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Abstract

The cluster radioactive decay theories are shortly discussed, de-
scribing the features of a-decay like theoretical approach, as being
appropriate to take into account the nuclear structure of initial, fi-
nal and emitted nuclei. A suitable method for computing the cluster
overlap integral in the Woods-Saxon shell model is presented, as a first
step to calculate the cluster emission probabilities.

PACS numbers: 23.80 Nuclear decays by heavy ion emis-
sion 23.60 Alpha-decay 24.75 General properties of fission
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1 Introduction

The theoretical investigation of the so-called ”exotic” or "new” radioactivity
started in 1980 with the seminal article of Sandulescu, Poenaru and Greiner,
ref. [1] and was boosted four years later by the experimental discovery of 1*C

emission from ?*’Ra, made by Rose and Jones [2].

Initially, the search for cluster radioactivity was limited to trans-Radium
nuclei and to a few emitted clusters, like the isotopes of C, Ne, Mg or Si.
Several autors indicated also other possible cluster radioactivity in regions
with A < 200 and around A ~ 110 (refs. [3] and [4]). More recently, the
discovery of 2°0 radioactivity by Bonetti et al. ref. [5] and, probably, of 2°F,
ref. [6], extended the number of different emitted clusters up to ten. This
trend justifies the interest presented by the theoretical analysis of experimen-

tal data, as well as by the theoretical or semiempirical predictions.

As a fragmentation process of parent nucleus in two inequal nuclei, the
cluster radioactive decay is an intermediate phenomenon between the sym-
metric fission and alpha decay. Obviously, the cluster radioactivity can be
approached theoretically from two viewpoints: of the fission theory and of
alpha-decay theory. Until now, the first one was extensively used in calcula-
tions.

Both treatments have in common the calculation of penetrability factor
of the two fragments in the decay channel through the Coulomb (or Coulomb

plus nuclear) barrier. The penetrability factor is very sensible to the Q value



of the decay and to the barrier dimensions, offering the gross feature of de-
cay probabilities. The simplified versions of cluster decay models, like [1],
or more elaborated and recent ones, like [4] and [9] are based mainly on the
calculation of penetrability. The nuclear structure was used there to obtain
the Q-values of cluster decay, or the relative l-value for the centrifugal term
of the penetrability factor. This simple treatment, build on fission models,
is in fact a semiempirical one. Nevertheless, it contributed decisively to the

present progress in this new field of Nuclear Physics.

The situation changed with the discovery of fine structure of 22Ra, which
decays emitting a '*C cluster, on ground and excited states of 2°°Pb, ref. [7].
The theory has to explain now the hindrance factors which are directly de-
pendent on the microscopic structure of the parent, daughter and emitted

nuclei [8].

In the fission-like approach of cluster radioactive decay (see, for example
the analytical superasymmetric fission model, ASAFM, ref. [9]) is principi-
ally difficult to introduce the detailed nuclear structure, as the shell model
configurations. To describe the hindered decays within ASAFM, the authors
of ref. [10] had to modify the potential barrier in the decay channel following
a semiempirical procedure. Even the cluster preformation was described as
a barrier penetrability [22]. In this way, the prediction of hindrance factors
becomes difficult.

Several attempts to calculate the absolute a — decay probabilities have

been made. (See for a review, refs. [16] and [11]). One of the aims was
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to obtain a stability of the absolute decay probabilities against a reasonable
variation of the channel radius, Ry and of the parameters of V4_,,(R), the

interaction potential between the fragments in the final channel.

Following a non R-matrix theory developped in ref. [13], the authors of
ref. [14] calculated the absolute a-decay widths of spherical nuclei in the
framework of Woods-Saxon shell model, proposing also new criteria for the
classification of alpha decays. These calculations were extended to study the
effects of configuration mixing, ref. [15] and of superfluidity, ref. [16]. The
problem of relative a-decay probabilities was also examined in connexion

with the high spin isomers in Polonium region [15].

Two important attempts to generalize the alpha-decay theories for the
cluster radioactive decay were performed. The first one, ref. [23], based on
the R-matrix theory, used approximative methods, like the development of
WS wave functions in HO series, wihout a numerical estimation of the errors.
The second one, ref. [18] is based on the so called cluster approach to alpha
decay, ref. [16]. The cluster width calculated in ref. [18] plays the role of a
spectroscopic factor for the cluster radioactive decay.

In fact, the problem of obtaining the theoretical values of cluster radioactive
decay probabilities remains open. As a first step towards reaching this goal,
the present paper describes a suitable method to calculate the overlap integral

of cluster decay in the framework of WS shell model.



2 The overlap integral in a-decay

In the a-decay theory, the overlap integral is, by definition, the following

expression:
I5(R) = (4% jag )
= (®FMi(7y, 7, ., 7))
o{[®Y (71,7, -, Taa) U (R)] Mixal(E1, €, 5)}) (1)
where ®LMi(7 7, ..., 74) and LU Ms (7, 7,, ... 74_4) are the wave functions

of the initial and final nuclei. x, is the a-particle internal wave function,
depending on the internal Jacobi coordinates f—;, f_;, é; The function ¥¥ (R)
is the solution of the Schroedinger equation for the relative motion between
the daughter nucleus and the alpha-particle and can be written as the prod-
uct between the radial ®"(¢, R) and angular Y,"(Qg). R is the distance
between the daughter nucleus and the emitted alpha-particle and € is the
kynetic energy of their relative motion. The operator a stands for the an-

tisymmetrization in the final channel represented by the wave function ®%M:,

The main difficulty to calculate the overlap integral is to separate the
centre of mass (COM) motion for the four nucleons of the parent nucleus
entering the alpha-particle. When the wave functions of the initial and final
nuclei are given in the HO shell model, this separation can be performed by
using Mang’s formula for the ground state to ground state transitions, (ref.

[12]) or by performing three Talmi-Moshinsky transformations [19] to pass
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from the coordinates 7, (i=1,2,3,4) to K and & (7=1,2,3).

This problem becomes a principial one when aiming to obtain the ab-
solute theoretical decay widths. Theoretical considerations, like the Pauli
principle, as well as the overlap integral calculations show that the most im-
portant contribution for the alpha cluster preformation probability and hence
for the absolute decay probability comes from the surface region of parent
nucleus [14]. Or, in this region, the correct behaviour of one particle wave
functions is given by the Woods-Saxon shell model. As a consequence, WS
shell model must be used in the calculation of absolute a-decay probabilities

instead of the HO ones.

The calculation of the overlap integral within the WS shell model is cur-
rently done by developing the WS wave functions in series of HO functions,
which allows the subsequent use of the standard Talmi-Moshinsky technique.
However, this procedure increases drastically the number of matrix elements
to be calculated and rises complicated problems in connection with the con-

vergence of HO series.

The problem of separating the COM motion for WS wave functions was
solved in ref. [17] and applied in refs. [14] and [15] to the calculation of
a-decay probabilities. When passing from HO shell model to WS one, the
absolute alpha-decay widths I', decrease by a factor of 6 to 27, which depends

on the shell model configurations of the four nucleons preforming the alpha



particle. This result, obtained in refs. [14] and [15] points to the fact that
even the relative alpha-decay probabilities can be seriously affected when
passing from HO to WS shell model wave functions. These findings are also

important for calculating the absolute cluster radioactive decay probabilities.

3 The cluster overlap integral
The cluster overlap integral for an initial (parent) nucleus of mass A,
(pﬁ]ui("_"laﬁh tee 77—{4)

decaying to a final (daughter) nucleus

ItMy o -
‘I’A—AC (7“1,7°2, <o a"'A—Ac)

by emitting a cluster of mass A. and having the internal wave function

(I)‘Izlchc(flaéh s 7£Ac—-1)

is given by the formula:
LI L < M; I 3 M
Iid, (B) = (2" |a{[2]_4, 25 Y (Qp)] " ¥L(R)}) (2)

Here W2 (R)Y"(Q3) is the cluster external wave function, which is the solu-
tion of the Schroedinger equation for the relative motion between the daugh-
ter nucleus and the emitted cluster; R is the relative distance between them.
This formula is a natural extension of the a-decay overlap integral, being also

similar to the R-matrix formula given in ref. [23] and to the cluster approach



formula from ref. [18].

The approach of ref. [18] has the advantage of using shell model func-
tions given directly in the Jacobi coordinates. This fact makes the calculation
much easier, but such a procedure is restricted to HO shell model only. The
HO shell model can be, eventually, used for the cluster internal wave func-
tion, when A, is small, but not for the wave functions of parent and daughter
nuclei. In the references [23] and [18] approximative methods of calculation
were used. In the first one, the Moshinsky brackets for different masses of
particles in HO potential well [20, 21] were approximated with the ordinary
Moshinsky brackets. In the ref. [18] the HO constants of the parent, daughter
and emitted nuclei were taken equal, and a correction factor was introduced.

These two approximations are in fact equivalent.

As it was shown in refs. [14, 15] the Woods-Saxon shell model is more ap-
propriate to calculate the a-decay overlap integral. This must be true also for
the cluster radioactive decay. The number of nucleons forming the emitted
particle in the cluster radioactive decay is much greater than the analogue
number in the alpha-decay, A, > 4, consequently, one expects there a greater
difference between WS and HO shell model calculations than the factor of 6
to 27 found in the ref. [14] for the case of a-decay.

Unfortunately, the previous attempts to find a correction formula allowing
for the calculation of WS shell model a-decay absolute probabilities starting
from the HO ones had failed (see ref. [14]). This conjecture holds undoubt-

fully also for the cluster emission, where more requirements are imposed to
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such a formula. So, the calculation of absolute decay probabilities in the
framework of WS shell model becomes very important for understanding the
limitations of the theory and for evaluating the different approximations used
in this field.

One of these approximations is the development of the WS shell model wave
functions in HO series, ref. [23]. However, such a development in series
needs a careful study of convergence and an optimal cutoff. The HO and
WS wave functions have different behaviour at the nuclear surface and in the
asymptotic region and the convergence reached for one region doesn’t extend
authomatically to the other. To reach a better global convergence, a greater
number of terms must be retained. If, after the cutoff, the minimum num-
ber of terms left in each series is n, then the total number N of the overlap
integrals I‘{f’i{f(R) to be calculated becomes greater than n“c. Even for the
smallest possible value of n, (n=2), the number of the overlap integrals to
be calculated for the (yet hypothetical) emission of the “°Ca cluster becomes
greater than 10'?. The calculation of *°Ca radioactivity plays a test role for
the decay models; the emission of such a cluster is very near to the region of
the asymmetric fission. In the ideal case, the theoretical description of phe-
nomena must pass smoothly from the alpha decay, to the cluster emission
and fission. (A detailed discussion of this subject can be found in ref. [18]).
For (a reasonable small) n=>5, N is greater than 6 * 10° for *C' emission and
than 2 * 102 for 3257 emission. These numbers increase considerably if the
configuration mixing takes place in the initial and (or) final states of nuclei.
The above evaluation shows that the epansion of WS wave functions in HO

series cannot be used to calculate the absolute decay probabilities, except
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maybe the simplest cases of cluster emission in single particle shell model.
Even for the smallest A, and for a minimum of terms in the HO series, the
repeated application of the Talmi-Moshinsky transformation is confronted
with difficulties. The ordinary Moshinsky brackets, ref. [19] can be used
only when the masses (or the reduced masses) of the involved particles (or
group of particles) are equal at each step of the transformation. (Another
equivalent condition is the equality of oscillator constants.) The only emitted
cluster which fullfils this condition is *2Si as having A, equal to a power of 2,
allowing a symmetrical graph of the Talmi-Moshinsky transformations. For
all the rest of emitted clusters, at a certain step, a special kind of Moshinsky
bracket is needed (for unequal masses). The analytical formula for this type
of Moshinsky bracket, ref. [20], is much more complicated than the usual
one. Another formula, see ref. [21], gives the special Moshinsky bracket as a
sum of products of usual Moshinsky brackets.

A way to circumvent these difficulties is to follow the method of separating
the COM motion for two particles in a WS potential well, developed in ref.
[17] and adapted in ref. [14] for absolute alpha-decay calculations.

After the usual separation of two particles wave functions through the frac-
tional parentage coefficients, the typical integral to be calculated in the for-

mula (2) has the form:

AR Bor) = [ a7 Bt () 0130 (i ) 3)

where ¢,,'.( sk k)(f}k) are the WS wave functions of two nucleons from the par-
ent nucleus, labeled i(k), entering the emitted cluster, after the separation of

the spin variables. X;,,(7ix) is the part of the cluster internal wave function

10



containing the relative coordinate of nucleons i and k, 7y = 7; — 7.

ALA"lm(ﬁik) represents the wave function of COM motion of particles i and k,
]*_?:,k = w being the COM coordinate. M stands for m; +my. Here, for
convenience, we took different masses for the two nucleons. After a change
of coordinates, ref. [17] and an integration over the angular variable ¢, , we

obtain:

ALI\[lm ZYJM m(Qg)C(LIT; M — m)(—1)" B3 (Ri)  (4)

where

1 /(2L + 1)(20 + 1)(21 + 1)
JLl(p \ _ =
By (Ba) 2\/ 5+ 1

> (=1)"YC(LIJ;p+ q — p — q)C (Ll L; pq)

P9

/ it (i) bn,1, (k) P (cos 0;) Py] (cos 8x) P (cos Gk )iy drixd(cos ) (5)

The following notations were used:

2
¢R —+ M—’l‘,k + 2 M Rz’k"'ik COs 0,,.,: (6)
2 m;
T = R M2 zzk 2— M Rik"'ik CoSs Hn.k (7)
2k sin 6,
0= arcsin(M—s:l—) (8)
B gini 8,
0 = arcsm(%) (9)

Here C(l4l;L;mim;) are the Clebsh Gordan coefficients and P"(cos @) are
the Legendre polynomials. The double integral in the formula (5) is per-

formed using the Gauss methods. By replacing there the WS wave functions
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with HO ones and putting m; = m,, the formula (5) becomes a usual Talmi-
Moshinsky formula for the separation of COM. The same formula gives a
COM separation also for two particles of different mass. In both cases, the
calculations were confronted with the previous results, ref. [19], where the
Moshinsky brackets are given in the tables, or refs. [20] and [21]. The com-
parison of computing times of the classical multiple summations from the
last three references with the formulae (4) and (5) ishows a clear advantage
of the method presented here. The actual method requires the same time for

equal masses of particles, or for different ones.

To calculate the WS shell model overlap integral for cluster emission, the
formula (4) must be applied repeatedly. For the *C emission, for wich the
first trial calculation was done, the COM separation implies the application
of the above procedure seven times for pairs of nucleons, three times for
groups of four nucleons and once for a group of eight nucleons, in all cases
the masses of particles or the reduced masses of the components of groups
being equal. The last two COM separation procedures implying a group of
six nucleons (4+2) and 14 nucleons (8+6) correspond to the transformation
of coordinates for different reduced masses. At this point, the authors of ref.
[23] used the ordinary Moshinsky matrices instead of the special ones, ref.
[20] or [21].

The simplification brought by the formula (5) allows the correct calculation
of the cluster decay overlap integral in the WS scheme, opening in this way

the possibility to obtain the theoretical decay probabilities.
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4 Conclusions

The present paper proposes a method of calculating the overlap integral for
the cluster radioactive decay, in the framework of WS shell model, suitable
for computation. The same method can be used for other approaches, using
for example HO basis. The problem of obtaining the absolute theoretical
values in the cluster radioactive decay needs further developments, which
are very important to evaluate different approximations currently made.

As it is well known, even in a simpler case like the alpha-decay, the theo-
retical approaches are meeting difficulties in describing the absolute values.
Nevertheless, many standard procedures of calculation and some classifica-
tion criteria were developed in the alpha-decay theory; their application to

the cluster radioactivity could improve our knowledge in this new field.
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