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1. Introduction

Gravitational wave detection is a research field which is actively under
development by many groups all over the world. Beside the cylindrical bar
detectors (two of which, CERN (Geneva) and Baton Rouge ( Louisiana), are
in operation and other two, Rome and Legnaro, are under construction) also
spherically shaped bodies can be used as detectors of gravitational waves. The
physics of spherical antennae is not yet completely developed, specially for what
concerns the response of the electro-mechanical detectors used for transducing
mechanical into electric signals.

Purpose of this internal report is to solve exactly the mechanical prob-
lem of an elastic sphere with N attached transducers. We in fact are able to
determine the spectrum of eigenfrequencies and eigenfunctions of the full appa-
ratus. Our results are cast in a form which is suitable for subsequent numerical
simulations. The importance of the latter is due to the fact that one can com-
pare cylindrical versus spherical antennae and get a precise idea about their
performances as gravitational wave detectors.

In section 2 the equations of motion for an elastic free sphere are written
and the spectrum of its eigenfrequencies are determined. In section 3 the la-
grangian for the full problem is set up. In section 4 the coupling of the sphere
with N harmonic oscillators (transducers) is studied. In section 5 the reso-
nance mode [ = 2 (i.e. the mode of the sphére which couples directly with a

gravitational wave) is studied in details and future work is briefly sketched.

2. Equations of motion of a free elastic sphere

If we call u(z) the displacement from the equilibrium position at point =
one has (see (3.11) of [1])

0’u

P i =uViut (At p) V(T - u) (2.1)



Using the well known decomposition
u=u® 40
where u(?) is a divergence free field and u(" a rotation free one, i.e.
V-uld =0 Vxul=0 (2.2)

eq..(2.1) is splitted into two wave equations, one for the transverse field u(?),
characterized by transverse propagation velocity ¢; = (u/ p)l/ 2 and another one
for the longitudinal field u(!), characterized by longitudinal propagation velocity
a1 = [(A + 2p)/p]*/?. We notice that the words longitudinal and transversal do
not refer to the geometry of the oscillations but only to the properties of being
divergence and rotation free. Finally we can say that the equations of motion

of an elastic body are the following two

1 62 %
A - =0 o= (%) )
1 & A+2p)]*
Auld _ EW"U) —0 o= [( J; “)J (2.4)

Because of eq. (2.2) the fields u(® and u(") can be derived from a vector

potential x and a scalar potential ¢ respectively by means of
u® =V x x (2.5)

u) = V¢ (2.6)

Eqs. (2.4), (2.6) show that the potential ¢ satisfies the scalar wave equation

with velocity ¢;
1 8%¢

A solution which is regular at the origin can be written as

B t) =3 qi A9 (4) i(guir) Yim (9, 6) (2.8)

nilm



where, putting

@nl €1 = Wny (2.9)

the coefficients Agfl)m satisfy the equations

AW w24 (2.10)

nlm

where g,; depends on boundary conditions. From this one sees that the longi-
tudinal part of the displacement can be written as

uO(z,1) = Y - 4D, (6) V[ii(gur) Yim(0, 4)] (2.11)

n
nilm

Let us now consider the transverse displacement. From the general vector for-
mula

A(r-A)=r-(AA)+2V-A (2.12)

one gets for u(*) (see eq.(2.2))
A(r-u®) =r- (Au) (2.13)

i.e. the scalar r - u(*) satisfies the scalar wave equation with velocity ¢;. We can
write the general solution as
(1+1 )
rou® = S 4O () Gikuir) Yin(0,9) (2.14)

n
nlm

Now eq. (2.5) implies

rou® = r (Vxx) = (rx V) -x =iL-x (2.15)
from which
I(l+1 .
L.-x= Z (zk ) AELtI)m( ) Jl(knlr) Km(0v¢) (2'16)
nilm

where L acts only on the angular variables and obeys the following equation

LY =1l(141) Yin (2.17)
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Therefore

X = z 'I.k nlm

1(knir) LY11m (6, ¢) (2.18)

from which

u® =3 — Zk AD () V x [i(knir) LYim(8, )] (2.19)

nim

where the coefficients of the development An,m(t) satisfy the equation
A+l AD, = (2:20)
Wni = kni ¢ (221)
Finally we have

e u® pu® =3 { — AGn(®) V lit(garr) Yim(0, )] +

wim (2.22)

5 A0 T x ilknrr) L¥in(6, )]
Rnl

We want now to write u(z,t) as a sum of a vector term parallel to n = »/|»|

and another parallel to VYim. One gets

Vli(anr) Yin(0,8) = |28 i qun)¥] Vin0,4) (229

and

V.X [jl(knl"') LYIm(91¢)] =
= Vji(knir) X LY1m(0, ) + 51(knir)V x LY1,n(8,¢) = (2.24)
9ji(gnir)

- T nxL },Im(07¢) '*'jl(k'n.l"')v X LYlm(0,¢)

For the first term of the preceding equation we have

nx LY,(04¢) = l,n X (rx VYim) =

QL =

 [(n - VYim) r — (n - 7) V¥im]
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from which it follows

n x L Yin(8,9) =irVYi, (2.25)
For the second term of eq. (2.24) we have
V x LY1n(8,¢) = %V X [P x VYim(0,¢)] =
{7 (V- FYim) = Wi (V- 7) + (Vin - V) 7 = (v - 7) Vi)
Let us consider the four terms separately.
r (V- VYin) =+ V-¥im = mn %66722(1' Yim (6, 8)) — f—: Yim (6,)

l.e.

. (F.9%) = 1T

n Y,

and for the other three
T Yir (V- 7) = =3 V¥im

= e 0 0
VY- V) »=(VY,,-V n)= — 4 —) =
(7 Yin D) v = (7 ¥in-9) (rm) = (va 4 05 ) (om)
T(V},Im'v)n_——vy'lm
(7 V) Wi =+ 27 Yi = 7 Vi

from which

0+1)

VxLY,(0,¢) =1 [ + V] Yim (8, 9) (2.26)

Finally we get
V X [j[(knl'l‘) LY, (07¢)] =

SRk " lri v 2.27
{ i n+_[TJl(knﬂ')]V} Yim (6,4) (2:27)
" Or
Therefore
A(ﬂ) ajl(q lr) B
1) = nlm o )
v r;n{ Inl [ or n + ji(gnir) V} +

(t)
St [’(’ Dy (ki) 2 (gt (kir) V] }Yzm (6,4)

(2.28)

T



Setting
A () = Anim (1) i

, (2.29)
AL (1) = Anten () tim
one gets
'u.(a:,t) = Z Anlm(t) [anlm (7') + bnim (’I‘) RVJ Yim (0,¢) (230)
nim
where 5
nim 071 (qn tnim (T4 1) .
Bt 7] = Snim 051 (gniT) 4 Iml (I+ )Jz(knz'r)
qni or knl
iy o 9 1 (2.31)
bn - — nim . " nim il . kn =
i 1) = | 222 guar) + 2222 2 (0 (k)| &
As boundary conditions are applied for 7 = R it is convenient to set
_ ZTnl
dni = R
and therefore also (see egs. (2.1) and (2.24))
Cl Tpi
kni= ——
! Ct R
and also
nim tﬂ m
Cnlm = 2nl dnlm = l c_t (232)
2 LnL C]
41 (qn (1+1) .
Anlm (7') = cnim R ll(dq_lr) + dnim R ( il )]l(knl"')
" P " (2.33)
bnim (7) = cnimdi (gnir) + dnim— (v51 (knir))

dr

In order to get the eigenfrequencies of the sphere we must apply suitable bound-
ary conditions. For a free body these are equivalent to assume that the total
force per unit area at the surface of the elastic medium is zero in the normal
direction. If n. are the components of the unit normal vector this means the

following three conditions
W =3 ) (2.34)
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where o, is linked to the deformation u,, = (1/2)(w,,, + v, ,) by means of

Oy =8y X o +2 1 (2.35)

in spherical coordinates

Orr =2 pUpr +A V- u

Org = 2 U Urg (236)
Orp =2 [ Urg
where
_ ou,
Y = o
i 1 8u0 Ug + 1 Bur
Yre = 2\ Or r r 00 (2.37)

_ l 1 Ou, n Oug _ug
Y = 3 \reind 0¢ or T

Equations (2.35) are written on the surface of the sphere r = R as (see ref. [1))

2y.urr+/\v-u=0
urg =0 (2.38)
Urg =0

In order to get the eigenfrequency equations it is necessary to give u explicitly.

As we have seen in (2.30), (2.33) one has:

w(@,t) =Y Anim(t) [@nim ()1 + buim (r)RV] Yim(8, ¢) (2.39)

nilm

where

d (1+1) .
q'nlm(r) = CnlmR;Jl(qnlr) + anmR ( " )]l(knlr)

: (2.40)
bnlm(r) = cnlmjl(inT) + dnlm‘d_r' [le(knlr)]

To simplify our notations we omit indices and remember that the equations are

8



valid for any value of (n,l,m). Starting from the first of (2.38) we get:

d
Upr = AJGY

V. -u= AV [aYn + RbVY] =

= An-V(aY) + AaYV-n + ARVY - Vb + ROV Y = (2.41)
= A(n-Va)Y + da(n-VY)+ 4 2 v — arll 42_ D
) T

Ou I(1+1)

= A 2 —Rb———=|Y
o +

i
The third equality in the second equation is due to the orthogonality condition
VY -Vb =0, VY = —I(l+1)Y/r? and V- n = 2/r, while the fourth is due
to n - Va = 8a/0r and n- VY = 0. The first condition of (2.38) is therefore

written as:

(2’1' + A) nlm + 2)\ Qnim . l(l =+ 1)

T 72

Abpim =0 (2.42)
In order to make explicit the last two equations (2.38) we observe that

10Y 1 J8Y
VY = e ap T e i ag

Therefore:

boY Rb 9Y
u = A (aYn-i—R——aF -+ m%e(ﬁ)

Let us consider

Urg = % (uo,r = 1:_—2 + %661:;) =0 (2.43)
Being
1 ROb Rb\ Y
A= (787 B —) E
ug 1 RbOY
T A 2o
11 0u, a aYy
Ar 860 oo
equation (2.43) becomes
R ob 2b a
r or Rﬁ u o 0 (2.44)
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Starting from

d 1 Ou, Ouy ug B
ire =3 (1‘ sinf 0¢ + ar T) =0 (2.45)

we get in a similar way

ROb _2b
TP _RZ2 1% (2.46)

T Or N
which is the same as equation (2.44). Therefore the boundary conditions are

satisfied if o, R
(a.) an+Ra——2 bn—O

dan (1 +1) i%41)
o

(B Cu+)Z"+ 2,\ ~R

Ab, =0

where for simplicity index n stays for all three nlm and a,,b, are given by
(2.40). In what follows we drop all indices in the Bessel functions. Substituting
(2.40) into (2.47) (a) we get

d . 2
en {24riar) - —J(qr)} +
(1+1 2d .
v { A0 + G i) - 22 sy | =

Using the spherical Bessel function equation

d* 2d ., l(1+1)].
[dr +rdr+k _T] j(kr) =0 (2.48)
one gets
d . I(t+1)] .
ﬁ ['r‘](kr)] = |:—’r‘k2 + —-r—] ](k’l‘)
and
2d

———[ri(kr)] = ~—J(kr) - 2diy(k1‘)

The coeflicient of d,, becomes

[l(l+1) I(1+1) _rkz_g_ d



while that of ¢,, can be cast in the form

T

2r | 4hiter) - pitan)] = 202 [12)]

So equation (2.47) (a) becomes

d [j(qr) P+l-1 k* 1d]. B
“n [ T +dn r? 2 rdr 3(kr) = (2.49)

calculated for » = R. This equation is the same as equation (14a) of [2]. Let us
now consider (2.47) (b). Substituting (2.48) we get

cn{(zym & itar)+ 2L j(gr) = Jat+ 11 )}+

dn{ (0 4 | 152 4 Biter) - S vt fia 1) = 0

Using (2.48) we can rewrite the coefficient of ¢, as

{ (2p+A)[f;+q2 M]+2 '\21(l+1)}j(qr)=

{2#[3;+q2 l(l+1] q}r(qr (2.50)
=2u{l(l::1)—(1+ )2_:3'(11} (qr)

d
dr

Now
1 1
A= (cf —2c)p =w?p <§ - E;)
(2.51)
2
p=dp="F
t k2
from which it follows
A k2
1+ — ) =— .
< + 2“> 2 (2.52)

Substituting (2.52) into (2.50) one gets for the coefficient of ¢,




Let us consider now the coeflicient of d,, divided by (! + 1)

e+ 4 182+ 2 icen —TdiJ(kr)] _

(1 2) £ [ 2 ]
e

In this way (2.47) (b) becomes

. V(Hl) _ ﬁ_?_i] i(gr) + dnl(l +1)— [’(’")] =0 (2.53)

72 2 r dr T

calculated for 7 = R. This equation is equal to formula (14b) of [2].
Using eqs (2.49) and (2.53) and observing that for [ = 0 eqs (2.40) give

the condition

(the other condition [(1/72) + (k2,/2) + (1/r)(d/dr)] jo(knor) = O gives eigen-

functions identically equal to zero). One finds

1=0

n qnoR Vno (HZ)

1 | 2.74371 2071

2 | 6.11676 4616
=1

n qan Vni (Hz)

1 | 1.79799 1357

2 | 3.62074 2733

3 | 4.2747 3226

4 | 5.36478 4049
1=2

n qan Vn2 (HZ)

1 | 1.32503 1000

2 | 2.54929 1923

3 | 4.31276 3255

4 | 5.49285 4145

5 | 6.14578 4638
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n q‘n3R Uns (.HZ)

1 | 1.97509 1491

2 | 3.35263 2530

3 | 4.9906 3766
=4

n gna R Vng (Hz)

1 | 2.53417 1913

2 | 4.15425 3135

3 | 5.66719 4277
=5

q15 = 3.05742 115 = 2307 Hz

=6

q16 = 3.56307 v = 2689 Hz

These results were obtained for a material with Poisson ratio o = 0.33 for
which 2¢; = ¢;. The radius of the sphere has been chosen in such a way that

Vig = 1000 Hz i.e. R~ 1.3m.

3. The lagrangian of the sphere

As we have seen (eq. (2.30)) the displacement from the equilibrium po-

sition of an elastic solid body in spherical coordinates can be written as (see

[2])
w(r,0,6,8) = Y Antm(t)P pim(r, 6, 8) (3.1)
where "
Ynim(r,0,8) = [ani(r)n + bui(r)RV]Yim (9, 4) (3.2)

The eigenfunctions %,,,,.(r,0,¢) are dimensionless and orthonormal with the

scalar product (* means complex conjugation)

<90, 91F(r,0,9)>= 12 [ 4" Fode (3.3)
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and explicitly we have

i *
M / Vrim Pt PA°T = b 6111 b (3.4)

The coeflicients of the developement (3.1) are therefore given by

< Yuim|bz >= Anim(t) (3.5)
Let us consider now a reference frame O’. The normal component of the
displacement on the surface of a sphere in this frame is (see [2] eq. (7))

new= ) an(R) A () Yim (8',4') (3.6)

nlm/’

Now we want to express the radial displacement in another frame O rotated with
respect to O’ by the hour angle H and the declination § (for the definitions of

H and 6 see [2]). In O we can write

n-u=Y au(R) (Z AL DY (H, 5)) Yim(6, ¢) (3.7)

nlm

where the operators pW (H,8) are the rotation matrix for the spherical har-

mm’

monics (see for instance [4]).

Let us define

nlm ZAnlm’DSlm' H 6) (38)

which are the natural generahzatlons to every order in the n and | indices of

the Fi, of reference [2] eq. (9). To be more precise the exact corrispondence is

Fr = Fiopm (3.9)

O

mm’

Because of the unitary property of the D, ' ,(H,§) matrices, we can invert eq.

(3.8) and find the coefficients f'lillm, as linear combinations of the F,;,,

m
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Let us now consider the kinetic energy of the sphere

1 .
TS = 5 /dazpuz (311)

Substituting eq (3.1) and taking into account eq. (3.5) one has

= —M Z Anlm’ nlm (312)

nilm/’

Using eq. (3.10) and the unitary property for the p (H,8)’s one can find T

mm’

as a function of the generalized coordinates Fyim, Fi¥

1m- One gets

1 : L
Ts = 5 MY FumFi, (3.13)

nilm

The equation satisfied by the coefficients A, ., is (see reference 2], eq. (5))
Anlm’ +wnlA Im' — Rnl'm’(t) (314)

(we have neglected the damping) and therefore because of expression (3.12) for
the kinetic energy it is easy to verify that the elastic potential energy which
gives the correct motion equation should be written as

Vs = —M D WAl s Al (3.15)

nim'

In the same way the potential energy of the external force can be written as

“-'t __M Z nlm nlm’ + Alr):lm’R"l'm'] (316)

nilm’

Making use of equation (3.10) we find

1
Vs = EM Z w,zlanlmlF,:lml (3.17)
nim’
and
= (1 * * (1 *
Vet = MZ Epmm, FutmRlm + D X Rt (3.18)

nlm
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4. Coupling with N harmonic oscillators

Now we consider a set of N identical mechanical harmonic oscillators, with
mass m and frequency w/2m, located on the surface of the sphere at the points
(0;,6:). We call g;(t) the generalized coordinates which describe the radial
motion of each oscillator with respect to the surface of the sphere.

As far as the potential energy of the oscillator is concerned, the choice of

the generalized coordinates leads to the simple expression

2
mw
Vi = 5 Z q? (4.1)

As far as the kinetic energy is concerned we observe that, if we call y; the
coordinates of the i—th oscillator with respect to an inertial frame, it can be

written as
. m 5

The relation between the inertial coordinates and the generalized coordinates
g; is given by

g =Y —7n 'u(R’0i7¢i7t)

Therefore, because of eq. (3.7), the following expression holds

Yi =q; + Z @nt( R)F vty Ynim(Bi50:) (4.3)

nilm

Now as a matter of convenience we define the matrix PP with components
P{) = Y; (8, ¢4) (4.4)
The connection between this matrix P\" and the B of reference [3] is given by

B = p®r (4.5)
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Taking into account equations (4.2)—(4.4) the kinetic energy of the harmonic
oscillators is

=7 Z [q, + &Y an(R) (PY) B + PO E,) +

nilm

| (4.6)
> 3 aniR)aut (RIPS) PG Frim |
nlmn'l'!m’

If some external force f,(t) is applied on the i-th oscillator, then the potential

energy of the external forces is

ezt—_E

In conclusion we have found that the lagrangian of an elastic sphere subject

b L5 an(R) (P o+ POE7,)

nlm

fi (4.7)

to an external force with N mechanical oscillator is
L=TS+Tt“VS_vvezt_1/t_Wezt (48)

where the various terms are defined in eqs. (3.13), (4.6), (3.17), (3.18), (4.1), and
(4.7) respectively. The generalized coordinates are Fi,,, F}* and g; where | =
{1,2,..}, m ={-1,-1+1,..,l}, and i = {1,2,..,N}. It must be remembered
that Fi_,, = (—1)™F,,. Therefore it suffices to find the motion equations from

g; and F,* only.

5. Resonance with 1=2

In what follows we make the assumptions that the common frequency of
the oscillators is equal to that of the mode n = 1 I = 2 of the sphere, that
this frequency is far enough from any other one of the spectrum of the sphere
and finally that the external force has only | = 2 components. In the case of a
damping free motion the second condition is always met if all the frequencies
of the spectrum of the sphere are different from the chosen one. But in real

problems it is necessary also to consider frictions. If we call 7,;,, the damping
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time of the mode caracterized by the indices n, Il and m then the condition is

fulfilled when
lwis — wni| >> - T = min{Ti2m, Tnim' }

In reality it must be considered that when we decouple the oscillators we find
a set of eigenfrequencies that must also satisfy a relation similar to the above

one as we shall see further on. For simplicity we call
P,(:,-) = P Fisy = Fp Rism =R Wiz = w a12(R) = «

Within the framework of these assumptions we find

Ts= MY Foi,

T=%), [q‘? + Y a (Pifn+ Prily) +

1 m

> azP,f,iPm/;FmF;,]

Vo= 2M Y W FF, (5.1)
Veat = —%M Zn: Z (Dﬁj}j, FnR:, + D2 F,’;Rm:>

Vt=m;22q?

Wori= =3 o+ 3 S (P + Ptz

From eq. (5.1) and defining

F=(f) a=(Fn) F=M (Z L, Rsz) (5.2)

m'
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we get the following equations of motion (¥ means hermitian conjugation)

MIs 0 a + Mw?I; —mw?aP a\ (Is O F
maP' mIn )\ g 0 mw?Ty g/ \0 In f
(5.3)
where 7, is the identity in n—dimensional space.
If there are no forces directly applied to the oscillators (f = 0) but only

forces f; applied between the oscillators and the spherical surface (for instance

the noise) then
Wi.=-> afi f=(f) (5.4)
and the equations of motion become
MI; 0 a + Muw?I; —mw?aP a\ (Is —aP F
maP' mIn )\ g 0 mw?Iy g/ \0 Iy f
(5.5)

The coefficient a = a;3(R) can be calculated using [1] and [2]. We want to

stress that our eqs. (5.3) and (5.5) differ from eq. (3.1) of reference [3] because
P=B

This difference however is not essential for the general understanding of the
behaviour of the system.

The next step to dois to decouple the system of 5+ N interacting oscillators
and find the eigenfrequencies. Once the calculation is performed it is very
important to check if it is possible to take into account in a self-consistent way
only the modes with n = 1 and I = 2. In fact if we call @, these eigenfrequencies

and 7, the respective damping times then the consistency relation is

il

|‘:’a — wnll = ; T = min{i—a, Tnlm}
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