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CONCEPT OF A RESONANT ANTENNAE OBSERVATORY
FOR GRAVITATIONAL WAVE BURSTS

Massimo Cerdonio®!, Pierluigi Fortini*, Antonello Ortolan?,
Giovanni Andrea Prodi® and Stefano Vitale®

Abstract
We show how, combining their outputs, at least six resonant bar anten-
nae give with isotropic sensitivity the amplitude, polarization and direction of
propagation of a burst and test for two distinctive properties of the Riemann
tensor, transversality and tracelessness. If not located at the same site, to exert
the two vetoes, the burst arrival times on three antennae must be known: we
show how to determine them. Then in addition the propagation of the burst at

light velocity is tested.

The current strategy to assign to gravitational wave bursts the signals
detected by few antennae consists in making coincidences, within the optimal
post—detection bandwidth [1]. However such a strategy has a few limitations,
which, in the expectation of few events per year, may impair the chances of
confident detections. For instance in order to maximize the probability of such
coincidences, the antennae must be oriented parallel and thus the network, due
to the bar antenna pattern, comes out to be strongly directional and also blind
to signals with the wrong polarization. Also, no fingerprints are provided to
assign confidently candidate events (one may notice in this respect that, even
in the ideal case of pure thermal noise, when thresholds are set at ~ 3 h;,,
where h,;, 1s the minimum pulse amplitude detectable at unity signal to noise
ratio, three antennae will go in coincidence with 0.95 probability at least once
per year, a figure comparable with expected event rates); thus, to assign a g.w.
burst, one has to rely on other signals as the light emission in the visible and in
X and v rays, the neutrino flash, but these may be either undetectable or show
up on so different time scales, that they may be correlated only with difficulty

to the few msec duration of the gravitational wave burst.
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These considerations have motivated us [2] to explore the possibilities
of a strategy of detection such that the network, on one hand, may result
equally sensitive to any direction and polarization and reconstruct, besides the
amplitude of the wave, its polarization and the direction of propagation (as for
instance the recently proposed spherical antenna [3]) and additionally may test
the distinctive properties of the Riemann tensor of the gravitational wave to
produce vetoes. We have in mind ultracryogenic bar antennae, because those
under construction, NAUTILUS at INFN Frascati, AURIGA at INFN Legnaro
and the one at Stanford, are expected to be sensitive enough to detect supernova
burst signals emitted in the Local Group of galaxies and we are interested in
discussing which would be the minimal number of antennae needed and where
should they be located.

Let us first see how the above requests could be in principle satisfied with
a minimal network of six identical antennae (labelled by &« = 1...6), all located
at the same site.

The Riemann tensor, which describes the gravitational wave, must be of
the kind Roiojv so that it has only six components. Furthermore it must be
traceless and transverse. It follows that Roioj carries only four independent
numbers, namely the amplitude , two angles for the direction of propagation
and the polarization angle in the wave front. In fact the Riemann tensor can
be expressed as R;; = h(t) Wi;(t)/2¢2, where W;ji(t) is a 3 x 3 symmetric,
traceless and transverse matrix. The “square amplitude” of the wave h(t)? can
then be calculated as A(t)? = 2¢*R%;(t)R;, because Tr(W?), an invariant
under the rotation group, is, for a traceless and transverse matrix, Tr(W?) = 2.
Consider now a set of NV identical resonant antennae (labelled by aa =1...N).
If n® is a unit vector parallel to the axis of the a—th bar we can write the
response of each antenna as

+o00
X*H) = (nin".)"/ dr H(t — T)Roioj(T) = £(H)Wij(n'n?)™ (1)
—o0
where H(t) represents the transfer function of the bar. For N > 4, if no two of
the antennae are parallel and no three of them lie in the same plane, equation
(1) can be at least in principle inverted to extract, at a given time, the four
independent parameters of R%;(t).

In order however that the sensitivity of such an observatory is independent
of the direction of propagation and of the polarization of the wave, one must
find an estimate of the square amplitude which has to. be a totally symmetric
function of the X®’s. To fulfill this condition the detectors should be oriented
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along a set of N equivalent axes. The most natural kind of choice are the
axes going from the center to the vertices of a regular polyhedron so that they
divide the celestial sphere in identical regular polygons. The minimal choices
are then: i) N=4, the four axes of the cube ii) N=6; the six axes of the regular
icosahedron. We rule out i) because there exists at least one choice for the
direction of propagation and for the polarization for which the configuration is
blind to the wave (propagation along the axis of intersection of the two planes
containing the two pairs of axes and polarization at 45 deg from these planes).

It turns out that for the N=6 configuration instead the quadratic invari-
ant, H = (1/2) £%(t) Tr(W?), is simply H = (5/8) E?y:l X°? and so it is
an estimate of the square amplitude of the burst, which is independent of its
polarization and direction of propagation. The expressions for the other two
independent invariants namely 7 = {(¢)Tr(W) and D = £3(t) Tr(W?) are also

very simple

6 6
:%ZX“, Z 15\/_ Z EaEFEy XoxAxv
a=1 a=1 a#t By
where €, = 1 for detectors 1,3,5 and €, = —1 for detectors 2,4,6. For gravi-
tational waves they must be both identical to zero and so they can be used for
vetolng against spurious excitations of the network.

For noisy detectors the linear invariant 7 is a gaussian zero mean stochas-
tic process with autocorrelation (7 (¢)7 (t')) = 3R(t —t'), where R(t —t') is the
noise correlation function of each antenna; 7 doesn’t change if a true gravi-
tational signal is added to the output of the detectors and therefore it can be
used as a veto for large extra—noise disturbances (e.g. seismic noise, cosmic
rays, etc.). The quadratic invariant H, being proportional to the square of the
responses, 1s connected to the total gravitational wave energy in the network;
moreover being the sum of squared gaussian stochastic processes, its statistic
is a x? with six degree of freedom and its mean and autocorrelation are re-
spectively (H) = (15/8)R(0), (H(¢t)H(t')) = (15/8)[R?*(0) + 2R?(t — t')]. The
cubic invariant D is a measure of the transversality of the wave; because of its
non-linearity, it may be of more difficult use as a veto at low signal to noise
ratios.

We simulated the noise described by equation (2) below (taking R(0) =

2 = 1) by a Monte Carlo calculation and found the probability distributions
of the invariants. Adding a linearly polarized gravitational wave signal to the

noise, we found that we can reconstruct its direction and polarization: in Fig.

1 we report a typical result.



In conclusion of this first part we see that, in the local case, the N=6 con-
figuration, besides allowing to recover the four independent numbers carried by
the R%, 4

of exerting the linear and cubic veto and the possibility of showing ”spherical”
g g 'sp

(t),-1s minimal in respect to two distinct requirements: the possibility

sensitivity.

Such a local solution to our problem, although rigorous in its minimal
feature, may be highly unpractical: ultracryogenic bars, as they must lie hori-
zontally, cannot be located in the same place [4]. However they may be suitably
distributed on the surface of the earth in one of the possible N=6 configurations,

)

in which their responses do not degenerate and the network keeps its ”spher-
ical” sensitivity. To give just one example, with reference at least in part to
antennae under construction, they could be put in pairs: the observatory would
then need a minimal number of three sites each ones having two detectors lying
in the horizontal plane and forming an angle of ~ 63°. Such sites could for
instance be located one in Italy, one in Stanford and a third one in Japan (al-
lowing a maximum tilt of 8° from the horizontal plane, which would be feasible
with slight modifications of the apparatuses under construction). Now one can
still use the quadratic invariant to get the total energy carried by the burst,
but, if one wants also to exert the two vetoes, one must in addition determine
the arrival time of the burst in order to reconstruct the wave front, on which
the X *(t) must be recombined. The preceding analysis then can be carried
out just the same provided the responses are shifted by the appropriate delay
times. We see that this can be done off-line with optimal filtering methods, as
briefly outlined below, at the price that in at least three detectors AR 8 Amin.
While this may appear only an inconvenience, still it gives the further advan-
tage of testing that the signal travels with the velocity of light, an additional
independent test. Of course, as we have added the time delays information, the
N=6 configuration may no more be minimal in principle as far as the vetoing
requirements are concerned, but of course it is still minimal under the request

of "spherical” sensitivity.

We thus need to discuss how cryogenic bar antennae, the output of which
is currently analyzed in such a way as to show time resolutions of fractions of
one second at best, may actually be used to resolve arrival times of rare pulses
with the resolution of a fraction of a ms, the resolution needed because of light

velocity travel times on earth surface distances.

The procedure we discuss below will need a digital data analysis |, by

which the output of the antennae is sampled at least at 5KHz, in order to
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obey the sampling theorem. This is possible with current digital methods and
instrumentation.

The estimation of the arrival time of a signal in the presence of noise is a
well established problem in signal analysis [5]. The ability to measure the arrival -
time of a pulse signal on a resonant antenna then depends on its signal to noise
ratio and its post—detection bandwidth. We have considered a simplified model
of the antenna but we expect the main results to remain valid for an actual bar
detector, if the operating conditions discussed in ref. [6] are met, in particular
the resonant conditions among bar, transducer and electrical modes. In this
model the antenna is considered as a simple harmonic oscillator with mass M,
resonant angular frequency wo and decay time 7, excited by a short pulse of
force f(t). The oscillator is driven in random motion both by the sum f,(t) of
the brownian force and the back-action force noise of the position transducer,
this one contributing also an additive position noise £,(t). Both the total force
noise f,(t) and the added noise {,(t) are assumed to have white spectra with
values Sy and S¢ respectively. In the framework of the standard Wiener filtering
theory we can estimate for an impulsive force signal A(t) = Agg(t —t,) both the
unknown amplitude Ag and the unknown time of arrival t,, defined as the time
of maximum output of the given filter. An important case is that in which g¢(t)
is a wave packet with a center frequency close to wy and a duration 7, & 1/wy.
This is probably the closest approximation to the expected gravitational wave
burst signals. In order to evaluate the uncertainty of the estimation of ¢, let
us notice first that, in the absence of any signal, the filter output reduces to a

zero mean gaussian stochastic process 1, with a correlation function
R(t — ") =(nw()nw(t))
+oo
=g? / g(t —t") exp(—|t" — t'|/Tpd){ cos[wy (" — )]+ (2)

—0

+ sinfw.(t" — t')]}dt” ,

WxTpd

where w, = wo(1 4+ Sp/(M?Sewd))/?, 7'1;12 =772+ 2(w? — w?) and g(t) is the

convolution of the signal with itself. For actual antennae, optimal sensitivity
calculations allow to expect [6] ws = wo and Tpg & /M2Sewl/Ss =~ 20 ms,
that is an optimal post—detection bandwidth of 50 Hz. On the other hand the
response of the Wiener filter to the signal is proportional to the autocorrelation
of the output noise. The estimate of Ay and t, reduces to the search for the
~-maximum of the absolute value of the stochastic process K(t) = A(t) + nw(t)

and, by definition, the value # for which |A\(t)| reaches its maximum is taken
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as an estimate of ¢,. Let us call ¢, the random part of the estimate of the
arrival time. An analytic evaluation. of the statistics of the zero mean random
variable t, in a few situations was obtained long ago [7]. To discuss the main .
conclusions that apply to our case let us first. separate the “phase” part 6t of
t, writing t, = 0t + nT, /2, with T, = 27/w,, §t < T,/4 and n an integer. The
first result is that the standard deviation of ét, os, provided that g(w) varies
slowly in the range w ~ w, £ 1/, is given by:

o= 2712;\/' ’ (3)

where the signal to noise ratio SNR is defined by SNR = A /o, which turns out
to be actually the pulse sensitivity h/hmin.
The second important result is that for SNR >> 1 and pulse duration

7pS 1/wy the standard deviation of n is given by

Tpd

On = T(SPJVR-)E; (4)
in this limit A(t¢) shows a cusp for ¢t = t, that makes easier the arrival time
detection. Notice that as soon as o, < 1, for instance when SNR > 8 for
Tpd = 20 ms, the total uncertainty o of the arrival time reduces abruptly only
to the phase contribution os; as in equation (3). For a 1 kHz antenna this
gives oy ~ 160/SNR usec, a figure that easily allows time delay measurement
for antennae at different places on the earth.

To show the confidence in the measurement of the arrival time at such
a resolution, we give in Fig. 2 the results of a numerical simulation, using
g(t) = 6(t): the zero-delay channels within ~ 0.03 ms, contain more than 95 %
of the data, in about 300 attempts. Only in less than 5 % of the attempts, the
procedure gave arrival times wrong by +n7T'/2, with n never larger than n = 2.
We have also investigated numerically the effect of the duration 7, of the pulse:
as long as 7, < 1/w,, the results are quite insensitive both to 7, and to the
shape of the pulse [8].

An actual ultracryogenic antenna is not a single mechanical oscillator,
but rather a system of three coupled oscillators, two mechanical, the bar and
the transducer, and one electrical, the circuit coupling the transducer to the
amplifier. So one may wonder if all this is still applicable. Fortunately the
answer 1s in the affirmative and particularly transparent just in the case of
optimal sensitivity, when one tunes the three resonators to a tight coupling:
- we find that the output of the Wiener filter behaves all alike that of a single

resonator. Thus we are confident that the present results remain valid.
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In summary if we have SNR > 8 in-at least three antennae, we can de-
termine the pulse arrival times therein and thus velocity, direction and versus
of propagation of the burst wavefront. Recombining the responses as in the
local case, after appropriately shifting them in time, we can exert the linear
and cubic vetoes to reject spuria and determine the polarization and (again)
‘the direction of propagation; the agreement between the two determinations of
the direction effectively tests for speed of light propagation.

The observatory will then fully and autonomously reconstruct a signal,
l.e. assign it unequivocally to a gravitational wave event, without for instance
the help of neutrino coincidences. This last feature may be crucial for observa-
tions of gravitational collapses beyond the Andromeda galaxy because the range
-of even the largest neutrino detector under development for supernova events
should be limited to the distance of that galaxy, as one anticipates taking as
reference the neutrino emission in occasion of supernova SN1987A.

If for all antennae SNR < 8, the capability will still be preserved to re-
cover, with isotropic sensitivity, the total energy of the burst, if the six squared
amplitudes are integrated over times longer than the light-times delays.

All these results can be easily adapted to a network of interferometric
antennae, provided their location on Earth is properly chosen. Our concept as
given here differs from the solution of the inverse problem worked out in ref.
[9], where a complementary point of view is taken. In ref. [9] the distinctive
tensorial properties of the wave are rather an untested assumption, which en-
ables one to reconstruct the signal with the minimum number of antennae. It
should be noticed that also in that case it is requested to deal with signals of
amplitude A2 10Anin.
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Fig. 1  Scatter plot of reconstructed positions of a source located at right
ascension R.A. = 3h 35m and declination § = 32° 18’ over 3000 attemps. The
incoming gravitational pulse is assumed linearly polarized with polarization
angle 1 = 30°, the estimate of which has the same accuracy of the other two
angles. The SNRs of the 6 antennae, due to their different figure pattern, are
respectively 4.5, 6, 1, 9, 10, 1.
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Fig. 2 The relative frequency, over 300 attemps, with which the arrival time
is determined by the procedure in the text. The “true” arrival time is ¢ = 0.

The signal has SNR = 10 and w,7pq = 20.
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