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Abstract

Properties of the wall impedance of a storage ring are studied for low and moder-
ate beam energies. In general, the impedance is shown to be exponentially damped
after a certain frequency. The damping factor, mainly determined by a universal ex-
ponent, is derived for resistive-wall and then generalized for broad- and narrow-band
structure impedances. Stability conditions for both longitudinal and transverse os-
cillations of a coasting cooled beam are considered.

1 Introduction

A beam travelling in a storage ring excites electromagnetic fields inside the vacuum
chamber. These fields act on the beam itself and can cause beam instabilities. A
linear dependence of the electromagnetic force on the beam current perturbation
usually is described in terms of the wake potential or the impedance [1]. The
impedance of a vacuum chamber depends on its structure, wall materials and the
beam energy. The last dependence vanishes in an ultrarelativistic limit, where the
solution of the Maxwell equations can be found for a beam velocity v equal to the
speed of light c. This case is described in details in the monography of A. W. Chao
[2]. In this limit all the fields excited by a point perturbation of the beam density,
lag behind it, which is referred to as the causality principle for wake fields.

In the case of a nonrelativistic beam, its temperature is usually so high, that the
coherent increments, introduced by the impedances, are much less then the Landau
damping; thus, the impedance does not play any role. The situation changes for
cooled beams, where at sufficiently low temperature the Landau damping is switched
off. Here, to afford the stability at low temperatures the cooling rate has to be more
than the maximum increment caused by the vacuum chamber impedance.

The causality principle does not work for low and moderate energies, where the
relativistic factor ¥ o~ 1. The reason is that in this case the Coulomb field of a
particle at some impact distance r, is not a d-function of a longitudinal coordinate,
but smoothly increase and decrease during the time 7 ~ r/yv. It follows that the
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wall impedance Z(w) is exponentially depressed at frequencies w > yv/b, where b
is the aperture radius. The trivial space charge impedance of the pure Coulomb
force is the only remaining at these frequencies, but it does not lead to instabilities
(taking apart the structure resonances [4].) This high frequency impedance damping
depends partly on the mechanism of the beam - wall interaction. However the
common exponential factor proportional to the incident Pointing vector damping
near the walls f o exp(—2kb/y) is dominating. Below the problem is discussed
for resistive-wall and structure impedances, the thresholds and the increments of
the correspondent instabilities are estimated. The numerical examples are usually
presented for parameters of the proposed CRYSTAL ring [3].

2 Longitudinal Oscillations

2.1 Resistive-Wall Impedance

Assuming the field dependence on the longitudinal coordinate and time as gikle—w)
Maxwell’s equations reduce to the Poisson equation for a longitudinal electric field
E. excited by a charge linear density perturbation p:
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where pg is an arbitrary constant. All the other field components can be expressed
in terms of E,:
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Applying Leontovich boundary condition at the wall surface, r = b [5],
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the electric field . in a perfectly conducting tube and its perturbation F, due to
a finite walls conductivity o [6] can be found:
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Here a high frequency damping factor f(x) has been introduced:

Ki(k)Io(k) — Ko(k) I, (k)
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(3)
f(R)= 1, forr<k1

f(k) e 2% for k > 1

K (K), I, (k) are modified Bessel functions. A plot of this factor is shown in Fig.1.
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Taking into account that the fields E,, E, and the current perturbation J = pgv
are connected by corresponding impedances, E,.C = —ZIlJ, E.C = —Z1J, where
C' is the ring circumference, the results (Eq.2) can be expressed in terms of the
impedances:

Zl(kv)  2ikL
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where sign(k) is the sign (+ or — of k), § = ¢/V2rokv is the skin depth, I =
In (742/a) + 1/2 is the logarithmic factor with r,,,, = min (b,1/k), a is the beam
radius, and
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The plot of the longitudinal resistive wall impedance is shown in the Fig.(2).

The real part of Zll(k) achieves its maximum at the dimensionless wavenumber
k= 0.43,

ReZll = 0.487) = 0.242,2 [ 2V

SbV 2mob
Zo = 4w /c=377Q. Assuming f = 0.4, 0 =1.3-10', R=10m, b = 5cm, it gives
ReZl =30

2.2 Structure Impedance

The resistive wall impedance Al (Eq.4) can be represented in terms of its ultrarel-
ativistic value Z|l. (which could be seen, e. g. in Ref.[2]) and the damping factor

f(k) (Eq.3) :

2V = ZI f(x) (5)

The factor f(r) reflects the strong decrease of electrostatic fields of the beam density
perturbation with the distance r as ~ exp(—kr/vy). The signal from the beam,
damped near the walls as f'/? ~ exp(—kb/v), produce the perturbation of the
surface current density with the same wavenumber. The energy loss which is a
product of the field F, and the current induced, is damped quadratically, as f1/2 -
fY? = f ~ mexp(—2kb/y). The energy loss is proportional to the real part of the
impedance [2], so the last one is damped in the same way.

The beam-wall interaction due to the vacuum chamber inhomogeneity can be
considered in a similar way. The incident electric field of the beam, damped with
the factor \/f, turns here into a radiative field, the portion of the energy radiated
is determined by the frequency of the incident wave and the wall geometry. The
beam energy loss is equal to the incident electrostatic field energy captured by the
structure. It follows that the beam energy loss, and the real part of the impedance
with it, are damped, in the comparison with the ultrarelativistic case, as the incident
electric field near the walls, squared, i. e. as (v/f)? = f. It is the same result as
for the resistive-wall impedance (Eq.5). To be more precise, the dependence of a



depth of the field penetration into the walls structure on the beam velocity have
to be taken account. In the ultrarelativistic case this depth ¢ is determined by the
wall geometry only ( the depth of a cavity or an iris under the consideration; details
can be found in [2]). On the contrary, when the damping is strong, f < 1, the
incident field energy is concentrated in the depth Gerr = v/2k | if gesy < g . This
property could be taken into account as an additional factor ~ (g/g.;;+1)~! in the
expression of the impedance in terms of its ultrarelativistic value (Eq.5):

S5 1 1+p

W~ ZIl K). 6
14+9/gess 2 =) 2

The factor (1+ (°)/2 reflects the contribution of the magnetic field of the beam

perturbation in the total energy loss. Without significant restrictions, the resonant
circuit impedance model [2] can be used:

R,
e

W,

Z(w) = (7)

where R, ~ Z,Q/(2n) is the shunt impedance, @ is the quality factor.

The real part of the broad band impedance, @ =~ 1, corresponds to the beam
energy loss in the radiative modes of the vacuum chamber. It has non-zero value
only above the low frequency cut-off:

w > 2.4c/b,

2.4 is the lowest root of the Bessel function Jy. Taking into account that w = kv,
the damping factor f near the lowest possible frequency (cutoff) occurs to be:

So the broad band structure impedance cannot play any role for insufficiently rela-
tivistic particles, even for the proton beam in the CRYSTAL ring with 8 = 0.4 the
damping factor f ~ 2-107° , which makes the broad band impedance completely
negligible.

Another possibility for energy loss and for instabilities is connected with the
radiation in low frequency modes of some elements of the vacuum chamber, typically
with @ ~ 10° — —10*. If the lowest eigenfrequency of such a cavity-like element w,
is not large, 2w,b/(vfc) ~ 1, or even less, the damping factor f in Eq.(6) could be
not so small, and the instability due to the impedance

7l — R,f

14+ 82 1 ( w,b)
~ R,exp | -2 , 8
2 g/9ess+1 P vBc (8)

can take place. To avoid this instability in the CRYSTAL, it is enough to screen
the main cavity and to choose sufficiently small sizes b, for the parasitic ones. As

the eigenfrequency w ! o b,,/eft, this restriction primary concerns ferrite and high-
epsilon elements.



2.3 Longitudinal Stability

The problem of a coherent stability for a cooled coasting beam was considered in
Ref.[7], where the dispersion equation was derived for arbitrary relations between
the eigenfrequencies, cooling rate and Landau damping; the equation is general and
not so easy to analyze. Below, a perturbative approach is suggested to the problem.

Actually, the main part of the impedance ZI (Eq.4) is pure imaginary and
therefore does not drive an instability. The instabilities could be driven by rela-
tively small real parts of impedances ReZ!l introduced by different elements of the
vacuum chamber. Coherent increments caused by them are small in the comparison
with eigenfrequencies, mainly determined by the large space charge impedance ZI.
Therefore, even a small Landau damping or small cooling rate is already enough to
stabilize the oscillations. It follows that without significant restrictions the prob-
lem of a longitudinal stability for a coasting nonrelativistic beam can be considered
perturbatively, with the real part of the impedance, the Landau damping and the
cooling rate as small values. The small Landau damping means that a thermal
dispersion of velocities Aw is much less then a phase velocity of longitudinal waves
u), i.e. the beam temperature is also a small parameter.

The dispersion relation can be found from the kinetic equation, which is the
Vlasov equation plus cooling-diffusion Fokker-Planck term [7]. In the reference
frame:

af of  Zie 0fc 0 af
o T Vas Z\[”E%—a_w(/\”wf gy ) (©)

where fy is the beam phase density, f is its perturbation, w is a deviation of the
particle velocity from the beam velocity v, My = M;(1/9* - 1/92)~! is a longitu-
dinal mass of an ion of the beam, M; = A;M, is its mass, A; and Z; are the mass
and charge numbers, A is the cooling rate and dj is the diffusion coefficient. The
diffusion coefficient can be expressed in terms of a velocity dispersion Aw,, corre-
sponding to the thermal equilibrium with the cooler: d = \jAw?, Aw, < Aw.
It means that the diffusion term must be neglected in this perturbative approach
because of its proportionality to the both small values — the cooling rate and the
temperature.

After the Fourier transformation, substituting % + w% on —i(2 — kw), this
leads to:

ZieE ) 0f0 ) 3

My @ —kwdw+ — kw dw (Aywf) -

The electric field E' and the phase density perturbation f are connected by means
of the impedance:

f:_

EC = ~Zie(ZV + 2" po, p—/fdw

At the first approximation, neglecting the impedance perturbation, the width of
the velocity distribution and the cooling term, the sound-like dispersion relation is

found:
2NroL /1 1 Z2e?
Q::‘:k s = e —— = )
e C\/ C (72 7) T M (10




where N is the number of ions.

In the second approximation, the solution of the first one, f = —%%5—'%% can

be substituted in the small cooling term, which gives the following result [8]:

] Al
Q(k) = 2k {1 + g—zsign(k) @ fy (Q/k) — i2|ZZ”1 } - 1% (11)

This result is valid when the influence of Landau damping , longitudinal cooling
and the perturbative impedance on the coherent spectrum is small.

According to Eq.(11), instabilities caused by the real part of the impedance
ReZll can be avoided due to Landau damping or due to cooling. In the first case
longitudinal temperature of the beam must be sufficiently high. Assuming the
distribution function to be Gaussian, fo(u) = (2rAw?)~/2exp(—u?/2Aw?), the
stability condition can be expressed as:

uj - \/? uip | ZI|
—L_ < O il
Aw? — In 2 Awd ReZI (12)

The factor |Z!|/ReZ! is usually large. To see how much it is for a resistive wall
impedance, calculations can be done for some typical parameters of a storage ring.
For the smallest wavelength, & = 1/R, where R = C'/2:

|Z| 2L [2mobb
RezZll 32\ ¢ R

Assuming b = 5 cm, R = 10 m, 0 = 1.3-10" s7', 8 = 0.4, L = 5, one has
|ZI|/ReZ!l = 3 -10*. For such large values the stability condition (Eq.12) can be
presented as:

2

A
—— % D08, (13)
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where the factor fz has the weak logarithmic dependence on the impedance ZI.
For |Z!|/ReZll = 3-10* f; = 1, for | Z!l|/ReZ!l = 30 it is only twice more. It means
that the stability condition (13) is an almost independent on the impedance ZI.
The condition of the stabilization by means of the Landau damping (13) can be
presented also in terms of the longitudinal temperature T = M; Aw?:

I(pA)Z; L
BL—2 /)"
where the factor f; reflects the weak logarithmic dependence of the threshold on the
ratio | Zll|/ReZl, in the case of (13) fz = 1. For instance, longitudinal oscillations
inaluA beam of Lif' [3] with 8= 0.06, L = 4, will be Landau-damped if its
longitudinal temperature Tl > Tt“h =16K.

For 1 mA beam of C{; at TSR with 8 = 0.041 the threshold temperature
calculated from (14) with L =5, f; = 1.5 is: Tt”h = 2-10*K, which is rather close
to the experimental value of Tl = 3. 10*K.

This limit can be overcome by means of a cooling which introduce its own decre-
ment in the coherent oscillations (Eq. 11). If the condition

ReZl  uy fReZll
A > 28 = Ry = 7 L7,

Th > 7l (K) = 0.02 (14)

(15)
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is satisfied for all the wavenumbers &, the oscillations are stable even without Landau
damping.

The increment A achieves its maximum together with the impedance ReZ!l. For
the resistive-wall impedance it is equal to:

~5/253/2 " \/_T
Amae = 0.12 — .
0 L bV 2rob (16)

Applying this formula to the mentioned Li¥' beam, the result follows:

Mgz = (0.8haar),

which is much less then usual cooling rates. For a given ) the restriction (15) can
be treated as a safe condition imposed on the impedance ZIl. Assuming Ap=10s71
for the Lif! beam it gives: ReZll < 10 KQ.

’

3 Transverse Oscillations

The increment of transverse oscillations of a coasting beam, equal to (see, e. g.

Ref.[2]):

_ Nryc? ReZ* (w)
dry@Qy  C

achieves the maximum A,,, at the same wave number n as the impedance. The
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maximum of a transverse resistive wall impedance Z+(w) = —2Z”(w) o (W) is
w

at the lowest positive value of its argument w = wy(n — @), where @, is a betatron
tune. Thus, the resistive wall gives:

_Nroﬁc2 sign(A,) (18)
21y Qb3 /21 awo| Ay

where A, is a fractional part of the betatron tune. As for the longitudinal case, the
transverse increment due to the walls resistivity occurs to be too small to be taken
into account.

The structure transverse impedance is damped more than the longitudinal one
because of the higher value of the cut-off frequency for unsymmetrical modes. The
damping factor for dipole oscillations f; ~ mexp(—7.6/8v), 7.6 = 3.8 -2 is twice
the first root of the Bessel function J;.

The stability condition for transverse oscillations is similar to the longitudinal:

A_Lm -

)\J_ >2A_|_,

Ay is the transverse cooling rate, A, is given by Eq. (17). For the mentioned Li
beam, with A, = 10s~! it gives the restriction for the impedance: ReZ+ < IMQ/m.

4 Conclusions

The concept of the storage ring impedance, developed mainly for ultrarelativistic
beams cannot be at once applied to low and moderate energy cases. The reason is



that the causality principle for wake fields generally is not valid here, which cause
an exponential damping of impedances above a certain threshold. The approach
suggested above gives the possibility to find the wall impedance for an arbitrary
energy if its ultrarelativistic value is known. An application of these results to the
problem of crystallization shows that due to small currents and low energies the
broad-band wall impedance is too weak to cause instabilities. On the contrary, a
narrow-band impedance could be dangerous if its eigenfrequency w, is rather low:
2w,b/(yv) < 1. However, due to the strong exponential damping of the narrow-
band impedance with the eigenfrequency (Eq.8), the impedance can be sufficiently
suppressed.
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SHORT-WAVE DAMPING FACTOR

Figure 1: Short waves damping factor.
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Figure 2: Longitudinal resistive-wall impedance.




