the cross correlation between
the input and the output

<Oy ()>= [h(,)<x(Ox(t")>dt” 79

and the autocorrelation of the output

o0
(o]

<y(ty(t)>= J fh(t,t”)h(t’,t*)<x(t”)x(t*)>dt”dt* 80

-00

The same reasoning can be extended to whatever moment of
inputs and outputs of any linear system characterized by a linear operator
L acting on a function of the argument t :

<Ly (it} L, (i) Lg, (i)} >=Ly Liy Ly {<iGDIti(t)>} 81
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then

and

Thus for instance if the system performs the ordinary derivative

dx

y(t=5; 82

<y@=5 83
ORxx(t,t’

x(y(e)-2tD 84
02Rxx(t,t)

<yOy©)>="3 50 85

If both the system is time invariant at the the input is stationary,

then the output is stationary and equations from 78 to 85 become

<y>=<x> [h(t)dt=h(w=0) 78a
<Xy (t+1)>=Rxy(D)= [h(®)Rxx(r-t)dt” 79a

(00}

<yy(t+1)>=Ryy(1)= j fh(t’)h(t”)Rxx(r-t”+t’)dt’dt” 80a

-00
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d<x>

<Y(t)>= dt =() 83a
, dRxx(t
<x(t),y\t+‘r)>=—)g,:—) 84a
d2Rxx(1)
<y(t),y(t+r)>=-5‘7‘2( 85a

Eq. 79a and 80a can be Fourier transformed to obtain the two
fundamental results:

Sxy(w)=h(w)Sxx(w) 86

2
Syy(w)=h*(w)h(03)sxx(w)='h(w) ’ Sxx(w) 87

Exemple 3.4 The shot noise current.
Taking the derivative of the process in eq. 62 one obtains a new process y(t):

Y(t)=2i,tist B(t-tj) 88

if gx(t) represents the total charge arrived on a detector due to a flux of elementary carriers
of charge q, then qy(t) represents the electric current trough the detector surface.
The mean value of y(t) is

dAt
ny(t)=w=7\ 89

to calculate the autocorrelation of y(t) let rewrite that of x(t) as Ryx(t,0)=A2tC+A[t-(t-
t)6(t’-t)]; applying eq. 85 we get

Ryy(t,t)=A2+A ﬁ d[t’-(t’;itt)’e(t’-t)]]=

90

41



=)\2+7\%[(l-(t’-t)6(t’-t)-6(t’-t)]=7\2+7\6(t’-t)

The results above have been obtained for both t and t’ >0. However the beginning
of the process can now be pushed backward to - and thus the process has become (wide
sense) stationary.

Notice that the ”fluctuating current” y(t)-A has zero mean and autocorrelation AX(T).
The power spectrum is then Syy(w)=A. A frequency independent power spectrum is called

a white noise. If A— o than the process is also normal.
If the detector has a finite response time, one can then model the system as an ideal

shot noise filtered by a low pass filter with inpulse response h(w)= . The filter output

I+t
z(t) will then be
-(t-t)/1
2(0)= X, ty=t B(t-)°
T
with mean value A. The power spectrum of the fluctuating part is just Soz(w)= 7\2 5
1+w=t

Notice that the root mean square deviation of the fluctuating part of the unfiltered
signal is <y2>=Ad(0)=c while that of the filtered one is

[oe]

<g>=t L.
21 | 1+w22 2t

The detector measures then a mean current I=qA with root mean square fluctuation

A 1 .
01:(\/2— = \/g: By measuring oy, [ and T the charge of the carrier q can be obtained.
T T

Exemple 3.5 The spectral density as a density of noise energy per unit angular frequency.
To clarify the physical meaning of the power spectrum of a stationary noise,
assume that a stationary random force f(t) with spectrum Sf(w) drives the harmonic

oscillator of example 2.3.
The frequency response of the oscillator is

B .

. 91
m ;2. w2 +He/t

If the Q-factor of the oscillator is Q>>1, |h(w)| is a narrow line that peaks at

T
resonance, W=Wo, at the value |h(w)| ~ —— and has a bandwith dw= 1/1. The oscillator
mwo

is then a good narrow band filter, though it amplifies any force signal with angular
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frequency wg by the factor . To get rid of this unwanted amplification we will divide

mwo
the oscillator coordinate by the same factor so that the overall response of the filter is now

Wo/T

Wo2 - W2 +iw/T

h(w)= 91a

Applying eq. 87 one obtains, for the power spectrum of the filter output x(t)

w02 . 1
2 (002 - ©2)2 +2/12

Sx(w) St(w) 92

If Sf(w) is a slowly changing function of w, then it can be considered a constant
within the range wo*1/T and eq. 92 becomes

2
sx(w)—w‘; : L Sf(wo) 92a
T (woz - w2)2 +w2/‘r2

If £(t) has zero mean, x(t) will have zero mean too. Its r.m.s deviation can be then
evaluated from

Sf(wo)
2T

[o/0]
P, . O[Sx(w)dw= 93
2T .

Sflwo)
27

and is then ox= . Thus the total “noise energy” of the force signal in a

frequency band dw=%1/1 around the frequency w=wgq, is S{wo)-dw and the spectral
density plays the role of an energy density per unit angular frequency.

Thermal Noise

We now will discuss a source of noise which has great importance
in many experimental apparatuses. I will use the discussion of this noise
phenomenon has a mean to illustrate various aspects of the ideas we have
discussed up to now. I will focus on linear electrical and mechanical
devices though the results obtained are of a more general relevance. I will
briefly discuss at the end a general theory that applies to whatever physical
system in thermal equilibrium.

Let consider first a small mass moving in a viscous fluid. The
mass is small compared to the precision of the measurement of its position
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but it is larger than the molecular scale. The scattering of the fluid
molecules give random inpulses to the particle that is then subject to a
stochastic force f(t). As a consequence, the position of the particle x(t) and
its velocity v(t) are both stochastic processes. The force has a non zero
mean value: it is known that, if the particle moves relative to the fluid with
velocity v(t), then the mean value of the force is <f(t)>=-pv(t). The force
can then be separated in a mean force <f(t)> and in a random component
f(O)=F(t)-<£(t)>

As the time scale of the observation of the particle motion is
- usually much longer then that of the molecular collisions, the force can be
assumed to result from many statistically independent collisions. This has
two consequencies: on one side the statistical memory of the process will
decay much faster than any measurement time, so that the autocorrelation
of f(t) can be assumed to be delta-like, R(t)=Pd(t), with P a constant. On
the other side it is likely that the force is a normal process as a
consequence of the central limit theorem that states that a linear
combination of ~independent random variables tends rapidly to be
distributed normally when the number of variables increases. Thus,
summarizing, the force f((t) is a white gaussian noise with zero mean and
power spectrum Sf(w)=P.

The velocity of the particle has to obey Newton’s law, mddlt=f(t)

that translates into:

dv B _fr
d "mV m 94

The velocity is then the output of a linear system the input of which is the
random white force f;. The transfer function of the system is

1T
(@)= - Trier 95
with T*=% . The power spectrum of the velocity is thus
1 Pr*2
SW@ M2 Tr2e™2 %

the mean square velocity is readily obtained from
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L, w ‘
<v2>=ﬂ- J.Sv(w)dw=2l:;2 97

£
and the mean kinetik energy <Ek>—l;im .

Now, according to tiie equipartition theorem, the mean kinetic
energy of a free particle at thermodinamic equilibrium is <Ek>=% kBT so
that P=2kgTm/t"=2kgTp. Thus, within this model

Sf(w)=2ksTp 98a

and

E 2kpT

SU0F o Tro2r™2 98b
If a force focos(wt) is applied to the particle, the velocity will

for™ cos(wt)+wt*sin(wt
then be v(t)=— (whtorsin(wt)

and the mean energy dissipated per

m 1+w2t*2
_ 1 fo2t* 1 .
cycle will be E=§ m 1+w2r2 - Thus the fluctuation of the velocity

contains the same coefficient that links the energy dissipation to the square
of the amplitude of the driving frorce. This is only a special result of a
more general theorem, called the fluctuation dissipation theorem, that we
will discuss later on.

Exemple 3.5. Brownian noise in the harmonic oscillator.

We can apply the result we already obtained for a free particle in a viscous fluid to
discuss the slightly more complicate case of a particle in a viscous fluid which is also
subject to the action of an elastic force. This is a good model for any mechanical damped
oscillator at thermal equilibrium.

The equation of motion of the harmonic oscillator is eq. 42. The oscillator is than a

1
2 . If the
Wo% -wW< Hiw/T
stochastic force due to the damping is used as the input the output will have a spectrum:

linear system with frequency response h(w)=$ .

2BkBT | 1
m? (0,2 . u2)2+w2/r2

Sx(w)= 99

The autocorrelation can be calculated from 99 and is
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B -t/21
R(t)= kot e [cos(wit) +Lsin(w1)] 100
mw02 21T

1

One can immediately check that the average pontential energy <U>=§

1 y .
mw02<x2>= 3 kBT so that the method is self consistent.
The oscillator noise is a ” narrowband” noise: Its spectrum is made of two lines

centered around w]1=tweV 1- 1/4Q2.

Thermal noise in linear networks

The dissipation that gives origin to Ohm’s low in ordinary
resistors also take place because a large amount of uncorrelated scattering
events as in the case of the particle moving in the fluid. It is again a
reasonable model to add to the mean value voltage V(t)=RI(t) a random
zero mean gaussian fluctuating voltage V (t) with autocorrelation
R(7)=Pd(1). In the language of the linear circuit theory this translates to
thinking at the resistor as an ideal element followed by a random voltage
generator that generates the V(t) (Fig 8a).

Fig 8

Let now put this element in series to an ideal capacitor of capacitance C,
as in Fig 8b. V (t) can then be considered as an input to a linear circuit
whose output is the voltage V¢(t) across the capacitor. The frequency
response of the linear system is h(w)=(1+iwRC)-! so that the power

: P
spectrum of the output is Svc(w)=m. The mean square value of
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(00}

i 1 Pdw P . :
V() is <V°2>=E - Jl+inC = 5RC- Again inposing that the mean

-00

energy stored in the capacitor has to be equal to % kT, one gets:

P=2kTR 101

Notice that eq. 98a can be derived from eq. 101 on the basis of
the electromechanical equivalence voltage— force current— velocity.

If a resistor can be modeled as in Fig. 8a, than by the voltage
current substitution it can also be modeled as an ideal resistor with a
current generator in parallel that generates a random current I(t)=V (t)/R.
The spectral density of the current is than Sp(w)=Sy(w)/R2=2kT/R.

To calculate the voltage and current noise in more complicate
circuits, one can then associate to any resistor a white noise generator with
spectrum given by eq. 101, the noise voltages coming from different
generators being independent. It is useful, in this kind of calculations, to
know the following two rules: if x(t) and y(t) are two stationary random
processes and z(t)=ax(t)+by(t), then

Rzz(1)=a2Ryx(1)+b2Ryy(1)+ab[R xy (1)+ Ry (-1)] 102a
and
Szz(w)=a2Sxx(T)+b2Syy(1)+2abRe{ Sxy(w)} 102b.
Example 3.6
Consider the circuit in Fig 9
: Rz :: C
Fig 9

The resistor R generates the voltage V1 and the resistor R gives origin to the voltage
V2. The voltage across the capacitor in the frequency domain would be, for ordinary
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R
signals V¢ = Vi(wR2 + Va(oR1 . Because the two contributions are
Ri+R2+iwCR1R2  R1+R2+iwCRIR2

statistically independent, the spectrum of V ¢ will just be the sum of the two and thus will
2kTRR22 N 2kTRR 12

(R1#+R2)2+(wCR1R2)2  (R1*+R2)2+(wCRR2)?

be Sy c(w)= . It is immediate to check

that SV w)= _ IRy with R/zhe parallel resistance of the two resistors.
1+(wCR/)?

Alternatively, if one wants to know the voltage noise spectrum
between two points of a linear network one can consider the result in the
following Suppose between two point of a network there is an impedance
Z(w). Suppose that a resistor is connected to the port. The thermal noise
voltage VR(t) due to the resistor will induce a random current Irz(t) in
the port and a voltage VRz(t) across it. The mean power dissipated by the
thermal noise would be P=<VRrz(t)Irz(t)>=Ry1(0). Now the voltage
VRrz() can be considered as the output of a linear device with frequency
response Z(w) whose input is IRz(t). As a consequence the cross-spectrum
of Vrz(t) and Irz(t) will be Syv1(w)=S11(w)Z(w). On the other hand
Irz(t) is the output of a linar filter whose frequency response is (Z(w)+R)-

_2KTR
I and the input of which is VR(). so that SH:IZ(w)+R|2 - The mean power

1
PR—»Z=RVI(0)=§1,; JE(ZL%)I}}@Z(‘“)M=$ J%Re{z(w)}dw’

where I have used the fact that Im{Z(w)} is an odd function of w and does
not contribute to the integral.

The resistors present in the network will produce a random
voltage that can be tought as due to a voltage generator in parallel to Z(w)
with spectral density Szz(w). This generator will dissipate power into the
resistor. The power can be calculated as above interchanging the role of

o0

1 Szz(w)
the resistor and the impedance.One than getsPrR—z=7 - L Z(w)+R2 Rdw.

-0

At thermal equilibrium Pr— z=Pz-R and then

Szz(w)=2kTRe{Z(w)} 103
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The fundamental result in eq. 103 can be translated in term of
current noise assuming a current generator in parallel with Z(w) and with
spectral density S(w)=2kTRe{Z(w)}/|Z(w)|2=2kTRe{Y(w)} with Y(w) the
admittance of the port.

The Fourier transform of S;z(w), the autocorrelation of the noise
R;z(T), is the Fourier transform of kT2Re{Z(w)}=kT[Z(w)+Z*(w)].
Calling Z(t) the transform of Z(w) then the autocorrelation of the noise is
R(1)=kT[Z(1)+Z(-7)]. Because linear devices in electromagnetic network
are causal Z(t) vanishes for t<0 so that the autocorrelation is
R(1t)=kTZ(|t]). Z(w) can in addition be considered a Laplace transform
taken for p=iw. Then eq. 39c¢ tells that wlgnoo iwZ(w)=Z(t=0). This result

can be used to calculate the mean square fluctuation of the voltage across
the impedance as

kT
<V22((«0)>=€ 104

1
where we have defined c- lim iwZ(w). A similar theorem holds for

w—
currents substituting admittances to impedances and inductances to
capacitances.

Narrow band noise
Consider the process
x (t)=a(t)cos(wot)-b(t)sin(wet) 105

where a(t) and b(t) are two zero mean joint stationary stochastic processes
and wo is a number. The mean value of the process is zero and the

autocorrelation is:
Rxx(t,t")=Raa(t)cos(wot)cos(wot)+Rep(t)sin(wot)sin(wet’)-

106
Rab(1t)cos(wot)sin(wet’)-Rap(-T)sin(wet)cos(wet’)
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Thus the process x(t) can be wide sense stationary only if Raa(t)=Rbb(1)
and Rap(t)=-Rap(-7). If this is the case then the autocorrelation of x(t) is

Rxx(T)=Raa(t)cos(wot)+Rap(T)sin(wot) 107

and the spectrum is

Sxx(6)=5 [Saa(©-000)*Saa(to+wo)] -
108
- 2 [Sab(e-600)-Sab(w+0)]

If the processes a(t) and b(t) have spectra limited to frequencies
much less than wo, then x(t) will have a spectrum made of two lines
around * we and will then consist basically of a sinusoid at frequency w,
of random phase and amplitude.

It turns out that any stationary process can be represented as in
eq. 105. To show this assume that a process x(t) is given by eq. 105 and
that a second process y(t) is given by

y(t)=a(t)sin(wot)+b(t)cos(wot) 105a
the autocorrelation of this second process will be
Ryy(1)=Raa(t)cos(woT)+Rab(T)sin(wot) 107a
while the crosscorrelation with x(t) is
Rxy(1)=-Raa(t)sin(wom)+Rab(T)cos(woT) 108
Eq. 107 and 108 can be seen as an orthogonal transformation of
Raa(t)and Rap(T) to Rxx(1) and Rxy(t). The transformation can be inverted
so that
Raa(1)=Ryx(1)cos(woT)-Rxy(T)sin(wor) 109a
Rab(T)=Rxx(T)sin(woT)+Rxy(T)cos(wot) 109a

- Thus, whatever the choice of the odd function Rxy(), both Raa(T)
and Rpp(t) can be calculated. If one, for instance, takes Rxy(1)=0 then
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Raa(t)=Rxx(1)cos(wot) and Rap(t)=Rxx(1)sin(wot). In this last case
evidently

Saa(w)=sbb(w)—_21 [Sxx(w-wo)*+Sxx(w+wo)] 110a

Sablt)=5; [Sxx(e-w0)-Sxx(w+o)] 110b

As an example consider the thermal noise of the harmonic
oscillator in eq. 99. If one takes

kgT
Saa(w):(mrw 2] {wZ + 1/412] I11a
and
kgT -iw/wi
Sab(1) merZJ'{wz + 1/4T2J 111b

then x(t) can be written as x(t)=a(t)cos(w1t)-b(t)sin(w1t). Thus the
process consists of two sinusoids shifted by n/2 the amplitudes of which are
two stationary random processes. Raa(t) and Rap(t) are given by:

kpT 2
Raa(t)= [mf’, 2] e 1122
and
kpT Y( 1 ) -Itl2
Rab(t)={mgozH2w1] o " [26(1)-1] 112b

Because Rab(0) is zero the two random variables a(t) and b(t)
taken at the same time are independent. This is not true for the processes
themselves that become independent only in the limit of high merit factor
WwlT = °o.

1/f Noise

As a last exemple of a noise process which has great relevance in
applications let discuss the so called 1/f noise. Historically this kind of
process, that plagues any physical instrumentation, was first studied with
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much effort in metal film resistors and in semiconductors. In this systems
the process is a voltage noise that only shows up when the device is biased
by a current I. The measured spectral density of this voltage is well
represented by:

I2R20 27

Sv(w)= Ndop

113

where R is the resistance, N¢ is the charge carrier total number and a is a
constant that for metallic film resistor is of the order of 10-2. The exponent
D is always a number close to 1. At least in some case it has been shown
that the noise comes from equilibrium fluctuations of the resistivity.

Fluctuating physical quantities showing 1/f spectra have
successively been shown to exist in many very different physical situations.
Also thermal noise with 1/f spectra has been measured in quite a few
magnetic systems: -

To discuss the physics of the 1/f noise goes beyond the scope of
these notes. I want to elaborate here only on some features of this kind of
noise which are relevant to the signal detection theory.

A spectrum like that in eq. 113 can not even have a Fourier
transform without some cutoff at both high and low frequencies. To
provide these cutoffs in a natural way let consider that in many physical
systems the 1/f noise is though to come from the incoherent superposition
of the fluctuations of many independent subsystems each one showing an
autocorrelation with a simple exponential relaxation. Though this model
could not be of general validity, it is useful to provide a well behaved
mathematical description. Suppose that the noise is then the sum of a series
of stochastic processes each one with autocorrelation

-Itl/
R(t)=x2e % 114
and with spectrum
2x21
S((.O)—1+(w1_)2 115
1
o

Assume also that the time constants T have a distribution f(r)= [ (t1/12) for

11 = T =72 and zero elsewhere. This distribution corresponds to a uniform
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distribution of the logarithm of the time constants. The total noise spectrum
will be: '

T2
S oy | B
T1
%2 1 - | 116
= o) [l -[atn(wr2)-atn(wr)]~5 Moy o]

where we have assumed wt<<1<<wty.
The autocorrelation of such a system is:

R(7)=\F(x2,In(t2/t)\I(11,72,\F(e\S\UP10(-|t|/1),T)dt) =\O(\S\UP18(=x2
for t=0 )\S\DO18(= \F(x2,In(t2/t1))[In(ty/|t])-
0.5772] for t1<< |t| <<m))117

Notice that if T2 >>|t | the residual logarithmic dependence on t] is
just a small correction to the overall autocorrelation

An interesting quantity that gives an approximate idea of the
dynamic of a process is the mean square variation on a time T defined as

A2x(T)=<[x(t+T)-x(t)]2> = 2R(0)-2R(T) 118
For our 1/f noise

2x2

AZX(T) = In(ty/71)

[In(T/71)+0.5772] 119

so that the process displays only a slight logarthmic dependence on T and
its variations are substantially independent of the time scale of the
observation.

Noise in linear two ports

I will now briefly discuss one example of multiple inputs and
outputs device which is of great importance for the following. The device
is a two port linear element that, for sake of clarity, I will assume to be an
electrical device. With that I mean that inputs and outputs will consist of
voltages and currents. In the frequency domain the relation between
voltages and currents for a noiseless two port is
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V1(w)=Z11()1(w)+Z12(w)2(w)

Vz(w)=Zz»1(w)I 1(w)+Z22(0)2(w)

120

where the symbols refer to fig. 10. Eq. 120 is just one of the possible
representation as the role of the inputs and of tyhe outputs can be
interchanged.

The effect of the noise can be as usual represented by means of
the two voltage noise generators (fig. 10a) producing the noise voltages
Vai1(t) and Vp2(t). The total input and output voltages will be given by the
sum of the noiseless signal part calculated from eq. 120 and of the
respective noise voltage. The two voltage noise generator need not to be
independent or uncorrelated as they can origin from the same physical
mechanism inside the two port device.

An equivalent, and more commonly used, way to describe the
noise of the two port is in term of noise generators only in the input port (
here the port 1). In this case,
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Fig 10

using the ordinary circuit theory, the two voltage generator of fig. 10a can
be converted to a current generator in parallel to the input port and to a
voltage generator in series to it (fig 10b).

Let call Sy(w) and Si(w) the spectral densities of the voltage and
current noise respectively. The two generators again need not to be
uncorrelated so that also a cross-spectrum Syy(w) has to be introduced.
Suppose that a voltage source with impedance Zs(w) is connected to the
input port and that a load of impedance Zj(w) is connected to the output..
The output voltage noise due to the noise sources can be calculated, in the
frequency domain, treating the noise processes as ordinary signals and
calculating, by means of ordinary circuit theory, the frequency response
that links the output to the corresponding current and voltage generators.
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The spectral density is then calculated taking the spectral densities of the
noise generators and multplying them by the square modulus of the relative
transfer functions already calculated. Using this rule one first calculate ,
from elementary circuit theory, that:

V)= Z(0)[Zs(w)In(w)-Vp(w)] ~
A717 11 (w)+ Zs(@) [ Z22(w0)+Z1(w)] - Z12(w)Z21(w)
121

=G(0)[Zs()n(w)-V n(w)]

where the definition of G(w) is self evident.

The output spectral density Sy2(w) is then thus |G(w)|2 times the
spectral density of the linear combination V’(t)=I'n(t)+Vn(t) , where I’4(t)
is the output of a system with transfer function Zs(w) and input In(t). As a
consequence Sy (w)=Sv(w)+Spr(w)+2Re{Svr(w)} =
= Sv(w)+|Zs(w)2Sp(w)+2Re{Zs(w)Svi(w)}. Thus the spectral density of
the output is

Sv2(w) = 1G(w)I2 (Sv(w)H|Zs(w)2SH(w)+2Re{Zy(w)Svy1(w)})
122

It is often convenient, for reason that will be clear later on, to
separate the current noise as In(t)=Ino(t)+Y()*V(t). Here Ino(t) is a
process uncorrelated with Vp(t), Y(t) is the impulse response of a properly
selected admittance, called the correlation admittance, and the star denotes
the convolution operation.. Y(w) has to be chosen such that
Svi(w)=Y(w)Sv(w) and is then Y(w)=Sv1(w)/Sv(w). As a consequence
S1(w)=S10(w)+Y(2)I2Sv(w)=S10(w)+ISv1(w)I2/Sy(w).

It is also convenient to express the spectral densities as

kpThq
SIq(w)%@—(;) 123a
Sv(w)=kBTn(w)Rn(w) 123b

Ty(w) and Rp(w) are called respectively the noise temperature and the
noise resistance of the device.

With all these definition the noise at the output port can be
written as:
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S \% 2 ( w ) =

2
G(@)2 ] knTa(w) [ Rn(w)|1+Y(w)zs(w)|2+'zgr%] Ji24

The signal Vs(w) at the input port gives origin at the output to a
signal with Fourier transform Vo(w)=G(w)Vs(w). The spectral density in
the square brackets of eq. 124 can be tought then as that of an equivalent
input voltage noise.

In many applications, as the noise in eq.124 depends on the
source parameters, it is convenient to express the noise performance of the
two port device by the ratio between the total noise at the output and the
noise due to the source itself. This ratio is called the noise figure of the
device. If the source is just adding his thermal noise
Ss(w)=2kBTRe{Z(w)}, then the noise at the output will be the incoherent
sum of this term and that in eq. 124. The noise figure will then be:

[kBTn(w) [Rn(w)l 1 +Y(w)Zs(w)|2+|isizo(3|)2 J ]

2kpTRe{Z(w)] 125

F=1+

If Y(w)=0 eq. 125 greatly simplifies and has an easily calculable
T
minimum when Zg(w)=Rp(w). In this case F = 1+ n’}w) and the noise
density due to the two port device is 2kBTn(w)Rp(w). When this noise
minimum is attained, the source is called to be noise matched to the two
port device.
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Estimation of Noise Parameters

As already stated in the introduction, a crucial step of the
calibration of an apparatus is the estimation of its noise parameters. A full
calibration would imply the estimate of the joint probability densities of
any order of all the random processes one has to deal with. This is not only
impossible in practice but even useless as much of the information is
contained in the lower moments or in the low order probability densities.
Here I will discuss the estimation of the mean, of the mean square deviation
and of the power spectrum. I will not treat the estimate of the
autocorrelation as the equivalent power spectrum estimate is by far much
more widely used and practical.

Estimate of the mean of a random process.

The estimate of the mean value of a random process coincides in
many case with the estraction of the signal itself from the zero mean
fluctuating part of the process. As a consequence the following sections will
deal with this subject in much more of a detail. Here I only briefly discuss
the estimate of the constant mean value n of a stationary process as a mean
to illustrate the significance of the statistical estimate itself and some
properties of the time integral of a stationary process. Here, and for the
rest of the section, it is assumed that to estimate the various parameters of
the process, mean, spectra etc., one can only use a single sample of the
process known forO0=t=T.

As a first estimate of n one can consider the value of the process
r(t) itself for a given value of t. If the process is normal then

n=r(t)x\R(0) 127

with 0.68% probability according to the standard error formula for
normal random variables. ,

To improve the precision of the estimate one has to resort to
some form of average. As the ensemble average is not available let
consider the result of time averaging. Take the random variable

1 T
=T fr(t)dt 128
(0]
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it is easy to calculate that <I>=<r>=n so that I fluctuates around n and is
thus a possible estimate of this parameter. To evaluate the variance of I
consider that:

T
T

1
o1=T2 J [<r(®r(t)>dtdr-<r>2 =
0o
o

129
T
T
T-

=15 |drCi(r) jdr’ = %][Cr(r)(l-T)dr
(0]

)

where I have changed from the variable t and t’ to T=t-t’ and T'=t",

The calculation cannot proceed any further without adding some
information. Let then consider some interesting case. Let the noise be white
up to a certain angular frequency w=1/1*. The autocovariance will be

*

-1/
R(t)=R(0)e vr . Eq. 129 gives then

02=2R(0)1%{1+Tf*[e_(T/ ™) ]] 130

If T>>t * then

_ RO
oA | s 131
£

which is reduced in respect to the non averaged case by the factor 2% .

If T<<t* then o— R(0) and the zero integration case is obviously
recovered. Notice that, for the chosen autocorrelation function,
2R(0)t*=S(0), where S(w) is here the spectrum of the zero mean process
r(t)-n, so that, for large T,

_SO
o2="1 132

59



which is just the total energy contained in the spactrum in the frequency
band w=0%1/2T. This last result is of more general relevance as can be
readily checked expressing the autocovariance in term of its spectrum in
eq. 129

o0

02~— ‘S( )[Sm(ﬁ‘;gz)] d. 133

-00

and considering that (sinx/x)? is a function with a major lobe in the
interval Oxm.
If the autocorrelation is that of the 1/f noise in eq. 117, after

m [In(ty/T)-.577] that, for 5 >>T, has

no significant improvement with T. A commonly occurring situation is one
where both an almost white noise, like that of the exemple above, and a 1/f
noise are present. The 1/f spectrum S(w)= So/|w| will merge in the wide
band P/(1+w27t2) one when w1/=So/P, if this frequency is wi/f << 1/7..

some calculation one gets 02

w
The frequency vl/Fﬁ/f is usually called the 1/f comer frequency. In this

case the variance of the integral is the sum of the two terms nSo[In(t2/T)-
.577] and P/T. Thus there is no advantage in integrating beyond the point
where the second term becomes of the order of the first contribution. This
giVCS a Tmax’N" l/V]/f

Estimation of the mean square deviation R(0)

Suppose we want to estimate the value of <x2>=R(0), where x(t)
is a zero mean random process. Clearly x2(t) will fluctuate around its mean
value <x2> so that a single value of x2(t) for any value of t is an estimate
of <x2>. To evaluate how precise is this estimate we need to know we
need to estimate the mean fluctuation of x2(t) itself. Thus we need to know

0,2 =\<x4> - <x2>2 134

To calculate this quantity we need some more information. Let
then assume that, as it is often the case, the process we are discussing is a
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normal one. Now for four zero mean normal random variable x,y,z,w the
following theorem holds

<X,y,Z,W>=<X,y><Z,W>+<X,Z><y,w>+<x,w><y,z> 135

then

02 =\[2<x2> 136

Eq. 136 states that the relative error with which <x2> is

measured is \/5

To improve the precision let average over the time and use eq.
129. Now, in the’case of the process x2(t), the mean value is R(0) and the
autocorrelation is

R2(t)=<x(t+1)x(t+1)x(t)x(t)>=R(0)2+2R2(1) 137

where we have used eq. 135. Thus the variance of

& 1 T
x2 =T [x2()dt 138
0
is
T
02=2 1[R2(r)<1-'TT')dT 139,

If the autocorrelation is the exponentially decaying one of the

* "TI *
previous section than 02=4R2(0)g{1+2r—.[[e (2Tr )-IH. If T>>1 * then

* *
0=2R(O)’\/% with a relative error 6/R(0)="\ /2% which is reduced in
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¥
respect to the non averaged (T— 0) case by the factor L Notice that,

T
if T >> 1" then x2 can be considered as a linear combination of an high
number of independent random variables and its distribution will be well

approximated again by a normal one. As a consequence on can conclude
= *

2 )
that R(0)= xz-[li % } with 0.68% probability according to the

standard gaussian error formula.

-~

Power spectrum estimation.

Consider the scheme in Fig. 11

Narrow _ Square Integrator
—>{band filter | wave ety
w,T detector fdt, T
Fig 11

as a narrow band filter we can consider that of example 3.5. The square
wave detector just performs the square of the input so that the mean value
of the detector output is, according to eq. 93 <x2>=Sj(wo)/27. Here Sij(w)
is the spectral density of the zero mean process i(t) which is the input to
the entire system, wo is the center frequency of the filter and T is its time
constant . We have also assumed that Sj(w) varies slowly inside the band
wot 1/t so that it can be considered constant within this band.
The autocorrelation of the narrowband filter output is given by:

Si(wo) -ltI2T 1
RO-522 M o1 g msinoil)] 140

and the autocovariance of the square wave detector

Cx2(t)=2R2(t)=
141

=[S_i(%2]2 e'ltl/ T H 1+(2w11‘r) - ]+[ 1- (2w11r)2 ]cos(Zw 1t)+wL1Tsin(2w 1 Itl)]
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Thus the output of the square wave detectors fluctuates around
Si(wo)/27, and is then an estimate of the power spectrum of i(t) at

frequency wo, but its relative uncertainty, 4/Cx2(0)/R(0) is, as in the

previous section, equal to \/5

Again, in order to reduce the uncertainty, the output of the square
wave dotector is integrated on a time T. To estimaie the resulting
uncertainty one has to substitute the correlation in eq. 141 in the first half
of eq. 139 . If T>>w the oscillating terms in eq. 141 average away and the
first term gives a result identical to that in eq. 139 provided that T is

substituted to t*. The final root mean square fluctuation of the integrator

Si(wo)
output , for T>>r, is then o = and the relative uncertainty on
P V21T Y

Si(w), g = of [Si(wo)/2t] is

os _, [or

a fundamental result in spectral analysis. Notice that the square modulus of
the frequency response of the narrow band filters reduces to 1/2 of its
maximum amplitude at the two frequencies w+ = wo*1/2T so that the
bandwidth of the filter is just Aw=1/2t. Thus eq. 142 can be restated as

os _ [ 1

Notice that the integration before the square wave detector sets
the bandwidth of the measurement. Increasing t decreases the precision of
the mesurement. It is only the the time constant T after the square wave
detector that sets the final precision. Notice also that obviously T>> T so
that high resolution measurements need high integration times.

Exemple 4.1. A signal” consist in a random noise with a narrow line spectrum

of amplitude Sp centered at the frequency wo and with linewidth dw. The signal is buried in
a white noise of density P. If the spectrum of the signal has to be measured with a

resolution Aw=0w/10 and with a 10% relative precision, the needed integration time can be
calculated from
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0S  So+tP _ 1+(P/So)

So © = 144
g /BmT p /&nT
o 10 10

If P/So>>1, noise dominated case, then T=1000(P/Sg)2dw.

A spectrum analyzer can thus in principle be built by a battery of
narrowband filters followed by proper square wave detector and
integrator stages. In practice this is done only for high frequencies, v >
MHz, where, however, the spectrum of the signal is shifted in frequency,
by multiplying it by a proper sinusoidal carrier, so to bring it in the
frequency region where the filters are available. The implications of this
technique, called heterodyne analysis, will be briefly discussed later on.

For low frequency signals the most diffused technique is to
digitize the randem process, by sampling it at fixed time intevals, and by
calculating a Fast Fourier Transform of the resulting samples. I will now
discuss this method and its limitations.

Consider the Discrete Fourier Transform (DFT) x(k) of the N
samples x(n) of a zero mean process taken at fixed intervals of time nT:

| N-1
x(k)=N 2 x(n)e
n=0
estimate of the spectral density of the process at the frequency

w=k27/(NT). In fact

-1(2n/N)kn
( ) . I will show that S(k)=TN!x(k)l2 is an

N-1
<S(k)>—§ Y, <x(n)x(m)>e
n,m=0

-i(27r/N)k(n—m)=

145
N-1
Y. R[(n-m)T]e
n,m=0

-i(2n/N)k(n-m)

Z|H

Now the autocorrelation R(t) can be expressed as a function of the
power spectrum to give
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2
~ -in[wT-kQ2a/N
<S(k)>=% S(w)% Xe inlwT-k(2n/N)] dw.=
n=0
146
T 2
= -iS(w) | f(wT-k2n/N)| “do
11 iNx
where I have defined f(x)= IN =< ix - Ihe function f(x) is periodic of
l-e
period 2 so that eq. 146 can be recast as
/T
“ 2
(k)>=<S % [ 3 S(w+n2m/T)|f(wT-k27/N)| “de 147
n=-o0
-n/T

(k) is then an estimate of S@=k2n/NT) but suffers of two sistematic
errors: first there is a clear aliasing error due to the contribution of all the
frequencies at w+n2nT. The error is suppressed if S(w)=0 for w=n/T.
This is the sampling theorem applied to the power spectrum. In order to
reduce the aliasing error it is necessary to use a low pass filter before
sampling the signal. This can be accomplished by high order low pass
filters (8 poles or higher) with roll-off frequency less than one half the
sampling frequency. The high phase shifts introduced by the filter are
unimportant as any phase information is lost in taking the square modulus.
Notice that, because S(k)=S(N-k), only the first N/2 coefficients, up to
w=k27/(NT)=2nN/(2NT)=n/T, i.e. the filter frequency, have an
independent meaning.

~ The second systematic error is due to the fact that the estimate
involves the convolution of the spectrum with a function which has a
central lobe of height N and width =1/N around w=k2n/(NT). The
resolution of the spectrum is then Aw=27w/NT =2n/Tiot With Tiot the
duration of the measurement. To each coefficient S(k) also the nearby
lobes give a contribution of the order #1/(2mn)2 with n=%1,+2 etc, the
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number of the lobe. To reduce the contribution of the side lobes the data
can be multiplyied by a proper sequence of weights w(n). The function f(x)

N-1
-inx
has to be substituted in this case by fx)= XZw(n)e .
n=0
The evaluation of the variance of the spectrum is rather
complicate . I just sketch the idea and discuss the main implication of the

result. One first evaluate the value of <S(k)S*(k’)>which is given after a
lenghty calculation by

<S(k)S*(k)>=
N-1
2 -i -m)- ’(i-
’15_2 5 < (n)xr (m)x (x(>e i[(27/N)k(n-m)-(27/N)K’(j p)]=
nmip=0 148
2
T2 /T
= 22 j S(w)f(WT-k2/N)F*(wT-k27/N)dw | +
7T
-n/T
2
T2 /T
+o JS(w)f(wT-an/N)f*(wT+k’2n/N)dw + <S(k)><S*(k)>
-m/T

where I have assumed that the sampling condition has been fulfilled.
Taking k=k’ one gets

<IS(K)2>-<ISW)I>2=<IS(K)>2+ 149

2
/T

2
+% JS(w)f(wT-an/N)F"(wT+k’21r/N)dw =<|S(K)[>2
T

Again the estimate has a relative error of order one. In
particular , if the spectrum is white, the relative precision is 2. This is of
no surprise as The resolution is Aw~1/(NT) while the duration of the
measurement is Tiot=NT so that AwTot=1. In order to improve the
precision one has to lower the resolution. Two method are used to acheive
this result. Or the sequence of data is split in a set of M subsequences of

66



N’=N/M data each. The M resulting S(k) coefficients are then evaluated
and averaged. If the coefficients coming from differents subsequencies can
be considered as independent, then the average will have an error reduced

by WM. The duration of each data set is now N'T=NT/M and thus the
resolution is reduced by a factor 1/M so that eq. 143 is still obeyed.

The second way to reduce the resolution, spectral smoothing,
takes instead the average or some linear combination of nearby
coefficients so that the frequency resolution is lowered. If the nearby
coefficients can be considered independent, which is the case only for white

noise (see eq. 148) again the precision increases as 1/A/M, with M the
number of coefficients that have been averaged, and the frequency
resolutions decreases as 1/M.
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Signal Recovery

I will begin this section discussing a couple of ”non-optimal”
signal recovery procedures that are commonly used and that give a broad
feeling of what are the main issues of the signal recovering techniques. In
the second part of the section I'll discuss the optimal signal recovery
theory.

Periodic signal in additive noise.

Let consider the detection scheme where a periodic signal s(t) of
unknown amplitude and phase, buried in an additive noise n(t), is detected
by means of a lock-in amplifier. The total signal at the lock-in input is

x(t)=s(t)+n(t)=a(t)sin(wot)-b(t)cos(wyt)+n(t) 150

Both channels of the lock-in are linear non time invariant filters.
The output o(t) will then be the sum of the contribution due to the signal
os(t) and of that due to the noise o(t). If the “sine” channel is considered,

the signal contribution to the output will have, according to eq. 53, a

1
Fourier transform os(co)=a(;JO ) * THiot

; with T’ the time constant of the

low pass filter.

The stochastic process o(t) is no more stationary. By multiplying
n(t) by sin(wot) the mixer on the sine channel produces the non stationary
process n’(t)=n(t)sin(wot) with autocorrelation

Ru(t,6+7)=5 [Ra()cos(woo)-

151
-Rp(T)cos(wot)cos(2wot)+Ra(T)sin(wot)sin(Qwet)]

Before we proceed let us consider a few mathematical results that
we will use in the next. Non stationary processes can be Fourier analyzed
as stationary ones do. The Fourier spectrum is however now a function of
two frequencies as the autocorrelation R(t,t+1) is a function of two time
arguments. Let then define the two dimensional Fourier spectrum:
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(ee)
[ee)

b
Aw1,02)= J JR(t,tﬂ')e OO e 152

(00}

-00

If the process is stationary then A(w1,w2)=2wS(w1)d(w2), where
S(w) is the ordinary power spectrum of the process.

If a process x(t) with bidimensional spectrum Axx(w1,w3) is the
input of a time invariant system with frequency response h(w), the cross-
spectrum between the output y(t) and the input can be calculated, applying
the convolution theorem, to be

Ayx(w1,02)=h(w )Axx(w1,w2) 153

while
Ayy(w1,02)=h(w Dh*(w1+w2)Axx(w],w3) 154

Going back to our lock-in, the output of the mixer n’(t) will have
a two dimensional spectrum:

S(w1-we)+S(w1+
T e S IR L

7IS(co1-coo)~t‘>(coz-2u>o) ) S(w1+we)-dwat+2wo)

- 2 4 2 4

The low pass filter output o(t) will have a spectrum:

S(w1-wo)+S(W1+wo)
AOO(wLwZ): 27T 2(1+0312T,2) . 6(03 2) 155

5 S(w1-we)-dw2 -2w,) " S(w1+we)-d(w2 +2w,)
T M1 +Hw D) 1-i(w1+2we)T] "4(1+iw 1) 1-i(w1-200)T ]

The first term is just an ordinary spectrum of a stationary
process. Because of the low pass filter, it is significantly different from
zero only for w(<<1/7r’. Thus the noise associated to this term is
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contributed by a frequency band of width =1/1’ around w, and has a
spectrum

_S(w1-wo)+S(w1+wo)
SO(('O)— 4(1+(,012‘r’2) 156

The terms in the second line of eq. 155 contain a denominator
which is always larger than 24/1+4w0272 and thus, if wo2r'2 >>1, give
contributions that are much smaller than that due to the first term for
w1t<<1. In conclusion, with a proper choice of 7', the noise contribution
to the output can be made to closely approximate a stationary process with
spectrum given by eq. 156.

If the original noise spectrum S(w) is reasonably flat over
wot1/1, than a single measurement of the output at time t will have a mean

value os(t) and an r.m.s. fluctuation \S(wo)/4r. If s(t)=acsin(wot) than the
output will be ao/2 + \R(S(wo)/47). so that the error on ag is 0,=20,=

\S(wo)/T.

The most important thing to be noticed about this result is that the
uncertainty on a, is now contributed by the noise at frequency wo . As I
mentioned in the section on systems, a constant or slowly varying signal
that has to be measured can be often transformed to the amplitude
modulation of a periodic carrier signal by a proper “chopping”
mechanism. As a consequence, by properly chosing the frequency of the
carrier one can work in the frequency region where the noise density of
the apparatus is the minimum possible one. This is of great importance to
overcome the 1/f noise corer frequency.

By using a second channel with a cosine drive the other
quadrature component 0’(t)=0’s(t)+0’(t) can be recovered as well. The
noise part of this second component will have the same spectrum as the
first one and a cross correlation spectrum with that given by:

_S(wotwi)-S(wo-w01)
soo’(w)_ 4i(1+w121"2) 156

If again the spectrum is reasonably flat around w,, then
S(wotw1)*S(wo-w1), the cross spectrum vanishes and the two channels are
independent.

The estimate of the amplitude modulation of the quasiperiodic
signal s(t) depends on the noise level. Let consider, for sake of clarity, the
case where also the cosine component is almost constant, b(t)=bo. The
square of the amplitude M2=4[02(t)+0’2(t)] can be expressed as
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M2=3,2+bo2+402(t)+40°2(t)+8a0,0 (t)+8bo0’(t). The mean value of M2 is
then

<M2>=302+b02+ o'a2+o'b2=M02+ 20‘2 157

where we have defined 0=0a=0p and My=4/a02+bo2 . The sum of the
squares of the two components, as an estimate of the signal square
amplitude, has then a systematic error in it that comes from the noise mean
square fluctuation.

The mean square fluctuation of M2 is:

02M2=<M4>-<M2>2=20,4+20p% +4a,20,2+4by 2012 =
=404+4M202 158

and, as anticipated, depends on the amplitude of the signal. In particular, if
we define the postdetection signal to noise ratio S/N as

_Mo
- 159

Zln

then

2
02M2= 404 [1+[%] } 160

If S/N<<1, then oM2=202 and the error is of the order of the
systematic error on M2. If instead S/N >> 1 than the systematic error
becomes small and oM2= 2Mo0. The amplitude modulation M can be
measured with an error:

oM ~ (1/2Mo)om2 = 0 = \/S(wo)/t 161

It is interesting to evaluate, again in the limit of S/N>>1, also the
error on the phase ¢ of the periodic signal relative to the local oscillator
signal sin(woet). Let define p=artan(bo/a,). Then, from the standard error
propagation formula one gets:

302 02 + b02 02 _ [6) _
0¢~ (a02+b02)2 (a02+b02)2 - MO 8

N
S 162
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that is the phase error in radians is equal to the inverse of the signal to
noise ratio.

An alternative method to extract the amplitude of a quasi periodic
signal is to sample it and then evaluate its discrete Fourier transform. It can
be calculated from the formulas of the preceding section that the basic
results are the same as those obtained by the lock-in method provided the
time constant 1’ is substituted by NT, the total measuring time.

Charge pulse signal in additive noise.

Consider the circuit in Fig 12.

KThRn
C :: R
KTn/R.
Qo d(t)
Fig 12

A current generator produces a current pulse I(t)=Q,d(t) that charges a
capacitor of capacitance C. The voltage across the capacitor is measured by
an amplifier with noise temperature T, and noise resistance R, . Both these
parameters are assumed to be frequency independent. In parallel to the
capacitor there is a resistor of resistance R. This resistor includes both the
effect of the parallel losses of the capacitor and the input impedance of the
amplifier. The thermal noise due to the resistor is included in the current
generator spectral density S;=kpTp /Rp.

This is an (oversimplified) model for a charge detector read by a
charge amplifier. The problem I want to discuss here is how to measure the
charge Qo with minimum uncertainty. The method I will discuss is a non
optimal method known as the RC-CR or zero-pole pulse shaping.

The current pulse gives a voltage signal at the input of the
amplifier Vs(t)=% e o O(t), with To=RC. In the absence of noise the
charge can then be measured from the initial step rise of the amplifier
output. In the presence of the noise this step will be hidden by noise
fluctuations. For a truly white voltage noise the mean square root
fluctuation is infinite and will cause infinite error on the step height
estimation. If a low pass filter with time constant T is used at the amplifier
output the voltage noise fluctuation is reduced to 02y=kgT,Ry/T but the
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X
step rise is also lowered to QC [1 X] with x=1/1,, that tends to x-1 for

large x. To compensate for this effect one can “derive” the signal using an

b/

1+iwt
response will then result from this stage and the low pass and will be

high pass filter with frequency response . The total filter frequency

1 it
1+iwt ~ 1+iwT

h(w)= 163

The signal will have, after the filtering, a Fourier transform

Qo

VS(w)__ 1+1w1'
only be contnbuted by frequencies larger than 1/7. If the resistor R is high

Qo 1 T

enough (low losses) that To>>71"and Vg(w)= C Ttior  1rieT the

Fourier transform of which \F(Qo1’,C(t’-1)) \B\BC\((e\S\UP10(-t/7°) -
1

“h(w). Because of the high pass filter, the output will

’1 S
)has a maximum for t—m with value Vipax= % yl'y where
y=T/‘l'.
The total voltage noise will have a spectrum
~ T2 1 Rpyw?2t
S(w)= kBTn[R,,cz (1+02r2)(1+w22) (1+co21"2)(1+w212)}
164

where again we have assumed wto>>1.

The mean square fluctuation of the voltage 02 can be calculated
with a little algebra and is given by

T 1
02=kBTnR;{m y +§Tl_} TJX& 165

Let again define a post detection signal to noise ratio as
S/N =Vmax/ o. Then:
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1+y
[§]2=[92]2 1 ylY (+y)
N kBTnRp " T +_1_
| 2Rp2C2 ¥ 21']

166

The denominator in the right hand side of eq. 166 has a minimum
when 1'=RnC/\/§ so that (S/N)2 has a maximum with value

1+3y

* 2 ATy
[%] g C%;Tn y219) (1+y) 167

it is straightforward to calculate that (S/N)* as a maximum for y=1 with
value

2
S _ Q2 2
max

It is worth to recall that the maximum is achieved for
=7=R,C 169

provided that R>> Ry .

Let discuss now the results in eq. 168 and 169. First notice that,
defining Qomin as the charge that can be measured with S/N=1, then the
energy the signal with this value of Qo would release to the capacitor is

2
Qomin
Eo= c = 1.85 kgTp 170

This is not the uncertainty on the energy release due to the signal.
In fact the output of the filter Q, properly corrected for all the
unimportant multiplicative factors, is the sum of the signal Qo and of the
zero mean noise contribution Qn with variance CkpTpe2/2. The energy can
be estimated as

Q2 (Qo*+Qn)?
=3¢~ 2C 171

E
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and has mean value

2 kpTpe?
<E> =%—c()3—+ 2 172
variance
kBTne2)2 Qo2 kpTpe2
2= .
"EZ{ 2 ]*42c B 173

and relative error

kn'L.a2 2
OE 2[ BTne J2+ kpTxe ] 174

(Q02/2C) ~ Qo2/C Qo2/C

so that the minimum energy released that can be detected with signal to
noise ratio of equal to one is

Emin=2.2kpTphe? 175

I anticipate that the technique being non optimal translates into the
presence of the factor e2 in eq. 175.

The second thing is worth noticing is that the assumption R>>Ry,
means that the current noise contribution to the total voltage noise

kBTn __R2
SC(OJ)— Ry 1+(L)2T02

176

is, at low frequency, much larger then the voltage contribution kgTpRj.
This condition holds up to the frequency wmax at which the two

contributions become equal. wmax is given by wmax=(1/70) VI+(R/R,)2

Thus the idea of the filter is to take the information only at those
frequencies for which the current noise, that has a spectral content equal to
that of the signal, dominates on the voltage noise.

A further consideration which is worth mentioning is that the
current noise contribution in eq. 166, increases with the filter time constant
t. This is due to the fact that the signal maximum is reached after a time of
order 7. During this time the current noise makes the voltage drift by a

root mean square quantity o \/; . The minimum uncertainty is then
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achieved when the current term that increases with \/ﬂ—r becomes equal to
the voltage noise term that decreases as 1A

A final consideration is that R results from the parallel of the loss
resistor of the detector itself and of the input impedance of the amplifier
which is supposed here to be real. The maximum of R is then obtained
when these two resistors are equal. However, if R>>R;, this matching
condition has not to be fulfilled with very high precision. We will elaborate
a little more on this point later on.

The Wiener-Kolmogorov theory of optimal linear filtering.

Suppgse that the ouput x(t) of some physical instrumentation is
the sum of a signal s(t, A1, A2, ...), that depends on time but also on a set
of parameters A, and of a zero mean gaussian random noise n(t).

x()=s(t, A1, A2, ...)+n(t) 177

The values of the parameters are unknown and have to be
estimated from the knowledge of the data x(t) in the time interval T; <t <
T,. The problem we want to discuss here can be stated as follows: is it
possible to build a linear combination of the data

T2
Ai= T[hi(t)x(t)dt 178
1
such that
<Ap=Aj 179a

and that its variance

T T>
T2 2
02Ai= L_fhi(t’)hi(t)<x (t)x (t)>drdt = JT[hi(t,)hi(t)R(t-t’)dt’dt
1 1
T T1

179b

has the minimum possible value.
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Amplitude estimation

Let start with simpler and most important case where the signal
s(t) is s(t)=Af(t), with f(t) a known function of the time and A the unknown
amplitude that has to be estimated. We will then build only one estimator A
according to eq. 178.

Eq. 179a implies that

I
T[h(t)f(t)dt=1 180
1

because the noise does not contribute to the mean value of A.

We now have to find the function h(t) that gives the minimum
variance o2A with the condition in eq. 180. This can be done using the
method of the Lagrange multipliers and calculating the variation of

2

T>
T> T2
J T[ h;(*)hi(HR(t-t)dt’dt +>\T[h(t)f(t)dt 181
1 1
T

with A the multiplier that has to be determined a posteriori imposing the
condition in eq. 180.
The variation gives

T2
T2
J6h(t)|:2T[h(t’)R(t-t’)dt’+7\f(t):| =0 182
1
Ty
or
T2
2 T[h(t’)R(t-t’)dt’+Af(t)=0 for Ty <t<T» 183
1
The minimum variance can be obtained using eq. 183 and eq.
180:
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T2
T2 . T,
02A min = JTfhi(t’)hi(t)R(t-t’)dt’dt =-5 Tfh(t)-f(t) dt = - %
1 1

T1
184

Eq. 183 can be solved in general by numerical integration or by
any other standard method. I will discuss here the solution in two limiting
cases which are very important in themselves and that also show the main

features of this method.

White noise.
The first case is when R(1)=S,0(7), i.e. when the noise is white.

Eq. 183 becomes in this case

LY

iy 185

So

h(t) can then be substituted in eq. 180 giving

N>

h(t)= -

Tr -1
2= J%t—) dt 186
1
Using eq. 186 one can rewrite eq. 184 as
T? -1
02Amin= J‘f;%t) dt 184a
1

and eq. 185 as:
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f(t)

h(t)= s; = i) 185a

T , I'Tz
f2(1) £2(t) dt:l
LJ o
1

L

Let discuss some implications of this result. Notice first that the
solution in eq. 185a, within an unrelevant multiplicative factor, amounts to
multiply the data by a copy of the signal itself and to integrate the result on
the available time interval. This is not very different from what we did in
extracting the amplitude of a periodic signal with the lock-in technique in
the first section of this chapter. In fact if f(t) is a periodic signal of known
phase and frequency but of unknown amplitude, eq. 184a give 02A min~
2So/(T7-T1), a result very close to that obtained in that section.

A second interesting observation is that the same result can be
obtained by a least square fitting of the function f(t) to the “data” x(t). In
fact within the least square fitting method one assumes to have N
independent data x; and looks for the value of A such that the sum:

N

Z - x-ARGP 187
e

is a minimum. If the data have all the same variance o2 the solution is
independent of 02 and is

N
inf(ti)
n=1
A= ~ 188
Y £2(t)
n=1

it can be seen that eq. 185a is the limit of eq. 188 for a continous set of
independent data, as it is the case if the noise is white and gaussian.

Using the definition of the signal energy E in eq. 4, one can see
that
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S
02Amin = io 189

where E is the energy of the signal f(t) and where the equality is attained
only if f(t)= 0 for t = Ty or t = T2 so that all the signal energy is
concentrated in the interval T =t =<T».

Such a filter can be obtained by some off-line cr delayed
processor if the arrival time of the signal is known in advance. This is the
case in some particle detectors where the signal itself, due to the arrival of
a particle, can be first detected by some threshold sensor that generates a
trigger signal. The signal is then fed, trough a properly calibrated delay
line, to a stage where it is multiplied by the time function h(t) generated
by a signal syntetizer triggered by the trigger signal. The product of the
signal and of h(t) is then integrated to give the value of A (Fig 13) .

The filter can also realized by a time invariant real time device.
A will than be the output of the filter at some time t. To do that let restate
eq 174 as

T
A= Jh(t’)x(-t’)dt’ 190.

where now the data are known for -T<t=<0.

x(t) trigger
generat mixer [at A
or

AN

signal
generator

Fig 13

Nothing is changed in the results already obtained except that t
has to be replaced everywhere by -t. So for instance
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h(t)= ;('t) 185b

L{ Jﬁ(-t’)dt’}

If the filter of inpulse response h(t) is applied to the data between
T -T and Tt the result will be

T
A(D) = Jh(t’)x (t-t)dt 191

so that A in eq. 190 is A(t) for =0. A(7) is then the output of a causal
filter with an impulse response consisting of a mirror image of the signal
itself between -T and 0. It will result from a signal contribution As(t)and a

noise contribution A(t). As(T) is given by:

T
Mf(r-t)f(-t)dt ]
[ T
ﬂ(-t’)dt’}
1l

If the energy of the signal in an interval of duration T is
maximum between -T and 0 , then As(t) reaches its maximum value A=A

for =0 .
The noise contribution A (1) is a stationary stocastic process with

zero mean, autocorrelation given by:

As(t)= A 192

T
LUf(m-t)f(-t)dt }
RA(AT)= 02Amin- T 193
[ ﬂ(-t’)dt’}
\f

and with an r.m.s. fluctuation 0A min.
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If the signal arrival time is not known, or if more than one signal
is expected to arrive at unpredictable times, the output of the filter can be
be sampled and its modulus compared with a threshold level A,. If the
sample exceeds the threshold one can conclude that a signal has arrived and
take the sample value as an estimate of the amplitude.

To select the threshold level one can consider that in the absence
of any signal, the filter output samples are gaussian zero mean random
variables. If the sampling time is taken of the order of T, then different
samples are also independent. The probability for the nth sample A (n) of
being |A(n)| = Ag, is then 2[1-Erf(A/0A min)]'. If for instance Ay=30A min
then the probability of the detector output to go above the threshold just
because of the noise is = .3%. The number of false alarms one can accept
depends on the specific application. The lower the number the higher the
threshold level and the higher also the signal to noise ratio A/GAmin
needed to achieve a low probability of dismissal of a good signal. The
probability that in the presence of a signal of amplitude A, the filter output
sample is lower than the threshold is Erf(|A|+Awm)-Erf(|Al-Aw) if A=A,
Thus, for instance, if Ath>0Amin and A=A, the probability of a dismissal is
still #50%. The threshold is then set up compromising between this two
conflicting needs according to some cost function that depends on the
specific application.

Exemple 5.1 Charge detector dominated by the voltage noise.
In the example in the preceding section of this chapter, at low frequency the current noise
dominated on the voltage noise. This translates in the fact that R>>Ry,. If the opposite is

instead true, R<< Ry, in any frequency range the noise coincides then with the voltage
noise with spectral density kKBTnRn. One can then apply the above theory to a signal

-/t
f(t)=%e 0@(t) and obtain that the best signal to noise ratio is obtained by multiplying the

signal by itself and integrating on a time T longer than To. The minimum detectable charge
is, for T> 310, 2CkBTnR/R >> 2CkBTh.

Non-white noise and infinite time bounds.

If Tiand Ty are such that the signal energy is all contained in the
integration interval and if R(T2-T) is neglegible, then in all the equations
one can set Ti=- and T, = +. Eq. 183 becomes

X
_ 1 -x%/2
1 The error function is here defined as Erﬂx)=\/—_ e
2w
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oo

_[h(t’)R(t—t’)dt’= - % f(t) for -© <t < + 194

that can be solved using the Fourier transforms to give

fi

~

w)
(w

N[>
m’

h(w) = - 195

-

with S(w) the power spectrum of the noise. Using Parseval relation in eq.
180 one gets

+o0 -1
A 1 1f(w)|2
A A = | [ Hw)i2
2 0] ‘AIIIIII o J S((JJ) dw 196

Again A can be considered as the output at time zero of a non
causal filter with impulse response h’(t)= h(-t). This filter will then have a
frequency response

f(w)

h(w)-= 20, 197

+00
11 1f(w)]2
LLJT' J S(w) dw

When applied to the signal, the filter will produce an output
whose Fourier transform is

f(w)I?

As(w) = A S(w) 198

+00
1 [ f(w)?
L[zn' J S(w) 9

while the output noise A (t) will have spectrum:
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|f(w)I?

SA(w)= 62Amin- +§°(w) 199
1 [ If(w)? q
o [ S(w) 4®
I
|As(w)I2 A2

It is worth noting that Saw) ~ and is independent of

02Amin
frequency so that any further Wiener filter will not improve the signal to
noise ratio.

Notice that both 62A min and SA(w) do not depend on any filtering
stage that acts both on the signal and on the noise.

Exemple 5.2 Charge detector

Let consider the proﬁlem of the charge detector we treated by the method of the RC-CR
filter. The amplitude of the signal is here Q,, the unknown charge. The unit amplitude
signal has Fourier transform

1 7
fuh=n—" 200
1+iwTo
while the noise has spectrum
2
To 1
S(w) = kBTpn{Rn + .
(w) =kB n[ 1 RaCZ T e } 201
The variance of the estimate is
00 N -1
R2
1 1+027152
0‘7‘Qmin= 2— T20 | dw 5 =
kBTn{Rp + =2 -
B n[ 17 RoC2 1+w2T02}
-00
J
-1
2 00
_| 1 R4Rp 1 1 _
{271— R2+R,2° kBTn m[ 1+w272 dw} E , £
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2 + RL2
= 2CkBTq R_RZRL

R
where T’=To E2+H—R2_ §
n

The optimum filter frequency response h(w) is then

1 _To
C 1+'
h(w) = 02Qmin lzmo e
To
kBTn{Rp + .
B n[ LT RaG2 1+w2T02}
203
_ CRq l-iwTo
VRZ+R 2 1+02r2
whose Fourier transform is
1 -l R< + R
h(t)=ﬁe 1-(20(1)-1 Tzn jl 204

Let discuss these results in the two limit R>>Ry and R<< Rp. As it can be
seen from eq. 202 both the result obtained with the RC-CR filter and the one obtained
instead with the optimal filter in the white noise case, are predicted by eq. 202 as two

limiting cases. The filter opens a band pass up to a frequency 1/’ which is T =R,C for -
large Rp and RC for small Ry,

The function h(t) is just an esponential times a ©(t) function if To=7, i.e.
R<<Rp, while it becomes dominated, approaching the opposite limit, by the odd function

-|t
[20(1)-1]e , that performs both a derivative at time t=0 and an integration on a time of

order 1.
The minimum signal energy is

2 . 2 2
. _9°Qmin _ R“ + Rp

Emin=—¢c = kBTn R2 205

while the energy uncertainty is given by:
1

02g= ac2’ (2 04Qmin"'402QminQoz) 206

so that the energy innovation due to the signal that can be measured with a signal to noise
R2 + Rp2

ratio of one is 2.2 CkgTy R—2“ :
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Notice that, as we already pointed out above, R is the parallel of the source
output resistance Rs and of the amplifier input one R,. Thus, for a given value of R, R
reaches a maximum, and Epj, reaches a minimum, when R,=Rg If this matching is not
obtained, but still R>>R;,, Emin is still Epin= CkgTh.

In the calculation above we included the thermal noise due to Ry in the
amplifier current noise generator. To better understand the role of this source of noise let
write the total current noise as

_ ZkBT kBTno
SI= R, "R, 207

and the voltage noise density as
Sv= kBThoRno 208

Tpo and Ry, are then the “bare” densities related to the amplifier itself.
The total noise temperature is then

_/SvySt _ ’ 2RpoT
Th= —iH = Tho l+m 209

while the noise resistance is

S R
R =w/ = =
NS 1+—2Rno 210
RsTno

If again one assumes Rs= Ry, one can express the minimum energy as

o _ 2RpoT ,Rpo?
Emm_ kBTno ‘\/1* RsTno T Rsz 211

In order that the Epin — kBTno one needs both Ryo << Rgand TRy <<
T,R¢/2. However notice that the temperature of the source can be greater than the noise
temperature of the amplifier by the factor Ry/Rp and still it will not affect the sensitivity of
the charge detection.

Multiple components signal

The theory above can be generalized to the case where the data
are given by :

N
x()= Y Anpsn(t) + n(t) 212
n=1
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where the signals sq(t) are known functions of the time and the amplitudes
Aq have to be estimated.
One then builds the N estimators

Ag= J'hn(t)x ()dt 213

and varies hq(t) until A, reaches its minimum variance subject to the N(N-
1)/2 conditions

o0

fhn(t)sm(t)dt = Onm 214

with nm the Kroneker delta. One ends with the N equations

o0 N
2 [ha(®)RED)E + ¥ AnmSm(®) = 0 215
-0 m=1

that can be solved by Fourier transforming to give:

N
hp(w) = Z Com S% 216
m=1
and
<ApAm>=Cpm 217

with the matrix Cpym being the inverse of the matrix

MAm _ 1 [sa(@)sm®(w)
Jom _ L J S de. 218
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The variance of the estimator Ay, is given, according to eq. 217, by 02p, =
Cnn. One can easily check that the formulas above reduce to those of the
previous section if N=1.

Example 5.3 The harmonic oscillator as a pulse detector.

Consider the circuit of fig. 14

kaan
_/
e —
Qobit) L R ()
ERORE":
D, (1) Rn

Fig 14. An harmonic oscillator as a pulse detector.

A current generator delivers a current pulse I(t)= Q,d(t) and a voltage

generator feed the circuit with a voltage pulse V(t)= ®,3(t). The current generator will
charge the capacitor with a charge Q, while the voltage generator will give a magnetic flux

step of amplitude @, to the inductor. In the absence of the voltage generator and for low

enough dissipation, the voltage across the amplifier input will start to oscillate as s(t)= %

cos(wot) With wo = 1A/LC. In the absence of the current generator, the current in the
d
inductor will oscillate as I(t) = IQ cos (wot) while the voltage will now oscillate as sy(t) =

wo®Posin(wot). The two signals s1(t) and s(t) have then phases that differ by% . Let now

apply the theory above to the measurement of Q, and ®,. The voltage signals, as seen by
the amplifier, have, for unit Q, and ®,, Fourier transforms given by:
iwLwy2

s1 (W)= 219
! Wo2 - W2 + iw/T a

57 (00)= (o 219b
- Wo2 - W2 + iw/T
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with =RC.
The noise has a spectral density

1 w2
S(w)=kpTh R4 1+ .
(«0) = kpTn ’{ R2CZ (4,2 wz)zmz/Tz} o

The elements of the matrix - }Tnm are

[oe]
Au_ 11 @?L 2000 doo = L R2 21
2 kgTnRn g (0o2- W2)2+w2/T 12 2CkgT, \ R2+R2 &
(o]

A2 1 1, wo? 1 R2
"2 kTaRa g i (o2 WD2+wY1 2 do= aTkeT, VRowR2 221D

[o0]

&1_2_[ 21 ]*_ L iwLwo® _
2 U2 kpTnRn 27 (002 W2)2+w2/T 2 Q=0 azle

L_ 11, 1
where I have defined le— C2 [R2 + an].

The matrix is then diagonal and its inverse has as diagonal elements the
inverse of the diagonal elements. The two coefficients Aj and A} are independent and have

€ITors
) /R2+R 2 /R2+R 2
020= 2CkgT, R2 L. 02p=2LkgTy 2 n 299

so that the minimum signal energy is now

2 2 2 2
. _9Q , 9% _ R*R;
Emin 2C + 35 2kgT, R2 223

The filter frequency functions can be obtained easily as

iwLwgy?2
Wo2 - W2 + iw/T
hi(w) = 0%q ° 1 - -
kpTh Ry| 1+ .
| B “[ Ra2C2  ((y2- w2)2+02/r2 ]
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R2+Rp2  i(wo?-w2-ioy/T)
=2 5 2 224a
and

Wo2

2 2 4
Wo? - W% +iw/T
hy(w) = 62 ° =

1 w?
kBTn Rp| 1+ .
Sl “[ Rn2C2  ((952- 2)2+02/r 2 }

2 . |R24R2  (wo2-w2-iwv7)
=C e 224b
RRn*  (wg2-02)2+w%/1;2
To get a feeling of what the filter response looks like in the time domain one

can Fourier transform hy(t) and consider that, aside the multiplicative factors, hy(t) is just
the time derivative of h)(t). The Fourier transform of hy(t) is

hoO= 24 [N’ [mozg(t>+dzg(t> _ l_dg(t)} s

RZR..2 dt L dt
with
T -Ith219
s= e eos(ur) + ! sin(wil)] 226
20002 2011

the Fourier transform of [(wo2-02)2+w2/1121! and wi= Y\ 0o2-1/4712. In conclusion ho(t)
is

-|th219
ho(t)=e [ L sin(wjt)+ L sin (wlltl)] 227
w1T w1T]

Again, as in the case of the capacitive detector, the filter function for ™>>1y,
performs a “derivative” multiplying the data, that contain the odd function sin(w1t), by the

even function sin(w1|t|). The exponential with the optimum time constant 1] takes care of
setting the proper integration time.
Because the two pulses give origin to two exponentialy damped harmonic

signals with 90° phase shift, the two reduced quantities a;=Q/C and a,=®./4/LC can be
considered as the amplitudes of the two phase components of the total oscillating voltage

signal. The signal will have then phase ¢ = arctan( ap/a;). The uncertainty of the phase
can then be derived as ususal ( see eq. 162) and is given by
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T
op = [ B 228

where we have assumed that R>>R, and we have defined E=<2- > C 2L

Estimation of the arrival time.

In the preceding sections we have always assumed that the
functions sp(t) were known. It often occurs in practice that the function is
known within an arbitrary shift along the time axis. The signal to be
extracted from the data takes now the form of s(t-t,) where to, the signal
arrival time, is a parameter to be determined. To discuss this case we will
assume that only one signal has to be extracted from the data so that these
now are given by:

x(t)= As(t-to) +n(t) 229

As a preliminary observation, consider the amplitude estimator as
the output A (t) of a (non causal) filter measured at time zero. As(w) has an
even and positive Fourier transform (Eq. 198) and thus reaches it
maximum' for t=0. The noise is instead stationary so that the r.ms.
fluctuation is independent of the time. Thus a first guess of the arrival time
can be obtained taking the time for which the amplitude estimator reaches
is maximum.

To have an estimate of the uncertainty of this procedure, let
assume that after the first guess the uncertainty in the knowledge of the
arrival time is so small than the signal s(t-t,) can be expanded as

s(t-to) = s(t) - S(t) 230

one can then apply the the amphtude estimation theory considering the data
as given by

ds(t)

x(t)= As(t)+B +n(t) 231

obtain A and B and estimate t, as to=-B/A.

A
The matrix - % has elements:

1 a[fz(w)eiwtdt =2 Jﬂ(w)cos(wt)dt < 3 J 2(w)dt
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(o]

AA - 1 (Is(w)l?

-T2 T ¢ JS(w) de 232a
ABB 1 [w?s(w)?

"2 T n J S(w) 4 “22b
ABA 1 [iwls(w)l?

Apa_ L [ Sy dw=0 232¢

so that A and B are independent random variables. The error on t, can be
easily obtained by propagation of errors and is
o’ B2 o2a _o2a o’p

o2~ A2 TA2 T AZ A2 g2, &

because to,=0 on the average.
The error is then

fls(w)lzdw

Lol &
Iwzls(w)IZdw
-00

and is inversely proportional to the signal to noise ratio.
For a narrow band signal or noise, where one can assume
[oe] (oe]

Iwzls(w)IZdw~w2 fls(w)|2dw with wo the center frequency of the

-00

signal. One gets then ot = 1/wo-0A/|Al, or a phase uncertainty
Op=Wo0t= oA/|Al as obtained for the pulse driven  oscillator in the
preceding section.
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Notice however that A(t), for a narrow band signal, will present
an oscillating pattern with period wo . This is due to the fact that the filter
multiplies two oscillating signals shifted by t. If the signal to noise ratio is
not too high, many maxima of this oscillating pattern will have comparable
amplitudes and the identification of the true maximum is affected by
uncertainty. The discussion on this point ,and on the signal to noise ratio
needed to suppress the peak ambiguity, goes beyond the scope of these
lectures and can be found in the literature.

If the noise is white eq. 234 gives

; js(t)zdt
ag )
02t ~ X?Oo— 235
2
ds(t)
“ T

-0

, o -t/t 02A
that, for instance, for an exponential signal e = @(t) gives 02 = A2 T2,
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Quantum limits

In this section I will discuss the limits put by quantum mechanics
on some of the results derived earlier. Specifically I will discuss the
quantum limit on the noise temperature of an amplifier and the quantum
limit of the theory of the thermodynamic fluctuations. '

Quantum limit on the noise of an amplifier.

Consider the circuit in Fig. 14 of the preceding section without
the two signal generators. The amplifier has high enough gain so that any
ouput signal can be considered a classical physical variable that can be
measured without any significant uncertainty.

The amplifier output can be considered as a measurement of the
istantaneous value of the charge on the capacitor as the input voltage is
V()= Q)/C. .

If the effect of the resistor can be neglected, R>> \L/C , the
dynamic of the oscillating circuit at the amplifier input can be obtained
using Hamilton equations' with the Hamiltonian:

2 P2
HQ,®) = %c oL 236

where @ is the magnetic flux across the inductor. As a consequence Q and
® are canonically conjugate variables that in, the quantum limit, have to
obey the uncertainty principle

AQAD = % 237

In the absence of any filter, the amplifier output will have infinite
uncertainty and so will have the charge. If an integrator is used, that
integrates the amplifier output on a time T, the uncertainty on the capacitor
integrated voltage will be

_kBTnRq

- 238

o2y

and thus the error in estimating the charge is

1@:.6_H =g)_ .dq)__a_H =-%=-V

d sp L’d o
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2= - Bntn 239

Notice that that eq. 238 gives the uncertainty on the total charge.
This total charge includes also that due to the current noise. After the
measurement has taken place the state of the system is let with an
uncertainty on the charge AQ=0q

During the integration time, due to the noise current, the flux in
the inductor drifts by a mean square quantity:

A2D=<[D(t+1)-B(1)]2>= 2[R3(0)-Ro(T)] 240

The flux noise autocorrelation R¢ (1) can be calculated from its
noise spectrum:

kpTa L2,
Sa(w)= Ry (0o2- w2)2+02/772 241

with T=RC and is

kpT,R -tl/27
Ro(1)= Bn LCII/T{

1
cos(wit) + T sin(wllrl)} 242

with w1y wo2-1/4t2, that for t<<7’,1/w1 becomes

kBTaR
Ro(1)= o' L (1- lT' 243
As a consequence A2 is given by
kgTxR
2= XBIoR | 7l 244

Ra T

Whatever the precision with which the flux was measured at the
beginning of the integration time, at the end the uncertainty on the flux
value will be AD.

The product AZ®A2Q is then given by
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AZCI)A2Q=

kBTnR L T CszTan ol kBTn
Rn T ) T a [ Wo

2
] 245
Imposing the uncertainty principle in eq. 245 implies:

A w
kBTn= 2 = 246

The noise energy 2kpTp, which is also the minimum signal
energy that can be detected, has to be larger than the energy of one
quantum in the input oscillator.

For this reason it is customary, for very low noise amplifiers, to
express the noise energy at a given frequency in number of quanta or in
multiple of h. Notice that, under this respect , the same noise temperature
corresponds to quite different number of quanta in different frequency
ranges. In the audio frequency range, say at 1 KHz, the minimum noise
temperature is Tn=5-10-8 K while at 10 GHz T=0.5 K and is not very far
from the present limit of amplifiers.

The result above has been derived assuming the gain G of the
amplifier to be infinite. It can be shown that if this is not the case, then the
right hand side of eq. 246 has to be multiplied by 1-1/G.

Quantum non demolition and stroboscopic measurements.

The result obtained in the preceding paragraph has an important
consequence for measurements that use an harmonic oscillator to detect
weak signals and that use amplifiers with noise energies near to the
quantum limit. This is the case, for instance, for resonant gravitational
wave detectors where the SQUID amplifiers are not very far from the
quantum limit. ,

Despite the quantum behaviour of the detecting electronics, the
signal to be measured, like the gravitational force, is, for this kind of
applications, fully classical ( large number of field quanta). Thus the
sensitivity limit set by the uncertainty principle of the oscillator seems to be
more an accident that a fundamental problem.

Let discuss in some more detail the meaning of this limit. If we
monitor the voltage with high precision, low R;, the current noise
generator will change the flux by a large quantity. As a consequence also

dd . : :
the voltage, V=E will change in an unpredictable way contributing to the

total uncertainty on the amplitude of any signal driving the oscillator.
Whatever R;, the minimum signal energy, as derived in the preceding
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section, cannot be less than hw. The true reason for this is that the flux and
the voltage are related quantities and any perturbation on one of them
reflects on the other. The relation that links the voltage to the flux, on the
other side, is just the Hamilton equation for the flux itself. Thus, in
conclusion, it is the fact that neither the flux nor the charge are conserved
quantities in the harmonic oscillator that couples them together and
prevents to monitor one of them, and with arbitrary precision.

A possible way out has been suggested in the past and is the
subject of experimental study by many laboratories. The idea is known as
the quantum non demolition technique and bears close relation with the
subject of state squeezing in laser and microwave systems. I will briefly
discuss here the basic principle of one version of the idea that is known as
stroboscopic measurement.

The basic idea is that, if you want to measure a classical force
with an arbitrary small error, you have to monitor some observable
which, in the absence of the force, is a conserved quantity of the physical
system you use ds a detector. Only in this case the observable will have a
time evolution that will not mix with other variables of the system and will
be only affected by the incoming signal.

In an harmonic oscillator neither the coordinate nor the
momentum are conserved quantities. The amplitudes of the two quadrature
components of the oscillation are instead both conserved quantities. In the
absence of any dissipation these quadrature components, Ajand Ay, are
defined classically by the following equations:

% =A1 sin(woet) + A2 cos(wet) 247a
(—p\/%2=A1 cos(wot) - Az sin(wet) 247b

so that, while the flux and the charge oscillate, Aj and Ay remain constant.
Consider now, in the quatum limit, Q, &, A; and Aj to be
operators. It is easy to check that the commutator [A1,A3] is :

[A1A2]=0wo2[PQ] 248
so that also Ajand A2 have to obey the uncertainty principle

h
AAIAAE 20 249
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I will try to show that however, if one can manage to excite with
the back action noise of the amplifier only say Aj, then A1 can in principle
be monitored with infinite precision.

Consider the circuit in Fig. 15.

C ———
O | ¢
SQUID
S /N
\_/
C ——

Flux mete
L = (DI
S

Fig 15 A SQUID coupled to an harmonic oscillator and its equivalent
circuit

For the purpose of what I have to discuss here, the SQUID is just
a magnetic flux detector that can detect the magnetic flux inside the
inductor of the RLC circuit. The reson to refer here to such a kind of
amplifier is that, in practice, in the audio frequency range most studies on
quantum non demolition measurement use SQUIDs.

The SQUID has a voltage ouput which is white in the frequency
range where the oscillator works. This means that the flux noise generator
in Fig. 15 has a white spectrum Se(w)= S¢. In addition, the SQUID applies
a flux noise to the inductor whose effect can be represented by the ususal
current noise generator that we will assume of white spectrum too
S1(w)=S1. Notice that because the flux noise is white, the associated voltage
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\/ SvSt

kB

noise has spectrum Sy(w)=w2S¢ so that the noise temperature Ty =

So ST
=W results to be proportional to w in agreement with the request

f

of eq. 245. It is then natural to define S<1>=N%Ln and SF% so that at, at
n

the quantum limit N=1.
Suppose now that, by some sort of electric switch, one can
uncouple the SQUID, together with its current noise generator, from the

circuit. Let switch on the coupling for a time dt<< i_n starting at time t=0.
(o]

According to equation 247b the flux measured by the SQUID, ®(t), will be

a short pulse of amplitude ®o=A[VL. To evaluate the precision with which
the height of the pulse can be evaluated, one can consider that this is a
” N%Ln
| E
with E the energy of the signal of unit amplitude. This one is a unit height
”box” of duration dt and thus its energy is E=dt. As a consequence the
amplitude A is measured with a precision:

signal in white noise so that the minimum uncertainty on ®, is 62¢=

N}%Ln
2A1= Lot 250

During the measuring time the current noise, which is now
coupled to the oscillator, makes both the flux and the charge to change.
This variations can be calculated from

St
QGY = [ hi()In(T-)dt 251a
0
ot
d(dt) = j ha () (T-t)dt’ 251b
(0]

where I,(t) is the noise current and h(t) and h(t) are

102



hi@®)= e V2" [cos(w1t) -5o— sin (@1)] 2522

21w

t/2

1 -t/Zt |
hz(t)=aw—1 e sin(w1t) 252b

The quantities Q(dt) and ®(dt) are zero mean random variable
with variances

Ot
Ot

<Q®1)2>= [ jhl(t)h1(t’)<In(6t-t)In(6t-t’)>dtdt’ =
0

0
ot

_Nh N
2L, ijZ(t)dt ~5L, Ot 253a

Nh 1
<cp(6t)2>=m 3@6'{3 253b

and covariance
Nh 1

<QBHPO>=737 7¢Ot 253c

From the inverse of egs. 247 one can obtain the variation of the
two phases after the time 0t as

DY) | Q)

OA 1= \/E + \/E WoOt 254a
51 Dt
6A2—Q\§E)- f/f) Wbt 254b

the mean square fluctuation of which are:

<P(dt)2> +<Q(t‘>t)2>
- C

NAI=— 002012 +2<Q(B)P(Dt)> w20t =
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Nh 7wo2
M2 D 3
2L, 3C ot 256a

=~

<P(dt)2> <Q(dt)?
A2 A2=(?)2 woth% - 2<QBt)P(d)>w2dt =~

Nh 1 Wodt4
gy et o= (02812

256b

so that, to first order in dt, only A3 is affected by the measurement.
, hAw
Notice that the product oA AA2= NTO in agreement with eq.
242 for N=1.
If now the switch is closed, again for a short time dt, for t =
nm/wo, with n an integer, and if the sign of the coupling during each
switch-on can be reversed, the amplitude of Ajcan be monitored with a

precision that increases with 1/AIM, with M the number of repetitions of the
measurement, while the random drive on A; increases its mean square
amplitude with \/ﬁ i

It is straightforward to check, from example 5.3, that A1 is also
excited by a flux pulse arriving at time t= nn/w, while A is excited by a
charge pulse arriving at the same time. So the two phases are sensitive to
classical "force” signals and one of them can be monitored, in principle,
with arbitrary precision.

Thermodynamic fluctuations at the quantum limit

The results obtained for the thermal noise in electrical or
mechanical networks are special cases of a more general theory due to
Callen and Welton'. The theory not only achieve a generalization to a large
class of physical system but also works out the case where kT << Kw
where the results obtained above are not valid anymore. Here I will try to
briefly outline this more general theory.

Suppose that a physical system is described by an Hamiltonian

H(p,q)=Ho(p,9)+V(t)Q(p,q) 257

1 H. B. Callen and A. Welton Phys Rev 83, 34 (1951)
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wher p,q indicate the set of coordinate and momenta of the system. V(t) is
some classical “force” that couples to the system by multiplying the
operator Q(p,q). The system could be for an electrical linear device and

Q(g,p) would be the charge, related to the current by I=(%, while V()

would be in this case the voltage due to the external sources.

If V(t)=Vosin(wt), and if V(t)Q(p,q) can be considered a small
perturbation to the hamiltonian Ho(p,q), then we can use the perturbation
theory to calculate the probability per unit time wy that the system, initially
prepared in an eigenstate [Eq> of the unperturbed hamiltonian Ho(p,q), will
undergo a transition to another state |Er,>. From standard formulas

_mVo? )
Wn= op2 13 IQoml [3(w+wam)+d(w-wnm)] 258
m

N
where Qnm=<En|Q|Em> and hwnm=En-Em .

Each time the system undergoes a transition it exchange an energy
hwam so that the total power dissipated is

V2
Pn= "m0 wZIQnm|2[6(w+wnm) - 3(w-wnm)] 259
m

at thermodynamic equilibrium the total power dissipated has to be
averaged on the thermal population of the states:

F- En/keT
p- Y Pre 0 =

n
260
Vo2 F- Ep/kT
= 21;) wZ|Qnm|26 nEB [3(w+wnm) - (w-wnm)]

n,m

If the states are dense in energy eq. 260 can be integrated with an
energy density p(E):

Vo2
P= 5 W 261
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oo

‘ JdE p(E)e
0o

F- E/kpT
B {I<E+1wIQIE>[2p(E+Hew)-|<E-Kw|QIE>|2p(E-Kew) }

Now for a system with an hamiltonian like that in eq. 257, at least
if the effect of the perturbation is considered to first order, the time
evolution of Q(p,q) will involve a linear equation with some inpulse
response

Q)= [a(t)V(t-t)dr 262
0

where h(t) can be calculated from eq. 257. If V(t) is the periodic signal
above, the mean power absorbed over one period will be given by

P=% ©h”(©)V o2 263

with h”(w) the imaginary part of the Fourier transform of h(t).

On the other hand, in order eq 262 is obeyed in the classical limit,
one needs it holds for the mean value of the operator Q(p,q). In addition
the mean energy dissipation under the effect of the perturbation

. d<E> 0 E dv . T
Q(p, V() is i - a>=<Q>a with < > indicating the
thermodynamic average. As a consequence one can identify the power
dissipation in eq. 261 with that in eq. 263 and obtain

h”(w)=m - 264
F- E/kgT
: JdEp(E)e B {|[<E+hw|QIE>|2p(E+hw)-|<E-hw|QIE>|2p(E-hw) }

o)
Let now calculate the fluctuations of Q(p,q). Let assume that, in
the absence of the force V(t), the mean value of Q is zero. To calculate the

variance of Q is then sufficient to calculate the mean value of the square of
Q. Let first calculate it in a defined quantum state

<En/Q2[Ep>= Y <EnlQIEm><EmlQIEx>=Y IQnm2 265
m m
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and then take the thermodinamic average:

F- En/kpT
<Q2>=Z|Qnmlze " 266
n,m

or for dense states

(o]

F- E/kpT
<Q2>= h-[ JdEdwp(E)e . {|<E+hw|QIE>|2p(E+Hhw)
0

(0}
+|<E-hw|QIE>|2p(E-hw) } 267

The remarkable thing about eq. 264 and eq. 267 is that they involve the
same couple of energy integral: on one side the dissipation is due to
transitions between energy states in a = kT range around the ground state
so that the square moduli of the Qnm’s between states in that energy range
are involved. On the other side the fluctuations are due to the quantum
fluctuations within each state, that involve again the Qum’s, again
thermally averaged.

Now, because <E-hw|Q|E>=0 if E < 0, one of the two integrals
can be rewritten as

(o]

J dEo( E)eF- E/kpT

|<E-hw|QIE>|2p(E-hw)=

o

(oe]

= JdEp(E)e
0

F- (E+hw)/kgT
(E+ho)/kp |[<E+hw|Q|E>|2p(E+hw)= 268

o]

-h T F- (E/kBT
=e wks JdEp(E)e (E/kp )|<E+hw|QIE>|2p(E+hw)

o

so that we can write eq 264 and 267 as
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0]

h”(w)= n(l-e_hw/kBT) [dEp(E)eF- (E/kBT)|<E+hwlQlE>|2p(E+Y1w)
0
269
and
<Q2>= 270

[o0]

—h [ [dEdw(He'h“’/ keT) | pyet BRBD) gt holQIE> 2p(E+He))

(0]
0)

E

or, in conclusion

‘ ’ o /T

Dssim = A v  HW”

<Q2> - { 1 e—Ylw/kBT h”(w) dw 271
0
The function
-hw/kBT
+

Aw 1+e hw Aw 79,

Bno(w D=3 — JokpT ~ 2 Huw/kgT
1-e € -1

is the mean energy of an harmonic oscillator of frequency w and
temperature T so that eq. 271 becomes: .

2 h”
Q= }Eho(w,T) fow) dw 273
o

that for hw<<kgT becomes:
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(0]

<QZ>=g JkBT h Eow) dw 274

0]

A

To have a connection with the theory of, for instance the Nyquist
noise in a linear electrical device think, as already stated, to Q as the charge
and to V as the voltage in a passive linear device. Then iwh(w)=Y(w)
becomes the admittance of the device. Then, in the thermodynamic limit

(o]

2
2>== 2
<I+> - JkBTw

(0]

h(w)

2 (o/e]
o dw= - JkBT Y'(w) dw 275

which is the Nyquist formula.

Notice that the general result of eq. 273 shows that the thermal
approximation breaks down, as already stated, when hw =~ kT where the
mean thermal energy of the oscillator has to be expressed by the proper
quantum formula. At room temperature the transition frequency is = 7
1012 Hz, a microwave frequency, and becomes = 1 MHz at 50 pK.

Though one could think of Eno(w,T)h”(w)/w as to a spectral
density, this identification is correct only in the classical limit. In the
quantum regime an autocorrelation is an ill-defined quantity as operators
that refer to different times do not in general commute. As a consequence
only the integral formula of eq. 273 has to be used.

Example 6.1 Radiation damping.

This exemple is taken from the paper of Callen and Welton. Consider an
electrical dipole of charge q elastically bound to some equilibrium position. Any
acceleration a(t) of the dipole will cause it to radiate energy and experience a radiation
damping force

2 da
__ 9 da
F= 3 dt

276
6mELC

with obvious meaning of the symbols.
If an external force is driving the dipole the frequency response that links

the dipole coordinate x(w) to the force flw) is given by

flw) 1

m 2
Wo2-w2+iw3

x(w)= = h(w)f(w) 277

67TEHC3
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the power dissipated by a sinusoidal force at frequency w, will be

£.2
P=% woh”(We) 278

It is interesting, more than to calculate the fluctuations of X, to refer these fluctuations to a

fluctuating force with a "spectrum” S(w)=Sa(w)/Ih(w)|? - The “spectrum” of this force is
then

h”(w) q2
S{(w)= 2Ena(w,T) = —— W2Ep(T,w) 279
()= 250lOY b breoc®

if the force is expressed as an equivalent driving electic field E=f/q this field will have a
mean energy density per unit frequency U(w)=€0<Sg(w)> given by

1
27c3

U(w)= W2Epa(w,T) 280

where I have assumed that there is a fluctuating force, and then a fluctuating electric field,
along eachone of the three space directions. Eq. 280 is just the Plank formula for the black
body radiation including the zero point energy of the radiation field.
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