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Abstract
In this dissertation many of the main results I achieved during my Ph.D. are presented.
Specifically, I dealt with both theoretical and phenomenological aspects of quantum
gravity.
In the first part of this thesis we investigate some conceptual aspects that emerge
when we consider quantum spacetimes whose relativistic symmetries are deformed at
Planck-scale. In particular, we first study the properties of Noether charges in quan-
tum spacetimes focusing on first-quantized particles described within a Hamiltonian
framework, finding that their definition is strictly related to the form of the interac-
tion potential. Then, we explore how deformations of symmetries can affect the role
of observers and the properties of reference frames by focusing on a quantum group
toy model. In particular, we deal with a simplified model in which two observers are
just interested in the relative orientation among their frames assuming that the rota-
tional invariance of spacetime is described by the quantum group SUq(2). Within this
framework, we show the quantizazion of one of the Euler angles and a novel paradigm
of agency-dependence of spacetime emerges, namely the properties of spacetime points
depend on some choices made by the observer.
In the second part of this thesis, we present an in-depth study of in-vacuo dispersion in
quantum spacetimes that is the most active area of quantum-gravity phenomenology.
It is indeed well understood that cosmological distances are huge amplifier for the tiny
Planck-scale effects, such that they can be within the reach of our current sensitivity.
We present the most general formula for the time of flight of particle in DSR-deformed
expanding spacetimes of FLRW type, that admits just three possible forms of redshift
dependence and we discuss some noteworthy special scenarios. Finally, we conclude this
dissertation with a novel analysis of in-vacuo dispersion through gamma ray bursts, also
including data coming from the recently observed GRB221009A, obtaining intriguing
indications on the possibility of having a non-monotonic dependence of the time delay
on the redshift distance of the source.
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2 CHAPTER 1. INTRODUCTION

The work presented in this dissertation deals with both theoretical and phenomeno-
logical aspects of quantum gravity.

Our current description of Nature is based on two of the most successful theories of
the history: quantum mechanics and general relativity.

The former is a theory that provides an accurate description of the microscopic
world applying relativistic quantum field theory. In particular, it is formulated in a flat
spacetime background where all the gravitational effects are neglected.

On the other side, general relativity is the present description of gravity at large
length scales and it is a classical theory which neglects all the quantum properties of
particles.

Even if these two theories are very successful in their own regime of validity, after
about a century of research, we still don’t know how to apply them in a regime in
which both gravitational and quantum aspects should be taken into account, like for
example a collision between two particles with impact parameter comparable with the
Planck-length ℓp and energies of the order of the Planck-energy Ep:

Ep =

√
ℏ
GN

≃ 1.2 · 1019GeV, ℓp =
√

ℏGN ≃ 1.6 · 10−35m (1.1)

where ℏ is the Planck constant, GN is the gravitational constant and the speed of light
c = 1 in our units.

We could attempt to apply both theories simultaneously in such physical regime,
but it is widely acknowledged that such endeavors do not yield any meaningful results.

For about one hundred years people addressed this quantum gravity problem think-
ing that indications from experiments would never come. In fact, Planck-energy is too
above the highest energies we are presently able to reach at particle accelerators, and
achieving energies of that magnitude is certainly completely outside our (near future)
capabilities. Hence, it appeared unavoidable for theorists to base their studies only on
certain conceptual criteria and over the years many candidates for a quantum grav-
ity theory have been proposed in literature. Among such theories, the most famous
approaches are String Theory [1–4], Loop Quantum Gravity [5–8] and some models
based on non-commutative spacetimes [9–12], but many other approaches to the quan-
tum gravity problem has been recently proposed [13–21]. But of course, to achieve
significant progress in addressing the quantum gravity problem, some experimental in-
dications are necessary.
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In this direction, few decades ago, the possibility of a quantum gravity phenomenol-
ogy has emerged and it is recently becoming more and more concrete [22–24]. This
research program is based on the attempt of considering physical effects which should
be low-energy remnants of the Planck-scale physics, and could be within the reach of
our current sensitivity. Specifically, some candidate theories of quantum gravity give
some predictions for the Planck-scale physics which, at the energy scales presently ac-
cessible in the experiments, leave some detectable traces. The main idea of this line
of research is to look for amplifiers enlarging the tiny effects expected from quantum
gravity, making them measurable through our present apparata.

The largest area of the quantum gravity phenomenology research concerns possible
departures from Lorentz invariance at Planck-scale, focusing in particular on possible
modifications of the energy-momentum relations. These are suggested by many ap-
proaches to the quantum gravity problem [25–28]. In this context we can distinguish
between two scenarios. A first one in which relativistic invariance is broken (LIV),
giving rise to a preferred frame picture, while another possibility is that relativistic
invariance is merely deformed (DSR), preserving the equivalence of reference frames
but requiring a deformation of relativistic laws of transformation among observers (see
section 1.3.1).

Possible modifications of the energy-momentum dispersion relation at first order in
the quantum gravity scale (the first order is sufficient for phenomenological purposes)
can be written as:

m2 ≃ E2 − p2 ± p2
(

E

EQG

)
, (1.2)

where EQG is the quantum gravity scale, expected to be around the Planck-energy,
± refers to the sign of the deformation, E, p and m are respectively the energy, the
momentum and the mass of the particle.
One of the most studied effect in this framework is "in-vacuo-dispersion" according
to which the speed of light in vacuum becomes energy dependent as a consequence of
deformations of dispersion relations:

v ∼
(
1∓ E

EQG

)
, (1.3)

where the sign ∓ refers to the subluminal and superluminal scenarios.
Of course, this offers a very attractive opportunity for phenomenology as suggested for
the first time in [29]. In fact, even if the speed of light receives small corrections, that at
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leading order are proportional to the ratio of the energy of the particle and the quantum
gravity scale, measurable effects can be obtained considering, for instance, corrections
to the time of flight of astrophysical particles. The cosmological distances, indeed, can
be a huge amplifier for such effects making them within the reach of our sensitivity:

∆t ∼ ∆E

EQG

T , (1.4)

where T is the time distance of the source and ∆E the energy difference of the two
particles considered (see fig. 1.1).

Figure 1.1: Two photons emitted simultaneously and with different energies by a distant
source will arrive with a time delay to our telescopes. Assuming to be in the subluminal
scenario, in blue we have the worldline of a low-energy photon for which Planck-scale
corrections are negligible and in red the one of an high-energy photon.

Other relevant opportunities to test the Planck-scale physics are connected with
studies of threshold conditions for certain particle physics processes [30, 31]. In par-
ticular, threshold anomalies can be thought as kinematic modifications of the special
relativity description of interactions. A most relevant example for phenomenological
purposes is electron-positron pair production from the interaction between very high-
energy and very low-energy photons, such as those from the cosmic microwave back-
ground (CMB) or extragalactic background light (EBL) that can lead to a possible
modification of the transparency of the universe to high-energy gamma rays [32–34].
When we study these threshold anomalies, we have to distinguish between the LIV
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and the DSR scenarios since they lead to quite different predictions. Specifically, at
leading order, modifications for the special-relativistic threshold ESR

th (ESR
th = m2

e

ϵ
) of

this process in the LIV and DSR scenarios can be written as [24, 31]

ELIV
th ≈ m2

e

ϵ

(
1 + α

m4
e

ϵ3EQG

)
=

(
1 + α

m2
e

ϵ2
ESR

th

EQG

)
ESR

th , (1.5)

EDSR
th ≈ m2

e

ϵ

(
1 + β

m2
e

ϵEQG

)
=

(
1 + β

ESR
th

EQG

)
ESR

th , (1.6)

where α and β are real parameters characterizing the deformations, ϵ is the energy of
the CMB (or EBL) photon and me is the mass of the electron.
In this case we have a different kind of amplifier with respect to the time delay expres-
sion, namely the ratio between the mass of the electron and the energy of the low-energy
photon. Furthermore it is important to notice that the correction to the threshold con-
dition in the DSR scenario is much smaller than the one obtained in the LIV case.
Finally, other recent experimental searches of quantum gravity induced effects are con-
nected with the deep infrared regime. In fact, there are some quantum spacetime
models that present Infrared/Ultraviolet mixing (IR/UV mixing) [35,36], a mechanism
that produces non trivial effects also in the deep infrared regime even if only an ultravi-
olet new physics scale is introduced. Interesting phenomenological opportunities to test
these effects come from high-precision table-top experiments. These include cold-atom
interferometry measurements, where the ratio between the mass of the particle and its
momentum is a huge amplifier for the Planck scale effects [37–39].

1.1 The Planck-scale

As already mentioned previously, the physical regime where both quantum and gravi-
tational effects become not negligible, is expected to be around the Planck-scale Ep:

Ep =

√
ℏ
GN

≃ 1.2 · 1019GeV . (1.7)

To understand why we expect that both quantum properties and gravitational effects
should be taken into account around the Planck-scale we present a famous gedanken-
experiment (see [40]). Suppose that we want to localize a particle of mass m within a
region of radius r. According to general relativity its Schwarzschild radius:

rS = 2GNm (1.8)
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Quantum
Gravity

Forbidden by
quantum mechanics

Forbidden by
general relativity

Planck
length

Planck
energy

Figure 1.2: The Schwarzschild radius and the Compton radius identify two regions
prohibited respectively by general relativity and quantum mechanics and they intersect
around the Planck-scale.

gives a fundamental obstruction to localize the mass into too small regions since the
production of a black holes is predicted.
On the quantum mechanics side a fundamental limit on the localizability of a particle
is given instead by its Compton radius:

rC =
h

m
. (1.9)

This restriction arises from the necessity for the injected energy into the system to be
lower than the amount needed to create another particle of the same type, leading to
the disruption of the measurement process.
Consequently, the Schwarzschild radius and the Compton radius identify two regions
prohibited respectively by general relativity and quantum mechanics and their inter-
section ouccurs around the Planck-scale (see fig. 1.2):

r = rS = rC → r ∼ ℓp . (1.10)

This heuristic argument thus suggests the possibility of having a fundamental lower
limit to the localization measurement of a particle around the Planck-scale.
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1.2 Quantum spacetimes

A natural way to implement a lower limit to the localization procedure of a particle is by
introducing spacetime non-commutativity in the same way as quantum mechanics in-
troduces some limitations for procedures intending to obtain a combined determination
of both position and momentum admitting the following non-trivial commutator:

[x, p] = iℏ . (1.11)

With spacetime non-commutativity we assume that spacetime coordinates do not com-
mute among themselves, producing some restrictions for the combined determination
of more than one spacetime coordinate. Formally, a non-commutative spacetime is a
non-commutative and associative algebra generated by a set of spacetime operators
xµ. Non-commutative spacetimes are also frequently called "quantum spacetimes" and
they offer a mathematical description of the concept that around the Planck scale, it is
plausible that the spacetime in not described as usual as a differentiable manifold.
One of the most studied examples of non-commutative spacetimes is the so called θ

Moyal-Weyl spacetime (or canonical non-commutative spacetime) [10, 41] defined by
the following commutation relations between spacetime coordinates:

[xµ, xν ] = iθµν , (1.12)

where θµν is a skew-symmetric matrix with the dimensions of a length squared in which
is encoded the new ultraviolet physics scale.
Finally, another relevant class of non commutative spacetimes is given by the Lie alge-
braic type defined, in general, by the following commutator:

[xµ, xν ] = icρµνxρ . (1.13)

Among the non-commutative spacetimes of Lie algebra type, the most studied one is
the so called κ-Minkowski spacetime [42, 43]. It is a deformation of the algebra of
complex-valued functions on Minkowski spacetime into the non-commutative algebra
A generated by coordinate functions satisfying the following commutation relations:

[xµ, xν ] =
i

κ
(vµxν − vνxµ) , (1.14)

where vµ is a set of four real numbers and κ is an inverse-length scale, expected to be
of the order of the Planck energy. The above relations close a Lie algebra, known as
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an(3) of which A is the universal enveloping algebra.
We can also classify the κ-deformations according to the sign of ||v|| = vµη

µνvν in the
following way [44–46]:

• time-like deformations if ||v|| > 0,

• light-like deformations if ||v|| = 0,

• space-like deformations if ||v|| < 0.

where ηµν =diag(1,−1,−1,−1) is the standard Minkowski metric.

1.3 The fate of Lorentz invariance

From a quantum spacetime perspective, it is reasonable to expect departures from
Lorentz invariance around the Planck-scale. For example, if we consider the commutator
(1.14), this equation is in general not covariant under the action of standard Lorentz
transformations:

x′µ = Λν
µxν + aµ , (1.15)

where Λν
µ is a classical Lorentz matrix and aµ is a translation parameter. Specifically,

if we adopt (1.15), in general we will obtain:

[x′µ, x
′
ν ] ̸=

i

κ

(
vµx

′
ν − vνx

′
µ

)
. (1.16)

Therefore, it is reasonable to expect that the introduction of quantum features in the
structure of spacetime would also impacts the fate of Lorentz symmetries.

In particular, two different possibilities about the fate of Lorentz invariance at
Planck-scale can arise and these are discussed in the next subsection.

1.3.1 Lorentz Invariance Violation (LIV) vs Doubly Special Rel-
ativity (DSR)

In this subsection we discuss the fate of Lorentz invariance. In a physical theory
Poincarè symmetry has to surely emerge at low energy with respect to the Planck-
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scale but departures from Lorentz invariance could arise around the Planck-scale and
these can occur in two different ways.

A first possibility is that Lorentz symmetry is broken and relativistic invariance is
lost, giving rise to a preferred-frame picture, and the principle of relativity of inertial
frames must be abandoned (LIV) [25,47,48].

The second possibility is that relativistic symmetries are instead deformed in order
to accommodate a new invariant scale of energy, expected to be around the Planck-
scale, in such a way that the relativistic nature of the theory is preserved. In such
theories two invariant scales are thus present, namely the speed of light c and the
Planck energy Ep and for this reason they are called Doubly Special Relativity (or
Deformed Special Relativity) theories (DSR) [49–51]. The existence of an invariant
scale of energy is clearly incompatible with the boost sector of the Poincarè algebra
due to the well known length contraction phenomenon predicted by special relativity.
Therefore, it must be deformed in such a way that boost transformations saturate at
Planck-scale [52].

Finally, in order to guarantee the relativistic picture of such models, also the com-
position laws of momenta have to be typically deformed [53,54] in a non-linear way to
be compatible with deformed relativistic transformations:

pµ + kµ → (p⊕ k)µ , (1.17)

where ⊕ denotes the deformed composition law of momenta.
This is similar to what happens in the transition from Galilean relativity to special
relativity, where Lorentz boosts preserve the invariance of the speed of light c and this
invariance also requires that the usual sum of velocities is replaced by a non-trivial one:

v⃗ ⊕ u⃗ =
1

1 + v⃗·u⃗
c2

(
v⃗ +

u⃗

γv
+

1

c2
γv

1 + γv
(v⃗ · u⃗)v⃗

)
, where γv =

√
1− v2

c2
. (1.18)

This composition law is non-commutative and non-associative and it plays a fundamen-
tal role in the consistency of special relativity. In fact, also the law of composition of
velocities has to be compatible with the principle of relativistic invariance of the speed
of light c.

In order to take into account the non-linear aspects introduced by the Planck-
scale, DSR deformed symmetries are typically described in terms of Hopf algebras and
quantum groups that represent some natural candidates for this purpose. A rigorous
description of such mathematical structures is given in the next chapter 2.
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1.4 The relative locality regime

We conclude this introductory chapter presenting the Relative Locality regime [55,56].
It is a "classical and non gravitational" regime of quantum gravity in the sense that
both ℏ and GN are negligible but their ratio is fixed:

ℏ → 0, GN → 0, but fixed
√

ℏ
GN

=Mp . (1.19)

In this physical regime both gravity and quantum mechanics are thus switched off but
we have non trivial effects due to the Planck mass which parametrizes non linearities in
momentum space. The idea that momentum space could have a non trivial geometry
when quantum gravity effects are taken into account was originally proposed by Max
Born [57] who, in 1938, introduced what is now known as Born reciprocity principle
according to which an equivalence between spacetime and momentum space is expected.
However, the introduction of gravity breaks this symmetry between spacetime and
momentum space because the former is now curved while the latter is flat. In this
perspective, allowing the momentum space geometry to be curved is a natural way to
reconcile gravity with quantum mechanics.
The relative locality framework is therefore dual to the general relativity one since, now,
momentum space is curved while spacetime is flat (see fig. 1.3).
Specifically, in this framework, the mass of a particle is interpreted as the geodesic
distance from the origin of the momentum space providing the following dispersion
relation:

D2(p, 0) = m2 , (1.20)

where D(p, 0) is the distance between pµ and the origin of the momentum space.
Also a non-trivial affine connection is needed in order to produce non-linearities in the
law of composition of momenta, which is in general used to formulate the conservation
of momentum:

(p⊕ q)µ = pµ + qµ +
1

Mp

Γαβ
µ pαqβ +O

(
1

M2
p

)
, (1.21)

where we are considering only the the leading order in 1
Mp

and Γαβ
µ is the affine connec-

tion evaluated at the origin of the momentum space [55,56].
We can show how having a non trivial geometry for the momentum space affects the
notion of locality, a concept that in special relativity is observer independent due to
the fact that the composition law for momenta is linear. To see this let us consider a
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Figure 1.3: General relativity and relative locality are dual theories. In general relativity
spacetime is curved but momentum space is flat. The opposite is the case in relative
locality. Starting from an unknown quantum theory of gravity, one can move to special
relativity through two paths. Taking ℏ → 0 but keeping GN fixed (so that Mp also goes
to 0) one ascends on the right to general relativity. But keeping Mp fixed while taking
GN → 0 (and hence also ℏ → 0) leads to the relative locality regime on the left [56].

multi-particle system and suppose that xµa are the positions of the particles according
to Alice. The total momentum of the system generates translations. Suppose that a
second observer, Bob, is separated by a vector sµ from Alice. In special relativity the
total momentum reads:

P tot
ν =

∑
a

paν . (1.22)

Therefore we have:
δxµa = {P tot

ν sν , xµa} = sµ ∀a . (1.23)

What happens if the composition law is non linear as in (1.21) ?

δxµa = {P tot
ν sν , xµa} =

{∑
b

pbνs
ν +

∑
f<d

1

Mp

Γαβ
ν pfαp

d
βs

ν , xµa

}
=

= sµ +
1

Mp

sν
∑
d>a

1

Mp

Γµβ
ν pdβ +O

(
1

M2
p

)
.

(1.24)

Consequently we can see that how much a worldline of a particle is translated depends
on the momenta carried by it and the particles it interacts with. The result is a feature
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known as "relative locality" according to which the concept of locality becomes observer
dependent (see fig. 1.4).

Local observer Distant observer

Figure 1.4: If the event is at the origin of an observer’s coordinate system, then the event
is described as local, as on the left. If the event is far from the origin of the observer’s
coordinates, the event is described as non-local, in the sense that the projections of the
ends of the worldlines no longer meet at the point where the interaction takes place, as
on the right [56].

Finally, some attempts to generalize the relative locality framework to scenarios in
which spacetime curvature is not neglected have been recently made [58–60], trying to
construct a theory where both momentum space and spacetime are curved.

Thesis Overview

In chapter 2 some mathematical preliminaries regarding Hopf algebras and quantum
groups, which are the fundamental structures in order to describe symmetries of quan-
tum spacetimes, are presented. Then, the following chapter 3 is devoted to the discus-
sion about the fate of conserved charges in quantum spacetimes and in chapter 4 it is
investigated the possible role of observers and the properties of reference frames in a
quantum spacetime by focusing on a quantum group toy model.

Then we deal with the phenomenological part of this dissertation. Specifically, we
start from chapter 5 in which it is discussed the phenomenology of in-vacuo dispersion
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and the possibility of testing departures from Lorentz invariance through time of flight
measurements. Finally, in chapter 6 a novel analysis of in-vacuo dispersion through
gamma ray bursts is discussed and interesting preliminary results on the possibility
of having a non-monotonic behaviour of the time delay as a function of the redshift
distance of the source are obtained.





Chapter 2

Mathematical preliminaries

15
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In this chapter we introduce some mathematical structures that are needed in order
to describe symmetries of quantum spacetimes. In classical spacetimes symmetries are
typically described in terms of Lie algebras and Lie groups, but in order to describe
symmetries of quantum spacetimes we need to introduce new structures that take into
account the non-linear aspects introduced by the Planck-scale. In this perspective
Hopf algebras and quantum groups provide quite natural tools to describe quantum
symmetries. These are discussed in this chapter, mainly following the approach in [61].

In the last part of this chapter we also present the θ Moyal-Weyl non-commutative
spacetime and then we introduce the famous κ-Minkowski spacetime and discuss its
deformed symmetries.

2.1 Algebras, Lie algebras and Universal enveloping
algebras

2.1.1 Algebras

A unital associative algebra A is a vector space over a field K equipped with the product
µ : A⊗A → A and the unit η : K → A, satisfying the following requirements:

µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ)

µ ◦ (id⊗ η) = id = µ ◦ (η ⊗ id)
(2.1)

where id is the identity map. In fig. 2.1 the algebra axioms are expressed in terms of
commutative diagrams.

2.1.2 Lie algebras

A Lie algebra L is an algebra over a field K, with a product :

[ , ] : L ⊗ L → L (2.2)

called Lie bracket, which satisfies the following conditions:

[a l1 + b l2, c l3 + d l4] = ac [l1, l3] + ad [l1, l4] + bc [l2, l3] + +bd [l2, l4] ∀a, b, c, d ∈ K, li ∈ L
[l1, l2] = −[l2, l1] li ∈ L
[l1, [l2, l3]] + [l3, [l1, l2]] + [l2, [l3, l1]] = 0 li ∈ L

(2.3)
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Figure 2.1: Algebra axioms expressed as commutative diagrams.

The first two conditions imply that the Lie bracket is a bilinear and skew-symmetric
map, while the last condition is known as Jacobi identity.
Elements of a Lie algebra L form a basis of generators if they provide a maximal set
of independent elements, which generate the whole Lie algebra by linear combinations.
The dimension of a Lie algebra coincides with its dimension as a vector space. If b1, ..., bn
provide a basis for a Lie algebra we can introduce the notion of structure constants in
the following way:

[bi, bj] = ckijbk , (2.4)

where ckij are the structure constants and they determine completely the Lie algebra.

2.1.3 Universal enveloping algebras

Starting from a Lie algebra we can construct its universal enveloping algebra. Specifi-
cally, we can first introduce the tensor algebra on the vector space of L as follows:

T (L) = K ⊕ L⊕ (L ⊗ L)⊕ ... (2.5)

where ⊗ is the tensor product and ⊕ is the direct sum of vector spaces. Now, we have
to "lift" the Lie bracket from the Lie algebra to the tensor algebra to obtain a map
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defined on T (L) ⊗ T (L) → T (L) that is also bilinear, skew-symmetric and obeys the
Jacobi identity. We can do this grade by grade starting from [ , ] : L ⊗ L → L:

l1 ⊗ l2 = [l1, l2] (2.6)

and lifting this bracket to T n(L) recursively by defining:

[l1 ⊗ l2, l3] = l1 ⊗ [l2, l3] + [l1, l3]⊗ l2 . (2.7)

If we now introduce the equivalence relation ∼, given by:

l1 ⊗ l2 − l2 ⊗ l1 = [l1, l2] , (2.8)

then, the universal enveloping algebra U(L) can be defined as:

U(L) = T (L)/ ∼ (2.9)

2.2 Coalgebras, bialgebras and Hopf algebras

2.2.1 Coalgebras

A coalgebra C is a vector space over a field K, with two K-linear maps, the coproduct
∆ : C → C ⊗ C and the counit ϵ : C → k satisfying:

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆
(id⊗ ϵ) ◦∆ = (ϵ⊗ id) ◦∆

(2.10)

Coalgebras are dual algebraic structures to the unital associative algebras, in fact their
maps are the inverse of each other. This can be seen by considering their commutative
diagrams. In fact, starting from the diagrams of an unital associative algebra (see
fig. 2.1) and turning all arrows around, one obtains the axioms of coalgebras (see fig.
2.2):

We conclude this subsection introducing the famous Sweedler notation that is often
used to represent coproducts. The most general form for the coproduct of an element
a of a coalgebra is a sum of elements in C ⊗ C that can be indicated as:

∆(c) =
∑
i

ci(1) ⊗ ci(2) = c(1) ⊗ c(2) , (2.11)

where in the last equality indices and sum have been omitted.
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Figure 2.2: Coalgebra axioms expressed as commutative diagrams.

2.2.2 Bialgebras

A bialgebra B is a unital algebra and a coalgebra, whose coprdouct ∆ and counity ϵ

are algebra homomorphism with respect to the product and the identity:

∆(a · b) = ∆(a) ·∆(b)

ϵ(a · b) = ϵ(a)ϵ(b) ∀a, b ∈ B
∆(1) = 1 ⊗ 1

ϵ(1) = 1

(2.12)

where 1 is the neutral element of the algebra. In fig. 2.3 we show the diagrams relative
to bialgebra axioms.
Finally in the next subsection we see how to make a bialgebra into an Hopf algebra.

2.2.3 Hopf algebras

An Hopf algebra H is a bialgebra over a field K with a K-linear map S : H → H, the
antipode, which satisfy the following condition (also see fig. 2.4):

µ ◦ (S ⊗ id) ◦∆ = µ ◦ (id⊗ S) ◦∆ = η ◦ ϵ (2.13)
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Figure 2.3: Diagrams relative to bialgebra axioms.

The role of the antipode si like that of an inverse but it has not to satisfy in general
the relation S2 = id. Moreover, the antipode of a Hopf algebra is unique and obeys

S(hg) = S(g)S(h) (2.14)

S(1) = 1 (2.15)

S ⊗ S ◦∆h = τ ◦∆ ◦ S(h) (2.16)

ϵ(S(h)) = ϵ(h) (2.17)

where τ is the flip map such that:

τ(a⊗ b) = b⊗ a . (2.18)

An Hopf algebra is commutative if it is commutative as an algebra. It is cocommuative
if it is commutative as a coalgebra, namely if τ∆ = ∆.

2.2.4 Examples of Hopf algebras

We here provide two simple examples of Hopf algebras that can help to understand the
meaning of the structures we introduced in the previous sections.
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Figure 2.4: Additional axiom to make a bialgebra into an Hopf algebra.

• Let G be a Lie group and consider C(G) the space of continuous functions on G, with
the following definitions:

(f · h)(g) = f(g)h(g), f, h ∈ C(g), g ∈ G

∆f(g1 ⊗ g2) = f(g1g2)

η(a) = a1, a ∈ C 1(g) = 1

ϵ(f) = f(e), e is the identity element of the group G

S(f)(g) = f(g−1)

(2.19)

With these structures C(G) is an Hopf algebra realization. In particular, it is co-
commutative if G is commutative as can been seen from the second line of (2.19).

Furthermore, from the algebra of function over a group we can also obtain the so-
called quantum group. In particular, it can be defined by deforming the algebra of
complex functions on the group in a non-commutative way.

• Let us now construct an Hopf algebra from the universal enveloping algebra U(L) of
a Lie algebra L. To do so we have to introduce the coalgebra structures and a notion
of antipode S. We can do this in the following way:

∆(li) = li ⊗ 1 + 1 ⊗ li ∀li ∈ L
∆(1) = 1 ⊗ 1

ϵ(li) = 0 ϵ(1) = 1

η(λ) = λ1 ∀λ ∈ K

(2.20)
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The coproducts in (2.20) are called primitive and we can prove their compatibility with
the product of the algebra (the Poisson bracket) straightforwardly:

∆([li, lj]) = ∆(ckijlk) = ckij(lk ⊗ 1 + 1 ⊗ lk) = [∆(li),∆(lj)] . (2.21)

To complete the Hopf algebra construction, it remains to define an antipode, that is
easily found to be:

S(li) = −li S(1) = 1 (2.22)

2.2.5 Dual Hopf algebras

Given two vector spaces A and B over C we say that they are dually paired if there
exists a sesqulinear form:

⟨ , ⟩ : A⊗B → C (2.23)

defining a non-degenerate scalar product between the two spaces.
Given a vector space V over C, one can define its algebraic dual space V ∗ as the space
of linear functionals over V as follows:

V ∗ = Lin(V ) ⟨f, x⟩ = f(x) f ∈ V ∗, x ∈ V (2.24)

Two hopf algebras H and H∗ are dually paired if the coalgebra of H defines the algebra
of H∗ and vice-versa as follows:

⟨a · b, c⟩ = ⟨a⊗ b,∆c⟩ ∀a, b ∈ H∗, c ∈ H
⟨1, c⟩ = ϵ(c)

⟨a, c · d⟩ = ⟨∆(a), c⊗ d⟩ ∀a ∈ H∗, c, d ∈ H
⟨a, 1⟩ = ϵ(a)

⟨S(a), c⟩ = ⟨a, S(c)⟩

(2.25)

2.2.6 Action of an Hopf algebra over an algebra (coalgebra)

Given an Hopf algebra H and an algebra A a left action of H over A is a linear map:

▷ : H×A → A (2.26)

such that:
(h1 · h2)▷ a = h1 ▷ (h2 ▷ a)

h▷ 1 = ϵ(h)1
(2.27)
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Moreover the structures of A are preserved by the action of H (covariant action) if

h▷ (a · b) = (h(1) ▷ a) · (h(2) ▷ b) (2.28)

In the same way we can define the left action of an Hopf algebra H on a coalgebra C
and it is covariant if the following requirements are satisifed :

∆(h▷ c) = (h(1) ▷ c(1))⊗ (h(2) ▷ c(2)) = ∆(h)▷∆(c) (2.29)

and
ϵ(h▷ c) = ϵ(h)ϵ(c) . (2.30)

Analogously we can also define a right action ◁ of H over A (or C):

◁ : A×H → A (2.31)

that is covariant if:
(a · b)◁ h = (a◁ h(1)) · (b◁ h(2)) . (2.32)

Finally, if we now consider two dually paired Hopf algebras H and H∗ the definition of
a left action ▷ over an algebra defines a dual right action ◁ over the dual algebra in
the following way:

⟨a, h▷ b⟩ = ⟨a◁ h, b⟩ (2.33)

2.2.7 Coaction of an Hopf algebra over an algebra

Given an Hopf algebra H and an algebra A a left coaction of H over A is a linear map:

β : A → H⊗A (2.34)

satisfying:
(id⊗ β) ◦ β = (∆⊗ id) ◦ β
(ϵ⊗ id) ◦ β = id

(2.35)

Moreover the coaction is covariant if

β(a · b) = β(a)β(b)

β(1) = 1 ⊗ 1
(2.36)

We are now ready to discuss symmetries of non-commutative spacetimes that is the
subject of the next section.
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2.3 Symmetries of non-commutative spacetimes

In this section we will discuss how the symmetries of a non-commutative spacetime can
be naturally described in terms of Hopf algebras structures and quantum groups. In par-
ticular, we will focus first on the θ Moyal-Weyl spacetime (canonical non-commutativity)
and then we discuss the famous κ-Minkowski spacetime.

2.3.1 Moyal-Weyl spacetime

As anticipated in the previous chapter, one of the most famous examples of non-
commutative spacetimes is the so called θ Moyal-Weyl spacetime [10,41] that is defined
by the following commutation relations:

[xµ, xν ] = iθµν , (2.37)

where θµν is a skew-symmetric matrix with the dimensions of a length squared in which
is encoded the new physics scale.
These commutation relations are not covariant under the action of the standard Poincarè
transformations and we want to find which transformations leave invariant this non-
commutative spacetime. Specifically, we look for a deformation of the algebra of func-
tions on the Poincarè group such that:

[x′µ, x
′
ν ] = iθµν , (2.38)

where:
x′µ = Λ α

µ ⊗ xα + aµ ⊗ 1 , (2.39)

Such request, as can been verified straightforwardly, is satisfied by considering the
following deformed commutators:

[aµ, aν ] = i(δ ρ
µ δ

σ
ν − Λ ρ

µΛ
σ
ν )θρσ , [Λ ρ

µ ,Λ
σ
ν ] = 0 = [Λ ρ

µ , aν ] , (2.40)

but undeformed coproducts, antipodes and counits:

∆(Λµ
ν ) = Λµ

ρ ⊗ Λρ
ν , S(Λµ

ν) = (Λ−1)µν , ϵ(Λµ
ν) = δµν

∆(aµ) = Λµ
ρ ⊗ aρ + aµ ⊗ 1, S(aµ) = −(Λ−1)µρa

ρ, ϵ(aµ) = 0 ,
(2.41)

where Λµ
ρΛ

ν
σηµν = ηρσ. Consequently, in order to guarantee the covariance of the com-

mutator (2.37), a non-commutativity among translation parameters is needed, reflecting
the non-commutative nature of spacetime coordinates.
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In the following we will discuss symmetries of κ-Minkowski spacetime, but let us
first introduce the notion of Weyl maps and star product in the next subsection.

2.3.2 Weyl maps, star product and integration

Other mathematical tools useful to construct theories on non-commutative spacetimes
are the Weyl maps (also see [62] for further details). In this section we briefly review
how they can be defined in κ-Minkowski spacetime that we have already presented in
the previous chapter, but for completeness we here report the commutation relations
that define this non-commutative spacetime:

[xµ, xν ] =
i

κ
(vµxν − vνxµ) , (2.42)

where vµ is a set of four real numbers and κ is an inverse-length scale, expected to be of
the order of the Planck energy and the commutative picture is recovered by considering
the limit κ→ ∞.
Weyl maps are linear maps Ωκ from the space of commutative functions to the non-
commutative algebra of functions generated by non-commutative coordinates. It is
sufficient to specify the Weyl map on the plane-waves and extend it by linearity to a
generic function f(x), whose Fourier transform is f̃(p) = 1

(2π)4

∫
f(x)e−ipxd4p :

Ωκ(f(x)) =

∫
f̃(p)Ωκ(e

ipx)d4p , (2.43)

Of course, a good definition of Weyl map has to reproduce the correct classical limit:

Ωκ(f(x))
κ→∞−−−→ f(x) . (2.44)

There is no unique definition of Weyl maps and we here provide two examples of possible
ways to define them. Specifically, we can consider the time-to-the-right-ordering ΩR and
the symmetrized one ΩS defined as:

ΩR(e
ipx) = eipix

i

eip0x
0

ΩS(e
ipx) = eip0x

0/2eipix
i

eip0x
0/2

(2.45)

Associated to each Weyl map it is also possible to introduce a star product ⋆κ in the
following way:

Ωκ(f ⋆κ g) = Ωκ(f)Ωκ(g) . (2.46)
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It reproduces the properties of the non commutative product of elements of κ-Minkowski
but it is applied to commutative functions.

For completeness, we conclude this subsection introducing a notion of integration
on non-commutative spacetimes. As in the commutative case, we define integrals as
linear map associating functions on κ-Minkowski to complex numbers with the request
that the integral must reduce to the integral of the corresponding commutative function
when κ→ ∞. A natural way to define integrals is the following:∫

Ωκ(f(x))d
4x =

∫
f̃(p)d4p

∫
Ωκ(e

ipx)d4x , (2.47)

where as in the commutative case we define:∫
Ωκ(e

ipx)d4x = (2π)4δ4(p) . (2.48)

A notion of integration is of course a necessary ingredient in order to construct field
theory over a non-commutative spacetime [36,63].

2.3.3 Timelike κ-Minkowski spacetime

We are now ready to introduce the symmetries of κ-Minkowski spacetime focusing in
particular on the so called timelike scenario that can be obtained from (2.42) choosing
vµ = δ0µ. It is thus characterized by the following commutators between spacetime
coordinates:

[x0, xi] =
i

κ
xi [xi, xj] = 0 . (2.49)

The deformed symmetries associated to this non-commutative spacetime are described
by the κ-Poincaré quantum group that is the non-commutative algebra of functions
generated by Λµ

ν and aµ that leaves the commutators in (2.49) invariant under the
following transformation:

xµ → x′µ = Λµ
ν ⊗ xν + aµ ⊗ 1 . (2.50)

This request is satisfied if Λµ
ν and aµ saitisfy:

[aµ, aν ] =
i

κ
(δµ0a

ν − δν0a
µ), [Λβ

α,Λ
µ
ν ] = 0

[Λµ
ν , a

ρ] =
i

κ

(
(Λµ

0 − δµ0 ) Λ
ρ
ν +

(
Λ0

ν − δ0ν
)
ηµρ
) (2.51)
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with the following coalgebra structures:

∆aµ = aν ⊗ Λµ
ν + 1⊗ aµ, ∆Λµ

ν = Λµ
ρ ⊗ Λρ

ν

S(aµ) = −aν(Λ−1)µν , S(Λµ
ν ) = (Λ−1)µν

ϵ(aµ) = 0, ϵ(Λµ
ν ) = δµν

(2.52)

as can be straightforwardly verified.

The symmetries of timelike κ-Minkowski spacetime can also be described in terms
of the dual Hopf Algebra Uκ[iso(3, 1)] which is the non-commutative deformation of
the universal enveloping algebra U [iso(3, 1)] of the Poincarè Lie algebra iso(3, 1). The
standard way to obtain the algebra and the coalgebra sectors of Uκ[iso(3, 1)] is by
applying a finite transformation on non-commutative plane waves, with a given ordering,
and extract the action of the generators of the algebra by evaluating the first order of the
transformation rules of plane waves [64, 65]. It is well known that such result strongly
depends on the ordering chosen for the plane waves. In particular, if we choose the so
called time-to-the-right ordering (that we have presented in the previous subsection)
we can obtain the famous bicross-product basis introduced for the first time by Majid
and Ruegg [11].

In this basis the algebra sector reads:

[Pµ, Pν ] = 0,

[P0, Rj] = 0,

[Rj, Pk] = iϵjklPl,

[Rj, Nk] = iϵjklNl,

[Rj, Rk] = iϵjklRl, ,

[Nj, P0] = iPj,

[Nj, Pk] = iκ

(
1− e−

2
κ
P0

2
+
P⃗ 2

2κ2

)
δjk −

i

κ
PjPk,

[Nj, Nk] = −iϵjklRl,

(2.53)

where Pµ are the translation generators, Ri the rotations, and Ni the boost generators.



28 CHAPTER 2. MATHEMATICAL PRELIMINARIES

The coproducts read:

∆P0 = P0 ⊗ 1 + 1⊗ P0 ,

∆Pi = Pi ⊗ 1 + e−
P0
κ ⊗ Pi ,

∆Ri = Ri ⊗ 1 + 1⊗Ri ,

∆Ni = Ni ⊗ 1 + e−
P0
κ ⊗Ni +

i

κ
ϵijkPj ⊗Rk .

(2.54)

Finally, to complete the Hopf algebra description, we provide the antipodes and the
counits:

S(P0) = −P0 ,

S(Pi) = −e
P0
κ Pi ,

S(Ri) = −Ri ,

S(Ni) = −e
P0
κ Ni +

i

κ
e

P0
κ ϵijkPjRk ,

ϵ(Pµ) = ϵ(Ni) = ϵ(Ri) = 0 .

(2.55)

We can now explicitly verify that commutation relations (2.49) are indeed covariant
under the action of the κ-Poincarè algebra. Pµ act on κ-Minkowski space-time by dual
action:

Pµ ▷ xν = −iηµν (2.56)

and on products of coordinates as:

Pµ ▷ xαxβ = (Pµ(1) ▷ xα)(Pµ(2) ▷ xβ) . (2.57)

We can now show that (2.49) is covariant under the action of translation generators:

P0 ▷ [x0, xi] = 0 = P0 ▷ (ixi)

Pj ▷ [x0, xi] = i(x0 +
i

κ
)δji − ix0δji = Pj ▷ (

i

k
xi) .

(2.58)

We can now define the action of Ri and Ni on Pµ in the following way:

Pµ ◁Ri = [Pµ, Ri], Pµ ◁Ni = [Pµ, Ni] . (2.59)

We can thus derive the action of Ri and Ni on Minkowski spacetime by duality as
follows:

< Pµ ◁Ri, xν >=< Pµ, Ri ▷ xν >

< Pµ ◁Ni, xν >=< Pµ, Ni ▷ xν > .
(2.60)
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From these expressions we obtain:

Ri ▷ xj = iϵijkxk, Ri ▷ x0 = 0

Ni ▷ xj = iδijx0, Ni ▷ x0 = ixi
(2.61)

By using(2.61),and the coproducts in (2.54) we obtain:

Ri ▷ x0xk = iϵikjx0xj

Ri ▷ xkx0 = iϵikjxjx0

Ni ▷ xjx0 = iδijx
2
0 + ixixj

Ni ▷ x0xj = iδijx
2
0 + ixixj −

1

κ
δijx0

(2.62)

from which it is straightforward to show that (2.49) commutation relations are covariant
under rotations and boost.
Finally, we can introduce the Casimir operator associated to the algebra (2.53):

C = 4κ2 sinh2

(
P0

2κ

)
− P⃗ 2eP0/κ (2.63)

that is the operator that commutes with all the generators of the algebra.
In the next chapter we will discuss the problem of conserved charges in quantum

spacetimes. In particular we will focus on particles interacting in quantum spacetimes
within a first-quantization hamiltonian framework.
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In the last decades there has been a strong interest in the fate of relativistic sym-
metries in quantum spacetimes mainly due to the possibility of attractive opportunities
for experimental tests. However, the main focus of this research area has been related
to the study of modifications of particle kinematics due to deformations of relativis-
tic transformations rules, while the properties of the associated Noether charges still
represent an open issue.

In this chapter we address the problem of conserved charges in quantum spacetimes,
a topic much debated recently in literature, because the aspects of non-linearity intro-
duced by the Planck-scale make their definition not straightforward as in the special
relativistic case. Furthermore, non-linearities in the addition laws for momenta has
been the center of some problems as the much discussed soccer-ball problem [66, 67],
according to which small Planck-scale deformations can give rise to drastic macroscopic
effects ( if one want to analyze the total momentum of a macroscopic body they might
have to add up very many of such tiny non-linearities), in contrast with everyday obser-
vations. Another conceptual problem is the so-called spectator problem [68] according
to which if we consider a system made of a free particle and some interacting particles
we cannot disentangle the contribution of the free particle to the conservation laws of
the interaction.

Nevertheless, the main objective of this chapter is not to find a solution for these
open problems, but we make important steps towards the understanding of how con-
served charges has to be sought and defined in quantum spacetimes [69].

Within the special relativity framework symmetries of Minkowski spacetime are
described by the Poincarè algebra and the Noether theorem guarantees the existence
of conserved charges associated to such symmetry transformations. Furthermore, the
linearity of transformation laws inevitably yields charges combining linearly both in the
free-particle case and when interactions are introduced. Thus, working within special
relativity, we do not appreciate how the form of interaction could affect the conservation
laws. In fact, the linearity of relativistic transformations imposes that charges combine
linearly, regardless the type of interactions being considered.

However, in quantum spacetimes, things are more complicated due to the non-
linearity of the relativistic transformations. Until now, the debate on total charges
for quantum spacetimes had not contemplated a possible role for the interactions, and
instead relied on some “naturalness arguments" based on the form of the relativistic
properties of free particles. However, in this chapter we show that there is a strong
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connection between Noether charges and the structure of the laws of interaction among
particles [69].

To better understand what these “naturalness arguments" are, let us present the so-
called κ-Poincarè momentum-space, that can be constructed by taking inspiration from
the κ-Poincarè Hopf algebra structures that we have also presented in section 2.3.3.

3.0.1 κ-Poincarè momentum-space

In this subsection let us consider the most studied κ-Minkowski non-commutativity
characterized by spatial coordinates that commute among themselves but do not com-
mute with the time coordinate. For simplicity let us work in 1+1 dimensions where we
have the following commutator between the time and the spatial coordinate [11]:

[x0, x1] = iℓx1 , (3.1)

where for convenience we have called ℓ = 1
κ
.

It is acknowledged [11,70,71] that the symmetries of 2D κ-Minkowski non-commutativity
are described by the 2D κ-Poincaré Hopf algebra (also see section 2.3.3) that in the
bicross-product basis, reads:

[P0, P1] = 0

[N,P0] = iP1

[N,P1] =
i

2ℓ
(1− e−2ℓP0)− i

ℓP 2
1

2
,

(3.2)

where P0 and P1 are respectively the time translation and spatial translation generators
and N is the generator of boost transformations.
The Casimir operator of this algebra is given by:

C =
4

ℓ2
sinh2

(
ℓP0

2

)
− P 2

1 e
ℓP0 . (3.3)

Finally, the coproducts read:

∆P0 = P0 ⊗ 1 + 1⊗ P0

∆P1 = P1 ⊗ 1 + e−ℓP0 ⊗ P1

∆N = N ⊗ 1 + e−ℓP0 ⊗N .

(3.4)
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We can now represent the translation generators P0, P1 as an algebra of functions over
the momentum space [68], such that the two translation generators correspond to the
coordinate functions p0 and p1:

P0 = p0

P1 = p1 .
(3.5)

We can thus provide a physical interpretation of the Hopf algebra structures presented
above by establishing a correspondence with the properties of momentum-space. Specif-
ically, a deformed (non-commutative but associative) composition law for momenta is
usually read from the coproducts:

(k ⊕ q)0 = k0 + q0

(k ⊕ q)1 = k1 + e−ℓk0q1 .
(3.6)

Finally, one can obtain the mass-shell relation taking inspiration from the Casimir
operator of the algebra as usually done in the undeformed case:

m2 =
4

ℓ2
sinh2

(
ℓP0

2

)
− P 2

1 e
ℓP0 . (3.7)

The momentum space thus constructed has the geometry of (half of) a de Sitter man-
ifold, with curvature proportional to ℓ2. This momentum space model has inspired
many phenomenological analysis in which it has been taken to describe the kinematics
of classical particles [72].
We can now show that the composition law for momenta (3.6) can be obtained by
considering the composition of time-to-the-right-ordered non commutative plane-waves
in κ-Minkowski spacetime. In this way we will also highlight its connection with the
notion of locality in quantum space-times [73]. Let us consider the following Fourier
decomposition for a field Φ(x) :

Φ(x) =

∫
d2kΦ̃(k)eik1x

1

eik0x
0

(3.8)

where ∫
d2keik1x

1

eik0x
0

= (2π)2δ2(k) . (3.9)
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If we introduce an action that is the product of three fields evaluated at the same
"quantum space-time point" we obtain:

S =

∫
d2xΦ1(x)Φ2(x)Φ3(x) =

=

∫
d2x

∫
d2k d2p d2q (Φ̃1(k)Φ̃2(p)Φ̃3(q)e

ik1x1

eik0x
0

(p)eip1x
1

eip0x
0

eiq1x
1

eiq0x
0

) =

=

∫
d2x

∫
d2k d2p d2q (Φ̃1(k)Φ̃2(p)Φ̃3(q)e

i(k1⊕p1⊕q1)x1

ei(k0⊕p0⊕q0)x0

) =

= (2π)2
∫
d2k d2p d2q (Φ̃1(k)Φ̃2(p)Φ̃3(q))δ

2(k ⊕ p⊕ q)

(3.10)

where
(k ⊕ q)0 = k0 + q0 (3.11)

and
(k ⊕ q)1 = k1 + e−ℓk0q1 . (3.12)

This result, that coincides with (3.6), characterizes how spacetime non-commutativity
affects the properties of products of plane-waves.

Through this computation we have also seen how a non-linear law of composition
of momenta arises in the characterization of locality. However, as we will show in the
following sections, different laws of composition of momenta can be produced by the
analysis of translational invariance, and they are these laws of composition of momenta
which are relevant for the characterization of the total momentum of a multi-particle
system. Indeed total momentum (angular momentum) is the conserved charge for a
translational (rotational) invariant system.

In order to explore this, we will work within the so-called 2D spatial κ-Minkowski
framework, where spatial coordinates do not commute among themselves and time is
just a commutative parameter, so we can work within a first-quantization Hamiltonian
framework.

3.0.2 Spatial 2D κ–Minkowski

In the following analysis we focus on a scenario in which the time coordinate is fully com-
mutative and the two spatial coordinates are governed by κ-Minkowski non-commutativity:

[x2, x1] = iℓx1 . (3.13)
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All the results established in a vast literature on the 2D space/time κ-Minkowski of
Eq.(3.1) and its Hopf-algebra symmetries can be converted into results for our 2D
spatial κ-Minkowski of Eq.(3.13) and its Hopf-algebra symmetries, by applying the
following maps:

• replacement of the time coordinate with a spatial one x0 → ix2;

• replacement of noncommutativity parameter ℓ→ iℓ;

• replacement of the time-translator generator with a suitable generator of transla-
tions along the x2 direction P0 → −iP2

• the boost generator of 2D space/time κ-Minkowski is replaced by the rotation
generator of 2D spatial κ-Minkowski N → −iR.

This leads to a description of the translation and rotation symmetries of 2D spatial
κ-Minkowski that close the following algebra:

[P2, P1] = 0 [R,P2] = −iP1 [R,P1] =
i

2ℓ
(1− e−2ℓP2) + i

ℓ

2
P 2
1 (3.14)

which can be seen as a Planck-scale deformation of the Euclidean algebra in 2 dimen-
sions:

[P2, P1] = 0 [R,P2] = −iP1 [R,P1] = iP2 . (3.15)

A central element of the deformed algebra (3.14), which will be a fundamental ingredient
for the construction of our Hamiltonians, is given by

C =
4

ℓ2
sinh2(ℓP2/2) + eℓP2P 2

1 . (3.16)

This can be thought as a deformation of the Casimir element of the Euclidean algebra,
namely P 2

1 + P 2
2 .

We shall introduce interactions among particles within a Hamiltonian setup and we
will be satisfied showing our results to order ℓ2. In order to satisfy Jacobi identities we
also have to deform some commutation relations between coordinates and symmetry
generators in the following way:

[x1, P1] = i [x1, P2] = 0 [x2, P1] = −iℓP1 [x2, P2] = i

[R, x1] = ix2

[R, x2] = −i
(
x1 − ℓx1P2 +

ℓ

2
x2P1 +

ℓ

2
P1x2 + ℓ2x1P

2
2 +

ℓ2

4
(x1P

2
1 + P 2

1 x1)
)
.

(3.17)
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The non-linearity of the commutators (3.14), typical of Hopf-algebra symmetries, pro-
duce the difficulties for the notion of Noether charges which are the main focus of this
study. For free particles it has been shown [74, 75] that the charges associated to P1,
P2 and R are conserved (but of course any non-linear function of a conserved quantity
is also conserved). For interacting particles instead it is not clear which combinations
of the charges should be conserved in particle reactions. In particular, for a process
A+B → C +D it is clear that PA

1 +PB
1 = PC

1 +PD
1 is not an acceptable conservation

law due to the non-linearity of the commutator [R,P1] (i.e. PA
1 +PB

1 = PC
1 +PD

1 would
not be covariant). So it is clear that the total momentum of a system composed of
particles A and B cannot have the component PA

1 + PB
1 , but it is unclear which non-

linear combination of the momenta gives the total momentum of the system (and would
be therefore conserved in particle reactions). A typical way to guess the momentum-
composition formula is based on the so-called “coproduct" argument [76–78], which we
have presented in the previous section. For our spatial κ-Minkowski this choice would
read:

(k ⊕κ q)1 = k1 + e−ℓk2q1

(k ⊕κ q)2 = k2 + q2 .
(3.18)

In order for these quantities to close the single-particle algebra (3.14), also rotation
charges should combine non-linearly in the following way:

(Rk ⊕κ Rq) = Rk + e−ℓk2Rq . (3.19)

Alternative ways for guessing the momentum-composition formula have also been pro-
posed in literature [79, 80]. As an alternative to the “κ-coproduct composition law" of
Eqs.(3.18)-(3.19) we shall also consider the “proper-dS composition law",

P1 = (pA ⊕dS p
B)1 = pA1 + pB1 − ℓ(pA2 p

B
1 + pA1 p

B
2 )+

+
ℓ2

2

[
(pA2 p

B
1 + pA1 p

B
2 )(p

A
2 + pB2 )− pA1 (p

B
1 )

2 − (pA1 )
2pB1
]

P2 = (pA ⊕dS p
B)2 = pA2 + pB2 + ℓpA1 p

B
1 − ℓ2

2

[
− pB1 p

A
1 (p

B
2 + pA2 ) + pA2 (p

B
1 )

2 + (pA1 )
2pB2
]

R = (RA ⊕dS R
B) = RA +RB

(3.20)
which is commutative but non-associative and it was motivated using some geometric
arguments (one can show that with these choices of composition laws momentum space
acquires the geometrical structure of de Sitter space [79]).
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3.0.3 Deformed harmonic-oscillator hamiltonians

In this analysis we consider a particular class of Hamiltonians on which we shall focus
our search of Noether charges. Their core ingredient is the harmonic oscillator potential
in two spatial dimensions and we will consider deformations of the following Hamiltonian

HAB
0 =

(p⃗A)2

2m
+

(p⃗B)2

2m
+

1

2
g(q⃗A − q⃗B)2 (3.21)

where we have called g the coupling constant, the labels A and B refer to the two par-
ticles interacting, q⃗J (J ∈ {A,B}) are ordinary commutative spatial coordinates, and
p⃗J are the corresponding momenta, with standard Heisenberg commutators ([qJj , pKk ] =
i δJKδjk, with J,K ∈ {A,B} and j, k = 1, 2). The total momentum P⃗ and total angular
momentum R0 defined as

P⃗ = p⃗A + p⃗B R0 = RA
0 +RB

0 (3.22)

are conserved charges since they commute with the Hamiltonian, [HAB
0 , P⃗ ] = 0 and

[HAB
0 , R0] = 0. Both the total generators {Pi, R0} and the single particle generators

{pIi , RI
0} close the un-deformed Galilean algebra.

Furthermore, we want to test our approach also for interactions among more than two
particles, and for that purpose our starting point is the 3-particle Hamiltonian

HABC
0 =

(p⃗A)2

2m
+

(p⃗B)2

2m
+

(p⃗C)2

2m
+

1

2
g(q⃗A− q⃗B)2+ 1

2
g(q⃗A− q⃗C)2+ 1

2
g(q⃗B − q⃗C)2 . (3.23)

This is of interest to us particularly because the interacting potential V3(q⃗A, q⃗B, q⃗C)
can be split into the sum V2(q⃗

A, q⃗B) + V2(q⃗
A, q⃗C) + V2(q⃗

B, q⃗C) with V2 having the same
functional form for each pair of particles. However, in the case studies for which we
perfomed our Noether-charge analyses this property cannot be maintained in presence
of non-commutativity of coordinates as we will show in the following of this chapter.

Clearly, the Hamiltonian (3.23) commutes with the total charges defined as P⃗ =

p⃗A + p⃗B + p⃗C and R0 = RA
0 +RB

0 +RC
0 .

A fundamental ingredient of our deformed Hamiltonians will be of course the kinetic
term, for which, inspired from the Casimir element C of our Eq.(3.14) (to order ℓ2), we
adopt the following expression

HK ≡ C
2m

≈ p21
2m

+
p22
2m

+ ℓ
p21p2
2m

+ ℓ2
p21p

2
2

4m
+ ℓ2

p42
24m

. (3.24)
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We will look for suitable interaction potentials by considering the following parameter-
ization:

V AB = V (x⃗A, x⃗B) =
1

2
g(x⃗A − x⃗B)2 + ℓg

∑
αIJK
ijk pIix

J
j x

K
k + ℓ2g

∑
βIJKH
ijkh pIi p

J
j x

K
k x

H
h

(3.25)
where αIJK

ijk and βIJKH
ijkh are dimensionless coefficients and the sum extends both to

spatial indices (lower case letters) and particle indices (upper case letters).
Similarly, for the three-particle case we consider the following parameterization:

V ABC = V (x⃗A, x⃗B, x⃗C) =
1

2
g(x⃗A − x⃗B)2 +

1

2
g(x⃗B − x⃗C)2 +

1

2
g(x⃗C − x⃗A)2+

+ℓg
∑

α̃IJK
ijk pIix

J
j x

K
k + ℓ2g

∑
β̃IJKH
ijkh pIi p

J
j x

K
k x

H
h

(3.26)

where α̃IJK
ijk and β̃IJKH

ijkh are other sets of numerical coefficients and the particle indices
run over {A,B,C}.

3.1 Conserved charges with proper-dS composition law

As already stressed before, the debate on the alternative ways to combine charges in a
κ-Minkowski setup has mainly relied on naturalness arguments based on the properties
of free particles in κ-Minkowski. Our aim is to demonstrate that the concept of "natu-
ralness" is not applicable in this context. The way charges combine is determined by the
laws governing the interactions among particles and various composition laws can arise
from different descriptions of these interactions. Our argument will be supported by
Hamiltonian models within first-quantized quantum mechanics, where all the pertinent
issues are particularly evident.

We choose as our first task the one of exhibiting a Hamiltonian (within first-
quantized quantum mechanics) which selects uniquely the proper-dS composition law,
which we already presented in Eq.(3.20) and we show again here for usefulness:

P1 = (pA ⊕dS p
B)1 = pA1 + pB1 − ℓ(pA2 p

B
1 + pA1 p

B
2 )+

+
ℓ2

2

[
(pA2 p

B
1 + pA1 p

B
2 )(p

A
2 + pB2 )− pA1 (p

B
1 )

2 − (pA1 )
2pB1
]

P2 = (pA ⊕dS p
B)2 = pA2 + pB2 + ℓpA1 p

B
1 − ℓ2

2

[
− pB1 p

A
1 (p

B
2 + pA2 ) + pA2 (p

B
1 )

2 + (pA1 )
2pB2
]

R = (RA ⊕dS R
B) = RA +RB .

(3.27)
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One can straightforwardly verify that P1 , P2 , R close the algebra (3.14) up to order
ℓ2, which we also rewrite here for suitability:

[P2,P1] = 0 [R,P2] = −iP1 [R,P1] = i(P2 − ℓP2
2 +

ℓ

2
P2

1 +
2ℓ2P3

2

3
) . (3.28)

We start by showing that for the case of two particles interacting there is a Hamiltonian
HAB

dS , deformation of the HAB
0 of Eq.(3.21), such that [P⃗ , HAB

dS ] = 0 and [R, HAB
dS ] = 0.

As anticipated in Subsection 3.0.3, our Hamiltonian HAB
dS will be of the form

HAB
dS = HA

K +HB
K + V AB

dS (3.29)

where HK is fixed to be the one of Eq.(3.24), while V AB
dS must be specified consistently

with Eq.(3.25), for some choice of the parameters αIJK
ijk and βIJKH

ijkh that Eq.(3.25) leaves
to be determined.

We partly work by reverse engineering using [P⃗ , HAB
dS ] = 0 and [R, HAB

dS ] = 0 as
conditions that must be satisfied by the parameters of Eq.(3.25), and then, once we
have such an acceptable V AB

dS , we show that the resulting Hamiltonian HAB
dS uniquely

selects the proper-dS charges (3.27) as its conserved charges.
We find that the following choice of V AB

dS :

V AB
dS =

g

2

[
(x⃗A − x⃗B)2+

+2ℓ
(
− pA2 (x

A
1 )

2 +
1

2
pA1 x

A
1 x

A
2 +

1

2
xA2 x

A
1 p

A
1 + pA2 x

A
1 x

B
1 − xA2 p

A
1 x

B
1 + (A↔ B)

)
+

+
1

2
ℓ2
(
(pB1 )

2(−2(xA2 )
2 + 6xA2 x

B
2 − 2(xB2 )

2) + 4pB1 p
B
2 x

A
1 x

A
2 − pA1 p

B
1 x

A
2 x

B
2 + pB1 p

A
2 x

A
1 x

B
2 +

−6pB1 x
A
1 x

B
2 p

B
2 − 2pB1 x

B
1 (p

A
2 x

A
2 − xB2 p

B
2 )− 2(pB2 )

2((xA1 )
2 − xA1 x

B
1 − (xB1 )

2)+

+pB2 p
A
1 x

A
2 x

B
1 − 2pB2 p

A
2 x

A
1 x

B
1 − 3pB2 x

A
2 x

B
1 p

B
1 + 2xA1 p

A
1 (p

A
1 x

A
1 − pA1 x

B
1 + pA2 x

A
2 +

−3

2
pA2 x

B
2 +

3

2
xB2 p

B
2 ) + xA2 p

A
2 x

B
1 p

B
1 + (A↔ B)

)]
(3.30)

is indeed such that [P⃗ , HA
K +HB

K + V AB
dS ] = 0 and [R, HA

K +HB
K + V AB

dS ] = 0.
We can notice that our V AB

dS is symmetric under exchange of the particles (this is
not always the case, see the following sections) reflecting the commutative nature of
the composition laws of momenta.
Most importantly, we find that indeed the Hamiltonian HA

K+HB
K+V AB

dS uniquely selects
the proper-dS charges (3.27) as its conserved charges. In order to see this we start from



3.1. CONSERVED CHARGES WITH PROPER-DS COMPOSITION LAW 41

a general parametrization of the two-particle charges

P tot
1 =

∑
pI1 + ℓγIJij p

I
i p

J
j + ℓ2ΓIJK

ijk pIi p
J
j p

K
k

P tot
2 =

∑
pI2 + ℓθIJij p

I
i p

J
j + ℓ2ΘIJK

ijk pIi p
J
j p

K
k

Rtot =
∑

RI + ℓϕIJ
i p

I
iR

J + ℓ2ΦIJK
ij pIi p

J
jR

K

(3.31)

where γ, θ, ϕ,Γ,Θ,Φ are sets of real coefficients and the sum is intended over particle
indices I, J,K (which take values in {A,B}) and over the spatial indices i, j, k. We
also require that no terms with all particle indices equal to each other are present, so
that we recover the definition of single particle charge when all the charges of the other
particles are equals to zero.

By requiring that these total charges commute with HA
K+HB

K+V AB
dS the parameters

in Eq.(3.31) are fully fixed, giving indeed the proper-dS charges (3.27).
Next we turn to the corresponding three-particle case, for which the proper-dS

composition leads to the following formulas for the charges:

P̃1 = ((pA ⊕dS p
B)⊕dS p

C)1 = pA1 + pB1 + pC1 − ℓ
(
pB2 (p

C
1 + pA1 ) + pC2 (p

B
1 + pA1 )+

+ pA2 (p
C
1 + pB1 )

)
+
ℓ2

2

(
−2pA1 p

B
1 p

C
1 − (pB1 )

2pA1 + 2pA1 p
B
2 p

C
2 − pB1 (p

A
1 )

2 − (pC1 )
2(pB1 + pA1 )+

− (pC1 )(p
B
1 + pA1 )

2 + 2pC2 p
B
1 p

A
2 + (pB2 + pA2 )(p

B
2 p

A
1 + pA2 p

B
1 )+

+ (pA2 + pB2 + pC2 )(p
C
2 (p

B
1 + pA1 ) + pC1 (p

A
2 + pB2 ))

)
P̃2 = ((pA ⊕dS p

B)⊕dS p
C)2 = pA2 + pB2 + pC2 + ℓ

(
pB1 p

A
1 + pC1 p

B
1 + pA1 p

C
1

)
+

− ℓ2

2

(
pC2 (p

A
1 + pB1 )

2 − pC1 (p
C
2 (p

B
1 + pA1 ) + (pB1 − pA1 )(p

B
2 − pA2 ))+

+ (pC1 )
2(pB2 + pA2 ) + (pB1 − pA1 )(−pB2 pA1 + pB1 p

A
2 )
)

R̃ = (RA ⊕dS R
B)⊕dS R

C = RA +RB +RC .

(3.32)
Clearly we must find a Hamiltonian HABC

dS , deformation of the HABC
0 of Eq.(3.23),

such that [ ⃗̃P , HABC
dS ] = 0 and [R̃, HABC

dS ] = 0. As anticipated in Subsection 3.0.3, our
Hamiltonian HABC

dS will be of the form

HABC
dS = HA

K +HB
K +HC

K + V ABC
dS (3.33)
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where HK is again fixed to be the one of Eq.(3.24), while V ABC
dS must be specified

consistently with Eq.(3.26), for some choice of the parameters that Eq.(3.26) leaves to
be determined.

A natural first guess is that the three-particle potential V ABC
dS be given (see Eq(3.23))

by a combination of our two-particle potentials given in Eq.(3.30), i.e. V ABC
dS = V AB

dS +

V BC
dS + V AC

dS , but one can straightforwardly check that this does not commute with the
three-particle proper-dS charges (3.32). What does work is adding an extra term:

V ABC
dS = V AB

dS + V BC
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dS(⋆) (3.34)

with
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(3.35)
It is easy to check that the HABC

dS of Eqs.(3.33), (3.34), (3.35) commutes with the
proper-dS charges (3.32). Most importantly we find that indeed our Hamiltonian HABC

dS

uniquely selects the proper-dS charges (3.32) as its conserved charges. In order to see
this we start from a general parametrization of the three-particle charges

P̃1
tot

=
∑

pI1 + ℓγ̃IJij p
I
i p

J
j + ℓ2Γ̃IJK

ijk pIi p
J
j p

K
k

P̃2
tot

=
∑

pI2 + ℓθ̃IJij p
I
i p

J
j + ℓ2Θ̃IJK

ijk pIi p
J
j p

K
k

R̃tot =
∑

RI + ℓϕ̃IJ
i p

I
iR

J + ℓ2Φ̃IJK
ij pIi p

J
jR

K

(3.36)

which shares the same properties outlined for the two-particle ansatz (3.31) (the particle
indices run over {A,B,C} and γ̃, θ̃, ϕ̃, Γ̃, Θ̃, Φ̃ are sets of real coefficients).

We find that by requiring that these charges commute with our HA
K + HB

K + V AB
dS

the parameters in Eq.(3.36) get fully fixed, giving indeed the proper-dS charges (3.32).
The meaning of the extra term V ABC

dS(⋆) is quite non-obvious and maybe future studies
shall address the task of exploring it.

Whereas the potential in the original three-particle Hamiltonian HABC
0 of Eq.(3.23)

was just a sum of two-particle potentials, we found that the potential in its correct
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“proper-dS deformation" HABC
dS must include the extra term V ABC

dS(⋆) which is cubic in
the observables of the three particles and is made of all terms involving simultaneously
observables of all the three particles.

It is also noteworthy that for the three-particle case the proper-dS composition
gives charges which are not symmetric under particle exchange (this is because of non
associativity of proper-dS composition law, see (3.32)) and accordingly our Hamiltonian
HABC

dS also is not symmetric under particle-exchange. We do not see any objective issue
with this lack of symmetry under particle-exchange, but still it is a bit unsettling. This
made us interested in investigating which charges would be conserved if we adopted a
particle-exchange symmetrized version of our Hamiltonian HABC

dS

HABC
dS(sym) = HA

K +HB
K +HC

K + V AB
dS + V BC

dS + V AC
dS +

1

6

∑
π(A,B,C)

V
π(ABC)
dS(⋆) (3.37)

i.e. the Hamiltonian obtained by summing over all the possible particle permutations,
π(ABC), of the extra term.
We then ask for which choices of the parameters of our Eq.(3.36) the Hamiltonian
HABC

dS(sym) commutes with the charges parametrized in our Eq.(3.36), and we find that
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HABC
dS(sym) uniquely selects as its conserved charges the following ones
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RdS(sym) = RA +RB +RC

(3.38)
which are symmetric under particle exchange. Furthermore, these charges PdS(sym)

1 ,
PdS(sym)

2 , RdS(sym) close the algebra (3.14).

3.2 Conserved charges with κ-coproduct composition
law

In this section we apply the same strategy of analysis as before to the coproduct com-
position law of Eqs.(3.18)-(3.19), which we rewrite here at order ℓ2 for convenience

P1 = (pA ⊕κ p
B)1 = pA1 + pB1 − ℓpA2 p

B
1 +

ℓ2

2
(pA2 )

2pB1

P2 = (pA ⊕κ p
B)2 = pA2 + pB2

R = RA ⊕κ R
B = RA +RB − ℓpA2R

B +
ℓ2

2
(pA2 )

2RB .

(3.39)
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As done for the proper-dS case, our first objective is to find a Hamiltonian HAB
κ , that

is a deformation of the HAB
0 of Eq.(3.21), such that [P⃗ , HAB

κ ] = 0 and [R, HAB
κ ] = 0.

Following the same strategy of the previous section, we find that the Hamiltonian
HAB

κ = HA
K +HB

K + V AB
κ with
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is such that indeed [P⃗ , HA
K+HB

K+V AB
κ ] = 0 and [R, HA

K+HB
K+V AB

κ ] = 0. And we find
that the Hamiltonian HA

K +HB
K + V AB

κ uniquely selects the κ-coproduct charges (3.39)
as its conserved charges. This is easily shown by starting again from the general charge
ansatz (3.31) and requiring that they commute with HA

K +HB
K +V AB

κ : this requirement
fully fixes all the parameters in Eq.(3.31), giving indeed the κ-coproduct charges (3.39).

It is noteworthy that the κ-coproduct charges (3.39), differently from the proper-dS
two particle case, are not symmetric under the exchange of particles A and B, and
accordingly also our Hamiltonian HAB

κ is not symmetric (because the potential V AB
κ

of (3.40) is not symmetric). We found that the analogous issue of lacking particle-
exchange symmetry that we encountered in our analysis of the proper-dS composition
law could be “fixed" by resorting to a symmetrized version of the Hamiltonian, but for
the κ-coproduct composition law this is not the case: if one considers the symmetrized
Hamiltonian

HAB
κ(sym) =

HAB
κ +HBA

κ

2
(3.41)

then one finds that no choice of the parameters in (3.31) leads to charges that commute
with Hκ(sym)

AB .
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For the three-particle case the κ-coproduct composition law gives
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(3.42)

Using the same procedure of Section 3.1 one finds that the Hamiltonian

HABC
κ = HA

K +HB
K +HC

K + V AB
κ + V BC

κ + V AC
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κ(⋆) , (3.43)

with
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(3.44)
commutes with ⃗̃P and R̃. It is noteworthy that the κ-coproduct extra term V ABC

κ(⋆) ,
besides involving terms that depend simultaneously on observables of all three particles,
also contains terms that depend only on two of the particles (and these additional terms
cannot be re-absorbed in a redefinition of the potentials Ṽ IJ

κ since they are different for
different pairs of particles).

Also in this case we find that the Hamiltonian HABC
κ of our Eq.(3.43) uniquely

selects the κ-coproduct charges (3.42) as its conserved charges: by requiring that the
parametrized charges of Eq.(3.36) commute with HABC

κ the parameters in Eq.(3.36) get
fully fixed, giving indeed the κ-coproduct charges (3.42).

Finally notice that HABC
κ is not symmetric under particle exchange and its sym-

metrized version,

HABC
κ(sym) = HA

K +HB
K +HC

K +
1

6

∑
π(A,B,C)

V π(ABC)
κ , (3.45)
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is not a viable alternative since it does not have any associated conserved charges:
there is no choice of the parameters in Eq.(3.36) such that the parametrized charges of
Eq.(3.36) commute with HABC

κ(sym).

3.3 Comments on other quantum spacetimes

In this chapter we have disccused a novel startegy to look for conserved charges in
quantum spacetimes.

Until now, the debate on total charges for quantum spacetimes had not considered a
possible role for the interactions, relying instead only on some “naturalness arguments"
based on the form of the relativistic properties of free particles. However, in this chap-
ter, we have shown that the notion of total momenta in quantum spacetimes cannot be
"guessed", but it strongly depends on the kind of interactions that are introduced. Of
course our analysis only concerned with the spatial 2D κ-Minkowski toy model, but we
are quite confident that the lessons learned within this model apply also to other kind
of quantum spacetimes. In particular, we expect that the specific form of spacetime
quantization might affect the analysis through the level of complexity of Hamiltonians.
Indeed, the Hamiltonians we here exhibited appear to be unpleasantly intricate. It is
therefore natural to wonder if some ways to quantize spacetime with deformed relativis-
tic symmetries could produce simpler descriptions of interactions among particles. If
such a simplicity aspect was discovered within a specific spacetime quantization frame-
work it might provide encouragement for the studies of other aspects of that quantum
spacetime.

Furthermore, it could be interesting to generalize our results also to the 3D case,
that is a quite straightforward task, but we essentially expect the same conceptual
results we obtained within our bidimensional framework.





Chapter 4

Observers and reference frames in
quantum spacetimes
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In the previous chapters of this thesis we have presented some examples of quantum
spacetimes and we discussed how their deformed symmetries can be described in terms
of Hopf algebras structures and quantum groups. These deformations in general lead
to modifications of particle kinematics and dynamics. Moreover, it is reasonable to
expect that deformations of classical symmetries can also affect in a non-trivial way the
properties of the reference frames.
In this chapter we explore the possible role of observers in quantum spacetimes and
how the notion of reference frames can be affected by quantum gravity induced effects
focusing on a quantum group toy model [81].

In both general relativity and quantum mechanics observers typically assume an "ex-
ternal" position. Specifically, in the former, their influence on spacetime is considered
negligible, allowing them to explore it without causing any significant back-reaction.
In quantum theory, instead, they are separated from the observed system by the fa-
mous Heisenberg cut [82, 83]. The observers are thus described as classical, however,
there are mutually-incompatible measurements that they can choose to perform (com-
plementarity). Quantum mechanics introduces therefore an important novelty in the
measurement process, namely, the operationally-meaningful properties of the observed
systems depend on some choices made by the observer. Observers, in this way, become
what we will call “agents", in the sense that their choices have non-trivial consequences
for what concerns measurements in quantum mechanics.

In the attempt of combining quantum theory and general relativity into a quantum
theory of gravity, we are typically led to consider spacetime as a quantum object. In
particular, the most studied possibility in this context is that quantum gravity effects
can determine a small-scale discreteness or fuzziness in some geometrical quantities.
Such effects have been investigated in the context of several approaches to quantum
gravity [84–89] and involve a variety of manifestations.

From this perspective, we are thus led to contemplate the possibility that the agency-
dependence of quantum mechanics might challenge the notion of an objective spacetime
that all observers agree upon. Specifically, spacetime properties could be affected by
some choices the observer (agent) makes. Vice versa, the quantum properties of space-
time could have a non-trivial impact on the spectrum of possible operations available
to an agent. Therefore, these observations suggest a picture in which spacetime and
the agency of observers affect each other inextricably, so much so that the “externality”
idealization that is a good working hypothesis in general relativity and quantum the-
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ory, will have to be abandoned in favor of a notion of “internal” observers in quantum
gravity [90].

In this chapter, we take first steps toward this largely unexplored aspect of quantum
gravity focusing on the relative state of the reference frames of two observers, Alice and
Bob, who live in a non-classical spacetime. We will rely on a simplified model, in which
we assume that the two observers are exclusively interested in finding out the relative
spatial orientations of their frames. In standard quantum mechanics, the rotation ma-
trix connecting the two reference frames can be determined, according to a standard
alignment protocol, by exchanging qubits, as discussed in section 4.2. In particular, the
two observers can determine the matrix elements with arbitrary precision by a large
enough number of exchanges. However, in the case in which Alice and Bob live in a
quantum spacetime, reaching an arbitrary precision may be forbidden. In particular, we
will show that the non-commutativity aspects introduced by quantum groups establish
an intrinsic uncertainty on the entries of the rotation matrix relating two observers,
affecting the possibility of determining their relative orientation. Nevertheless, we are
still far from developing a deformed version of the standard alignment protocol, but we
set the stage for this kind of investigation obtaining many interesting results that we
present and discuss in the following of this chapter.

In this analysis, because we are only interested in the relative orientation between
reference frames, we can model our non-classical space simply by deforming the rotation
group SO(3), or rather its double cover SU(2) which describes the rotations of qubits.

Specifically, we will deal with one of the simplest examples of quantum groups:
SUq(2) [91], which is the (only) quantum-group deformation of the SU(2) group. The
lowercase q identifies a dimensionless deformation parameter, such that the case q = 1

reproduces the undeformed SU(2) group. One piece of theoretical evidence in favour
of quantum/non-classical angles in quantum gravity is the fact that the introduction
of a positive cosmological constant in Spin Foams/Loop Quantum Gravity requires
changing the internal gauge group of triads from SU(2) to SUq(2). In these models q is
a function of the dimensionless ratio between the Planck length and the Hubble length
scale associated to the cosmological constant [27]. It has been argued that this reflects
a minimal possible resolution in angular measurements [92]. One could also imagine
a physical scenario in which the dimensionless q could acquire a dependence on the
characteristic energy scale E of the problem via, for example, the dimensionless ratio
E/Ep, with Ep the Planck energy. This feature could arise in field theories in which q is
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a parameter appearing in the lagrangian, and thus would run with the energy as other
parameters do. To the best of our knowledge, no concrete example with such features
has been constructed, so we do not speculate upon this possibility further.

The mathematical details of SUq(2) have been extensively developed in [91,93–95].
However, in this analysis we are interested in further exploring the physical features of
this quantum group to obtain novel effects that observers would see if, in an effective
regime of quantum gravity, rotations of reference frames were described by SUq(2)

transformations.
Before exploring the properties of the SUq(2) quantum groups, let us briefly review

the main aspects of the classical rotation group SO(3) and its double cover SU(2) in
the next section.

4.1 SU(2) preliminaries

The SU(2) group is defined as the group of 2 × 2 unitary matrices with determinant
equal to 1. A generic element U ∈ SU(2) can be parametrized in the following way

U =

(
a −c∗

c a∗

)
, (4.1)

where a and c are two complex numbers satisfying the relation

aa∗ + cc∗ = 1 , (4.2)

constraining the degrees of freedom to three real numbers. A typical parametrization
for a and c in terms of three real numbers is given by

a = eiη cos
θ

2
c = eiδ sin

θ

2
, (4.3)

with η, δ ∈ [0, 2π) and θ ∈ [0, π). These three angles encode all the information needed
to uniquely identify a SU(2) element and are useful in identifying the connection be-
tween SU(2) and the rotation group SO(3). Indeed, the canonical homomorphism
between the two groups is realized via

Rij =
1

2
Tr
{
σi U σj U

†} ≡ 1

2
Tr
{
U σj U

† σi
}
, (4.4)
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where Rij is a rotation matrix, U is parametrized as in (4.1) and σi are the Hermitian
Pauli matrices that we review here for completeness:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(4.5)

Writing (4.4) explicitly, we obtain

R =


1
2
(a2 − c2 + (a∗)2 − (c∗)2) i

2
(−a2 + c2 + (a∗)2 − (c∗)2) (a∗c+ c∗a)

i
2
(a2 + c2 − (a∗)2 − (c∗)2) 1

2
(a2 + c2 + (a∗)2 + (c∗)2) −i(a∗c− c∗a)

−(ac+ c∗a∗) i(ac− c∗a∗) 1− 2cc∗

 .

(4.6)
Inserting parametrization (4.3) in (4.6) we obtain the rotation matrix in terms of
trigonometric functions of the three real angles η, δ and θ. These are simply a re-
definition of the well known Euler angles (α, β, γ) in terms of which, a generic rotation
matrix is written as R(α, β, γ) = Rz(α)Rx(β)Rz(γ), with

Rz(α) =

 cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1

 Rx(β) =

1 0 0

0 cos(β) sin(β)

0 − sin(β) cos(β)

 (4.7)

where Rz and Rx are rotations around the z-axis and x-axis respectively. Multiplying
these out, we obtain

R =

 cos(α) cos(γ)− cos(β) sin(α) sin(γ) cos(β) cos(γ) sin(α) + cos(α) sin(γ) sin(α) sin(β)

− cos(γ) sin(α)− cos(α) cos(β) sin(γ) cos(α) cos(β) cos(γ)− sin(α) sin(γ) cos(α) sin(β)

sin(β) sin(γ) − cos(γ) sin(β) cos(β)


(4.8)

We can now compare rotation matrices (4.8) and (4.6) by using the definition (4.3)
for parameters a, c to find the relation between Euler angles and the parameters of
SU(2), which is

θ = β η =
α + γ

2
δ =

π

2
− α− γ

2
. (4.9)

4.2 Alignment protocol in classical space

Let us illustrate a simple protocol for two observers, who live in a classical Euclidean
spatial environment, but do not share a classical reference frame, to synchronize their
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spatial orientations by communicating qubits, i.e. SU(2) spinors (see also [96]).

4.2.1 Qubits as SU(2) spinors in standard quantum theory

A single qubit state can be represented as a density matrix ρ that expanded in the basis
of the identity 1 and Hermitian Pauli matrices σi has the following form

ρ =
1

2
(1+ r⃗ · σ⃗) , (4.10)

where the expectation values of the spin observables give the components of the Bloch
vector:

ri = ⟨σi⟩ = Tr {ρ σi} . (4.11)

The latter relation holds since the Pauli matrices form an orthonormal basis

Tr {σµ σν} = 2 δµν , (4.12)

where σ0 := 1. As such, we can also define a 4-dimensional Bloch vector

rµ = Tr {ρ σµ} (4.13)

whose zero-component
r0 = Tr ρ = 1 (4.14)

is simply the normalization of the state.
Consider now an SU(2) transformation of the quantum state. As it turns out,

the density matrix (4.10) decomposes into an SU(2)-invariant singlet and an SU(2)-
covariant triplet term, since for any matrix U ∈ SU(2),

ρ→ U ρU † =
1

2
(1+ r⃗ · U σ⃗ U †) =

1

2
(1+ r⃗′ · σ⃗) , (4.15)

where now the transformed Bloch vector is

r⃗′ = R · r⃗ (4.16)

with
Rij =

1

2
Tr
{
Uσj U

† σi
}

(4.17)

an element of PSU(2) ≃ SO(3). So, if the quantum state is transformed by an SU(2)

matrix, the Bloch vector r⃗ that represents it transforms like a 3-dimensional vector
under spatial rotations.
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Evidently, the phase of the SU(2) transformations is cancelled and the adjoint ac-
tion of SU(2) yields a spatial rotation in its fundamental representation. Hence, the
normalization r0 is an SU(2)-invariant, while r⃗ transforms in the adjoint representation
of SU(2) and thus under the fundamental representation of SO(3).

In this way, we can associate to every SU(2) transformation of states or spin ob-
servables an SO(3) spatial rotation. In particular, we can write the same qubit state
relative to different bases of Pauli matrices U σ⃗ U † by rotating the corresponding Bloch
vector accordingly,

r⃗′ρ = Tr
{
ρU σ⃗ U †} = R−1 · r⃗ρ = R−1 · Tr {ρ σ⃗} , (4.18)

where r⃗′ρ and r⃗ρ are both Bloch vectors of the same quantum state ρ, however, written
relative to different observable bases. Interpreting U σ⃗ U † and σ⃗ as being the observ-
ables corresponding to differently oriented sets of Stern-Gerlach devices in the lab, this
rewriting allows us to express how observers with different spatially oriented reference
frames will ‘see’ the same quantum state of (possibly an ensemble of) a qubit.

4.2.2 Alignment protocol by exchanging qubits

Suppose that two observers, Alice and Bob, do not know the relative orientation between
their reference frames. Supposing further that they can communicate classically, they
can proceed as follows in order to figure out the relation between their descriptions
(see fig. 4.1). Alice prepares three ensembles of qubits, each prepared such that the
ensemble state corresponds to a Bloch sphere basis vector. For example, she could
prepare three ensembles of N qubits each so that

ExA
= {r⃗xA,n = (1, 0, 0)}Nn=1 , EyA = {r⃗yA,n = (0, 1, 0)}Nn=1 , EzA = {r⃗zA,n = (0, 0, 1)}Nn=1 ,

(4.19)
i.e., every qubit of the first ensemble is prepared to be in the ‘up in xA-direction’ pure
state, where xA is Alice’s x-direction, and similarly for the other two ensembles. Alice
can then send Bob these three ensembles to perform state tomography on them. Bob
could proceed as follows: he divides each ensemble in three subensembles and measures
all qubits of the first subensemble with a Stern-Gerlach (SG) device oriented in xB-
direction, of the second in yB-direction and of the third in zB-direction. This will tell
him how to write Alice’s states relative to his basis and, via (4.18), what the relative
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SO(3) rotation between their spatial frames is. For example, relative to Alice, the
ensemble state of ExA

appears as

ρxA
=

1

2
(1+ r⃗xA

· σ⃗A) =
1

2
(1+ σxA

) . (4.20)

Suppose now that Bob’s measurement apparata are in the following relation with
Alice’s: σ⃗A = U σ⃗B U

†. Then, using (4.18), we can write the same ensemble state, but
now relative to Bob as

ρxA
=

1

2

(
1+ r⃗xA

· U σ⃗B U †) = 1

2
(1+ r⃗xB

· σ⃗B) , (4.21)

where
r⃗xB

= R · r⃗xA
(4.22)

and
Rij =

1

2
Tr
{
(σA)i U (σA)j U

†
}
≡ 1

2
Tr
{
U (σA)j U

† (σA)i

}
, (4.23)

which is equivalent to (4.17) if we remember that U are unitary matrices. Bob can
measure r⃗xB

= Tr {ρxA
σ⃗B} using tomography on ExA

, which is why he has to split
that ensemble into three subensembles to measure its qubits relative to a basis of Stern
Gerlach devices.

Proceeding this ways also with EyA , EzA , Bob can figure out the Bloch vector basis
r⃗xB

, r⃗yB , r⃗zB of Alice’s ensemble states relative to his frame and if Alice also tells him how
she describes the same states, namely as r⃗xA

, r⃗yA , r⃗zA , then they can simply compute R
from the relation of these two sets of bases. In principle, Bob has to perform an infinite
number of measurements to determine the rotation matrix connecting his reference
frame with Alice’s with arbitrary precision. From this, the matrix (4.6) admits a direct,
operational interpretation in terms of (4.23): it is the matrix of the asymptotic N → ∞
values of the averages of the spin measurements that Bob performs on the qubit states
sent to him by Alice.

4.3 Quantum rotation matrices in SUq(2)

4.3.1 SUq(2) algebra and homomorphism with SOq(3)

The quantum group SUq(2) is defined by considering the algebra of complex functions
on SU(2), denoted by C(SU(2)) and deforming it in a non-commutative way. The
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Figure 4.1: Alice (on the left) prepares a set of N qubits (e.g., electron spins) in the
spin-up eigenstate of her x-axis (e.g., by passing unpolarized electrons through a x-
oriented Stern–Gerlach apparatus, and selecting only the ones that emerge with their
spins up). She then sends these electrons to Bob, whose laboratory is rotated by an
unknown amount with respect to hers. Bob divides these N qubits in three groups,
and sends each group through a machine that measures the spin along one of his three
orthogonal axes (e.g., three perpendicular Stern–Gerlach apparata - in the picture, he
is passing the electrons through a y-oriented machine). He then counts the number
of spin-up and spin-down measurements that each machine reads, and calculates the
expectation value of the corresponding observable. Repeating the experiment for a set
of N qubits that Alice selected to be polarized along the y−axis, and, respectively,
z−axis allows Bob to build a statistics of the expectation values of the nine observables
associated to each pair of choices of axes made by him and Alice. In the large-N limit,
these expectation values tend to the nine components of the rotation matrix R that
connects Alice’s reference frame and Bob’s. Notice that, in this illustrative picture the
electron beams (in orange) are manipulated with some "mirrors" (the black cylinders)
which are assumed not to have any effect on the qubit states.

generators {a, c} are regarded as functions on the group, satisfying the following non-
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trivial commutation relations:

ac = qca ac∗ = qc∗a cc∗ = c∗c

c∗c+ a∗a = 1 aa∗ − a∗a = (1− q2)c∗c .
(4.24)

Here, 1 refers to the identity element of the algebra and q is the deformation parameter
assumed to be close to 1 and in particular q ≲ 1. Indeed, in the q → 1 limit, we obtain
the commutative limit and recover the classical description of SU(2). It is sufficient to
consider q ≲ 1 since, if q > 1, the mapping a 7→ a∗, c 7→ qc∗ sends the SUq(2) algebra
to the SUq−1(2) one.
The above is an example of a unital *-algebra with generators {a, c}. This algebra can
be enriched with additional structures to form an Hopf algebra. To do this, we present
below the coproducts, antipodes and counits acting on the generators:

∆(a) = a⊗ a− qc∗ ⊗ c

∆(a∗) = a∗ ⊗ a∗ − qc⊗ c∗

∆(c) = c⊗ a+ a∗ ⊗ c

∆(c∗) = c∗ ⊗ a∗ + a⊗ c∗


S(a) = a∗

S(a∗) = a

S(c) = −q−1c

S(c∗) = −qc∗


ϵ(a) = 1

ϵ(a∗) = 1

ϵ(c) = 0

ϵ(c∗) = 0

(4.25)

To establish a first link with the classical picture, we present the generalization of the
spin-1/2 representation (4.1), given by

Uq =

(
a −qc∗

c a∗

)
a, c ∈ C(SUq(2)) q ∈ (0, 1) . (4.26)

We will now construct one of the key ingredients of the analysis which is a q-analogue
of the homomorphism between SU(2) and SO(3). In order to do so, we promote the
classical homomorphism Rij = 1

2
Tr
{
σj U

† σi U
}
, where σi are the Pauli matrices, to

its quantum version by replacing U with Uq

(Rq)ij =
1

2
Tr
{
σj U

†
q σi Uq

}
. (4.27)

By computing these elements explicitly, we obtain

Rq =


1
2
(a2 − qc2 + (a∗)2 − q(c∗)2) i

2
(−a2 + qc2 + (a∗)2 − q(c∗)2) 1

2
(1 + q2)(a∗c+ c∗a)

i
2
(a2 + qc2 − (a∗)2 − q(c∗)2) 1

2
(a2 + qc2 + (a∗)2 + q(c∗)2) − i

2
(1 + q2)(a∗c− c∗a)

−(ac+ c∗a∗) i(ac− c∗a∗) 1− (1 + q2)cc∗


(4.28)
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and one can check that in the commutative limit q → 1 this coincides with the matrix ob-
tained via the classical homomorphism (4.6). This matrix provides a (co)-representation
of SOq(3) related to the (co)-representation found in [95] by a similarity transformation.
In this quantization procedure, we have replaced the classical U with the deformed Uq

in (4.4), thus replacing the complex numbers a and c with the operators satisfying
(4.24), and we do not deform the Pauli matrices. It may be argued that a deformation
of the Pauli matrices, such as the one studied in [97], should be considered. However,
doing so leads to non-hermitian operators for the entries of the resulting matrix. With
our choice instead we get hermitian operators and we also reconstruct a matrix that
matches the one obtained in [95] upon doing a change of basis, and this guarantees that
we obtain a representation of SOq(3) as explained shortly.
We also note that in (4.27) the cyclic property of the trace operation does not hold
because of the noncommutative nature of a and c. This gives rise to a “quantization
ambiguity" which however does not affect our phenomenological results. In particular,
we will discuss our results using matrix (4.28) which is obtained quantizing the first
ordering in (4.4), but another definition of the quantum rotation matrix is possible.
The alternative to (4.28), obtained using the second ordering in (4.4), is

Pq =


1
2
(a2 − qc2 + (a∗)2 − q(c∗)2) i

2
(−a2 + qc2 + (a∗)2 − q(c∗)2) q(a∗c+ c∗a)

i
2
(a2 + qc2 − (a∗)2 − q(c∗)2) 1

2
(a2 + qc2 + (a∗)2 + q(c∗)2) −iq(a∗c− c∗a)

−1+q2

2q
(ac+ c∗a∗) i1+q2

2q
(ac− c∗a∗) 1− (1 + q2)cc∗

 .

(4.29)
It turns out that Pq and Rq are actually similar matrices: Rq =MPqM

−1, with

M =


2

1
3 ( q

1+q2
)
1
3 0 0

0 2
1
3 ( q

1+q2
)
1
3 0

0 0
( 1
q
+q)

2
3

2
2
3

 . (4.30)

This matrix (with its inverse) reduces to the identity at first order in (1 − q) so that
the two matrices are equivalent from a phenomenological point of view. Indeed, since
the quantum-gravity expectation is that q is extremely close to 1, the search for exper-
imental manifestations of our q-deformation is not likely to ever go beyond the leading
(1− q)-order effects [23].
Notice that the two matrices come from an ambiguity of the “quantization procedure",
namely the ordering of the matrices in (4.4). This is similar to what happens in stan-



60CHAPTER 4. OBSERVERS AND REFERENCE FRAMES IN QUANTUM SPACETIMES

dard quantum mechanics where different orderings in the classical observables give rise
to different quantum operators which give the same classical limits.

Let us conclude this discussion clarifying the link between the vector (co)-representation
of SUq(2) is linked to the (co)-representation of the quantum group SOq(3) via the iso-
morphism C(SOq(3)) := C(SUq(2)/Z2); the representation reads [95]

d1 =

 (a∗)2 −(1 + q2)a∗c −qc2

c∗a∗ 1− (1 + q2)c∗c ac

−q(c∗)2 −(1 + q2)c∗a a2

 . (4.31)

In the commutative limit, this matrix approaches a generic rotation matrix written in
the so-called complex basis, and can be rewritten in the Cartesian basis by a similarity
transformation, with

N =

−1 −i 0

0 0 1

−1 i 0

 (4.32)

acting as the change of basis. By applying this transformation in the q-deformed case
too, one can easily check that N−1d1N is equal to (4.28). This clarifies the link to the
SOq(3) quantum group. Matrices Pq and Rq are (co)-representations of SOq(3) since
they can be obtained by a similarity transformation from (4.31). Therefore, our ansatz
(4.27) realizes the quantum version of the SU(2) to SO(3) homomorphism.

The classical analog of (4.28) describes all possible elements of SO(3) when varying
the complex numbers a and c with continuity. Each of these classical matrices describes
a possible relative orientation between observers A and B.

In the quantum case (4.28) has no physical meaning when taken alone, but only
when paired with a certain state |ψ⟩ ∈ H, where H is the Hilbert space on which a

and c act. In the classical case, a and c codify information about the alignment of two
reference frames, via their angular parametrization. For this reason, when being pro-
moted to operators, we interpret the states on which they act as the ones codifying the
relative orientation between the reference frames of observers A and B. The physical
information about this orientation can be extracted by computing the expectation val-
ues ⟨ψ|(Rq)ij|ψ⟩ with their relative uncertainties stemming from the noncommutative
nature of these matrix elements, given by

(∆Rq)ij =
√

⟨ψ|(Rq)
2
ij|ψ⟩ − ⟨ψ|(Rq)ij|ψ⟩2 . (4.33)
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In this framework, the (∆Rq)ij do not vanish simultaneously, in general, for a given
state |ψ⟩ introducing a “fuzziness" in the alignment procedure. When this occurs, the
latter is affected by an intrinsic uncertainty which cannot be eliminated: A and B are
not able to sharply align their reference frames anymore. In light of these arguments,
it is crucial to identify H and study the representations of operators a and c on it.

4.3.2 SUq(2) representations and quantum Euler angles

The representations of algebra (4.24) have been extensively studied in [95]. The Hilbert
space containing the two unique irreducible representations of the SUq(2) algebra, q ∈
(0, 1), is H = Hπ ⊕ Hρ where Hπ = ℓ2 ⊗ L2(S1) ⊗ L2(S1) and Hρ = L2(S1). If
χ, ϕ ∈ [0, 2π[ are coordinates on S1 and |n⟩ is the canonical basis of ℓ2, the algebra of
functions on SUq(2) is represented as

ρ(a) |χ⟩ = eiχ |χ⟩ ρ(a∗) |χ⟩ = e−iχ |χ⟩ ρ(c) |χ⟩ = ρ(c∗) |χ⟩ = 0 (4.34)

π(a) |n, ϕ, χ⟩ = eiχ
√

1− q2n |n− 1, ϕ, χ⟩ π(c) |n, ϕ, χ⟩ = eiϕqn |n, ϕ, χ⟩
(4.35)

π(a∗) |n, ϕ, χ⟩ = e−iχ
√

1− q2n+2 |n+ 1, ϕ, χ⟩ π(c∗) |n, ϕ, χ⟩ = e−iϕqn |n, ϕ, χ⟩ .

It is not coincidental that quantum number χ is common in both representations. We
show in appendix A.2 that representation ρ can be obtained as a limit of representation
π, in agreement with the fact that in the classical case we only need three real parameters
to specify rotations.

Let us give physical meaning to the quantum numbers appearing in the representa-
tions, making a comparison between these relations and the classical parametrization
of a and c for U ∈ SU(2) (4.3) that we report here for convenience:

a = eiη cos
θ

2
c = eiδ sin

θ

2
, (4.36)

where η, δ and θ are a linear redefinition of Euler angles, as discussed in section 4.1. We
note that ρ(a) and ρ(c) act diagonally, therefore we can make the identifications χ ≡ η

and θ ≡ 0. For what concerns representation π, c acts diagonally, while a and a∗ act
as ladder operators. For operator a, we added a phase, that is implicitly set to 0 in the
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literature [91], which does not affect the commutation relations (4.24) but is needed in
order to have a comparison of (4.35) with (4.3). From this, we identify χ ≡ η, ϕ ≡ δ

and, exploiting the fact that c acts diagonally, we are led to the significant result

qn = sin

(
θ(n)

2

)
⇐⇒ θ(n) = 2 arcsin(qn) . (4.37)

The Euler angle θ becomes quantized and this feature is captured in fig. 4.2.

Figure 4.2: Discretized angles (4.37) computed with q = 0.9. θ(n) is decreasing with
n starting from π and approaching 0 for large values of n. Interestingly, the step
between consecutive angles decreases as n gets very larger, and for very large n we can
approximate the angular distribution as being continuous. This can easily be verified
analytically by computing ∆θ(n) = θ(n + 1) − θ(n) and taking the limit for n → ∞.
Another feature that gives robustness to our proposal is that the angular steps get
smaller as q is closer to 1.

We close this section offering some comments on another quantization ambiguity, con-
cerning our definition of the angle θ(n) in (4.37). We obtained the definition of sin

(
θ(n)
2

)
by comparing the eigenvalues of π(c) to the classical parametrization of c in (4.3). We
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find that this is consistent with the definition of cos
(

θ(n)
2

)
in terms of π(a∗a), which

also acts diagonally. Indeed, on a generic eigenstate |n, ϕ, χ⟩ (cf. (4.35)) one has that

π(a∗a) |n, ϕ, χ⟩ = (1− q2n) |n, ϕ, χ⟩ = cos2
(
θ(n)

2

)
|n, ϕ, χ⟩ . (4.38)

Furthermore, this is in agreement with the fact that a∗a + c∗c = 1, as can be inferred
from (4.24). Nevertheless, it is noteworthy that since a and a∗ do not commute (see
(4.24)), one could obtain another result for θ(n) upon defining its cosine in terms of
π(aa∗), which also acts diagonally (cf. (4.35)), rather than π(a∗a). As one can easily
check, this would lead to allowed values of θ which are the same as in our π(a∗a) case,
with the only difference that θ = π would be missing from the spectrum of θ(n). With
this ordering we would have sin

(
θ(n)
2

)
= qn+1 which is merely a shift of n with respect

to the ordering we adopted. Evidently, the main results and the main aspects of physical
interpretation of our analysis will be unaffected by this quantization ambiguity.

4.3.3 Semi-classical rotations

To gain further intuition from the classical picture, where the rotation axis and the
angle by which the rotation is performed are specified by three Euler angles, we hence-
forth focus on what we called “semi-classical” rotations, specified by the three quantum
numbers θ(n), ϕ, χ, that describe small deformations of classical rotations defined by
these angles. More precisely, the states |ψ(θ, ϕ, χ)⟩ yielding such deformed rotations
should satisfy


⟨ψ(θ, ϕ, χ)|(Rq)ij|ψ(θ, ϕ, χ)⟩ = Rij(θ, ϕ, χ) +O(1− q)

(∆Rq)
2
ij = O(1− q)

∀ i, j , (4.39)

where Rij ∈ SO(3) and where θ is one of the allowed values in (4.37). This prescription
constrains the quantum rotations we can construct to the ones in which the θ Euler
angle can only take the allowed values in (4.37), for a fixed q. In order to clarify the
meaning of this prescription, we provide some examples.

A first class of states that trivially satisfies requirement (4.39) is the set of eigenstates
|χ⟩ ∈ Hρ. It is easy to see that the expectation value of the quantum rotation matrix
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(4.28) in such states describes a rotation of angle 2χ around the z-axis, namely:

⟨χ|Rq|χ⟩ =

cos(2χ) − sin(2χ) 0

sin(2χ) cos(2χ) 0

0 0 1

 (4.40)

with all the (∆Rq)ij being zero. Thus, rotations around the z-axis are classical/continuous:
two observers, A and B, whose relative orientation is described by |χ⟩ ∈ Hρ, can align
themselves sharply.

The relative simplicity of rotations around the z-axis is not representative of the
richness of structure of other rotations, and this is mainly due to the fact that for
generic basis states of the form |n, ϕ, χ⟩ the first condition in (4.39) is not satisfied,
forcing us to consider superpositions of such states. Since ϕ and χ are identified with
their classical counterparts, we are led to consider superpositions

|ψ⟩ =
∞∑
n=0

cn |n, ϕ, χ⟩ ,
∞∑
n=0

|cn|2 = 1 . (4.41)

Among the states of this form that satisfy (4.39), we need to find those for which the
uncertainties are kept under control. The best way to do this is to demand that the
coefficients {cn} minimize the functional

S
[
{cn}∞n=0, µ

]
=
∑
i,j

(∆Rq)
2
ij − µ

(
⟨ψ⟩ − 1

)
, (4.42)

where µ is a Lagrange multiplier enforcing normalization of |ψ⟩. In general, solving
the minimization problem (4.42) is a daunting task computationally. Therefore, in
appendix A.1 we invoke physical intuition to construct these states. Fixing a value for
q, we build superpositions of states |n, ϕ, χ⟩ centered around a certain n̄ ∈ N. The
expectation values and uncertainties relative to such states will reproduce deformations
of classical rotation matrices specified by angles (θ(n̄), ϕ, χ), in the sense of (4.39).

It is worth noticing that there is a special class of such semi-classical rotations for
which some simplifications arise. This is the case of rotations with θ = π around axes
in the x − y plane. In the classical case χ = 0 and a generic ϕ select a direction in
the x− y plane (ϕ = π/2 selects a rotation around the x-axis, while ϕ = 0 selects one
around the y-axis) around which we rotate of an angle θ. As stressed before, since ϕ, χ
behave classically, the quantum numbers associated to these angles specify the axis of
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rotation also in the quantum case. For the case θ(0) = π, building a superposition of
basis states is not necessary to satisfy (4.39) and the basis state |0, ϕ, 0⟩ is sufficient to
describe the corresponding semi-classical rotation around an axis in the x − y plane,
specified by ϕ. The expectation value of Rq on such state is

⟨0, ϕ, 0|Rq|0, ϕ, 0⟩ =

−q cos(2ϕ) −q sin(2ϕ) 0

−q sin(2ϕ) q cos(2ϕ) 0

0 0 −1

 (4.43)

while the ∆ij are non-zero and do not depend on the specific value of ϕ

∆Rq =


1
2

√
(1− q2)(1− q4) 1

2

√
(1− q2)(1− q4) (1+q2)

2

√
(1− q2)

1
2

√
(1− q2)(1− q4) 1

2

√
(1− q2)(1− q4) (1+q2)

2

√
(1− q2)√

q2 − q4
√
q2 − q4 0

 (4.44)

From the above matrices, it can be verified that the state |0, ϕ, 0⟩ satisfy (4.39).
For a generic axis of rotation, the quantum Euler angle θ will play a non-trivial role

both in the determination of the axis itself and in the determination of the rotation
angle.

4.4 Different skies from the same stars

The results we presented suggest a potential scenario where a new kind of connection
between observers and the spacetime they are observing emerges. In this scenario, as
we will see shortly, the choices that an observer makes in establishing their reference
frame can have a non-trivial impact on the spacetime they observe.

We shall argue this by first advocating Einstein’s operational notion of spacetime,
whose points have physical meaning only if they label an event there occurring. We use
as reference example a network of sources emitting photons (“stars") and each photon
emission is a physical point of spacetime. These points of spacetime will be labeled
by measured coordinates and uncertainties on those coordinates. The key observation
here is that, in our model, these uncertainties are not intrinsic properties of the space-
time points but rather depend on some choices made by the observer (agent). These
arguments give rise to a framework in which different skies may originate from the
observation of the same stars and we thus don’t have an objective notion of the starry
sky.
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4.4.1 Agency-dependent spacetime

In this subsection we apply the formalism we introduced throughout this chapter to
establish the connection between the q-deformation of the SU(2) group and the agency-
dependence of space we have anticipated. Before showing this with a concrete numerical
example, we will discuss why this property of space is to be expected by presenting a
gedanken-experiment.

Consider two observers, Alice and Bob, each equipped with their own set of tele-
scopes, who want to map a starry sky. Each of them chooses their reference frame (in
particular their z-axis) in order to assign coordinates to the stars they observe. We
assume that their origins coincide (since we are only interested in their relative orien-
tation) but their z-axes do not. Without loss of generality we focus on the (y, z)-plane
so that, for each observer, any telescope is mapped onto another by a rotation around
the x-axis. In a classical spacetime, Alice and Bob can compare the outcomes of their
measurements by rotating their data with a classical rotation matrix. Formally, there
exists an element of the SO(3) group that sharply describes the relative orientation
between Alice and Bob.

We now investigate how this situation changes in our novel non-commutative frame-
work. We henceforth assume that Alice and Bob can choose the direction along which
points can be sharp (the z- axis) independently from one another. For definiteness, we
focus on observer Alice first. While mapping the starry sky, she focuses on a specific
star, which she observes with one of her telescopes. This instrument is in general not
aligned with respect to the z-axis she has chosen. In our framework, this means that
there exists a state |ψA⟩ connecting the relative orientation between the aforementioned
telescope and the z-axis. Following our physical interpretation, |ψA⟩ determines a quan-
tum rotation matrix via the expectation value of Rq and an uncertainty matrix defined
by (4.33). This means that Alice cannot appreciate the relative orientation between
the telescope and her z-axis with arbitrary precision since there will always be some
intrinsic uncertainty given by the deformation of the SU(2) group. As a consequence
of this, she will not be able to sharply deduce the position of this star in the sky. For
that same star, this line of reasoning also applies to Bob but the state |ψB⟩ will be in
general different from |ψA⟩, implying a different degree of fuzziness. This procedure
can also be applied to any star in the sky so that Alice and Bob each have their own
picture of the celestial sphere, as can be seen in fig. 4.3. The striking result of this
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Alice
Z

Y Bob
Z Y

Figure 4.3: A semi-quantitative description of the starry skies observed by Alice and
Bob. Alice’s z-axis is aligned with the yellow star while Bob’s z-axis is aligned with the
green star, so that the yellow star is sharp for Alice while the green star is sharp for
Bob. For Alice (Bob) the fuzziness increases as the angular deviation from the yellow
(green) star increases and the same stars are observed with different fuzziness because
of the relative orientation of the z-axes of the two agents.

gedanken-experiment is that the uncertainty associated with each star is not an in-
trinsic property of spacetime but depends on some choices made by the observers. In
particular, different choices of the z-axis give rise to different pictures of the starry sky.
The subtle observation is that there is no way for Alice and Bob to define an objective
celestial sphere. This means that the definition of space itself cannot be independent of
the observer who reconstructs it. In this sense, we say that Alice and Bob are agents,
namely we are abandoning the idea of an objective space, replacing it with a notion of
observed space from which we cannot subtract the choices of the observer (agent) who
infers it.

As mentioned earlier, it is important to understand that, even though the z-axis is
a preferred direction for each observer (only its points can be sharp), our framework
produces an isotropic description of space. Indeed, spatial rotations are a (q-deformed)
symmetry. There is no direction which is preferred a priori, and the special role that the
z-axis plays in the reference frame of an observer is only the result of the choices made
by that observer in setting up their frame. The observer chooses freely their preferred z-
direction. This should be contrasted with the case of usual spatial anisotropy, in which
different directions have different properties a priori, independently of the choices made
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by observers, and invariance under spatial rotations is lost.

4.4.2 Some numerical examples

In order to better understand these innovative concepts and comprehend the meaning
of fig. 4.3, we now show some numerical examples in support of our claims.

Let us start with Alices’s point of view and let her z-axis be aligned with a certain
star (α) and consider another star (β) she wants to observe from a telescope, whose
relative orientation with respect to the first star is described by the following state:

|ψA⟩ = |n = 0;ϕ =
π

2
;χ = 0⟩ . (4.45)

This state, already introduced in section section 4.3.3 and which satisfies the “classi-
cality" conditions (4.39), can be seen as a q-deformed rotation of π around the x-axis.
The expectation value is obtained by substituting ϕ = π

2
in (4.43) while the variances

are the ones in (4.44)

⟨ψA|Rq|ψA⟩ =

q 0 0

0 −q 0

0 0 −q2


∆Rq =


1
2

√
(1− q2)(1− q4) 1

2

√
(1− q2)(1− q4) (1+q2)

2

√
(1− q2)

1
2

√
(1− q2)(1− q4) 1

2

√
(1− q2)(1− q4) (1+q2)

2

√
(1− q2)√

q2 − q4
√
q2 − q4 0


(4.46)

which at first order in (1− q) give

⟨ψA|Rq|ψA⟩ =

1− (1− q) 0 0

0 −1 + (1− q) 0

0 0 −1 + 2(1− q)


∆Rq =


√
2(1− q)

√
2(1− q)

√
2(1− q)√

2(1− q)
√
2(1− q)

√
2(1− q)√

2(1− q)
√

2(1− q) 0


(4.47)

Identifying Alice’s z-axis with the vector v = (0, 0, 1) and applying these matrices on
v, the transformed vector v′ = (v′1, v

′
2, v

′
3) will lie in the range

−
√

2(1− q) ≤ v′1 ≤
√

2(1− q) −
√

2(1− q) ≤ v′2 ≤
√

2(1− q) v′3 = −1+2(1−q)
(4.48)



4.4. DIFFERENT SKIES FROM THE SAME STARS 69

This quantitatively shows what we mean by fuzziness (qualitatively shown in fig. 4.4):
the q-rotated vector v′ lies in a cone with aperture given by

∆α ≈ 2
√

2(1− q) (4.49)

z

y

z

y

Figure 4.4: A qualitative description of the action a q-deformed rotation of π around
the x-axis on the vector (0, 0, 1).

The agency feature of this model can be well understood if we now compare these
results with the ones obtained if Alice chose to align her z-axis with star β. In this case
she would have seen β sharply and α under a cone with aperture (4.49). This line of
reasoning can be extended when considering multiple stars: different states describing
the relative orientation of these stars with respect to Alice’s z-axis will produce different
uncertainties in determining their direction. In turn, this is characterized by different
cone apertures under which the stars are seen. In table 4.1 we show some numerical
examples expressing this feature.

From this analysis, it is noteworthy that the fuzziness grows as our quantized Euler
angle increases, resulting in a starry sky inferred by Alice, similar to what is depicted
in fig. 4.3. Of course, the analysis can also be repeated for Bob, who chooses a different
z-axis, in principle, and observes the same stars as Alice. The states describing the
relative orientation between these stars and his z-axis will be different from the ones
characterizing Alice’s frame. The degree of fuzziness he observes for a particular star
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θ(n)θ(n)θ(n) Aperture

0◦ 0

±45.275◦ 0.210

±90.560◦ 0.284

±137.518◦ 0.402

±180◦ 0.442

Table 4.1: Dependence of the aperture on the observation angle θ(n) using q = 0.99.
The aperture is monotonically increasing as the angles grow in absolute value. The
states used to obtain these results are constructed numerically in appendix A.1. For
consistency, the aperture for 180◦ is not truncated at first order in (1− q) as in (4.49),
but is computed numerically with eq. (4.46) with q = 0.99.

will be different from the one assigned to it by Alice, resulting in a different inference
of the starry sky, as shown in fig. 4.3.

4.5 Towards a quantum alignment protocol for SUq(2)

In this chapter we have achieved important progress about the physical interpretation
of the SUq(2) quantum group. In particular, by exploring the properties of its represen-
tations we derived a framework in which one of the Euler angles becomes quantized and
reference frames exhibit fuzziness properties. This is not the first time that quantum
properties associated to reference frames are found in literature. Another example of
non-classical reference frames is given by the quantum reference frames research pro-
gram [98–106]. However, the nature of the fuzziness we obtained is distinct from the
one usually associated with quantum references frames (QRFs). In fact, that kind of
fuzziness arises when the frame itself is described as an ordinary quantum system. The
key difference is the source of the frame fuzziness, indeed for QRFs it is governed by the
Planck’s constant ℏ and follows from the standard laws of quantum mechanics, while
in our scenario it is the deformation of spatial rotations, governed by the parameter q,
that produces the fuzziness. Accordingly, the states encoding the fuzziness are associ-
ated with physical systems (including the frame) in the context of QRFs, while here
they describe the relation between two frames. QRFs can be in relative superposition,
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however, the transformations between them act on the states of the physical systems
directly, without being described by a quantum state of their own.

Furthermore, one of our main result is the agency-dependence of spacetime we dis-
cussed in the previous section. For instance, if we consider a starry sky, classically all
observers can objectively reconstruct it. However, in our framework, observers become
agents in the sense that they reconstruct their own version of the sky based on their
choices of the z-axis and there is no operational procedure they can use to reconstruct
it objectively. In fact, even if they were to exchange their data, they would need to q-
rotate it in their coordinates, inevitably introducing the intrinsic uncertainty predicted
by our SUq(2) model.

The next step in this research program would be to develop a fully relativistic and
relational picture. To do so, we should first consider the case in which more observers
are involved, understanding which states can describe the composition of deformed
rotations. Then the framework should be extended also to the translations and boosts
sectors.

Moreover, the full quantum regime should also be investigated since in order to
derive some novel qualitative properties we only focused on a semi-classical regime, in
which the expectation values and the variances of the q-deformed rotation matrix act on
classical vectors. This will be a crucial step toward a description of a q-deformed version
of the alignment procedure described in section 4.2. Nevertheless, to go further, we need
a more developed characterization of physical objects like spinors/qubits and Stern-
Gerlach apparata, as well as a consistent interpretational framework for such “quantum
mechanics on a quantum spacetime". In particular, we would need a description of
qubits in a world in which rotations are described by SUq(2), and this would require
facing some open questions such as:

• Can we assume that the standard 1-qubit Hilbert space describes the spins that
Alice sends to Bob? Or does consistency require generalizing the notion of spinors
to some non-commutative objects (e.g., see [97])?

• How does the measurement procedure affect the state of the system? For in-
stance, is the relative orientation of Alice’s and Bob’s laboratories changed by
their gaining information about each other while exchanging spins?

Besides their conceptual interest, investigating these possibilities might open a path
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[22, 23] towards much-needed experimental tests, which in turn could guide further
theoretical development of quantum gravity.



Chapter 5

Phenomenology of in-vacuo dispersion

73
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In this chapter we delve into the possibility of a quantum gravity phenomenology.
As already discussed in the introductory chapter of this thesis, the primary focus of
this research area revolves around investigating the fate of Lorentz symmetry at the
Planck-scale looking for potential new effects that might become discernible at energies
accessible to us, significantly below the Planck-scale. Among these effects that have
favored the birth and the development of quantum gravity phenomenology, the possibil-
ity of in-vacuo dispersion in particle propagation has certainly played a prominent role.
This focus is driven by both the theoretical findings in quantum-spacetime research
where the possibility of modified dispersion relations emerges from many approaches
to the quantum gravity problem and the availability of interesting opportunities for
analyzing experimental data mainly coming from the astrophysical sector. Indeed the
large cosmological distances, generally characterizing the propagation of particles in
astrophysical observations, can provide a source of amplification of the possible tiny
Planckian effects, such that they can be within the reach of the present experimental
sensitivity. In this perspective Gamma Ray Bursts represent of course the main source
to test these kind of effects due to their wide energy spectrum of emission and their
quite large redshift distances.

In this chapter we concern with the possibility of testing the fate of relativistic sym-
metries in quantum gravity through time of flight measurements. Specifically, through-
out this chapter, we will discuss both LIV scenarios in which relativistic invariance
is broken [25, 47, 48], giving rise to a preferred reference frame, and DSR scenarios in
which relativistic invariance is merely deformed [49–51], preserving the equivalence of
reference frames (also see section 1.3.1).

We will start our discussion focusing on Minkowski spacetime where effects due to
spacetime curvature are neglected. Then, we will extend our analysis first to the de
Sitter scenario and finally to expanding spacetime of Friedman-Lemaitre-Robertson-
Walker (FLRW) type [107].

5.1 Covariant mechanics in maximally symmetric space-
times

In this section we review the covariant Hamiltonian formalism [108, 109] that allows
us to describe the motion of classical particles in (deformed) maximally symmetric
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spacetimes.
The starting point is to consider the Casimir C of the algebra of (deformed) relativis-

tic symmetries that allows us to introduce the following Hamiltonian H = C−m2, with
m the mass of the particle. It can be taken to describe the particles on-shell relation by
imposing H = 0, and then it can be used as Hamiltonian constraint, in the spirit of a
“covariant formulation” of classical mechanics, providing equations of motion in terms
of an auxiliary affine parameter, that we denote by τ , such that {H, f} = df

dτ
.

In this way we can derive the velocity of particles from the Hamiltonian constraint:

v =
dx

dt
=

{H, x}
{H, t}

∣∣∣∣
H=0

, (5.1)

from which, in general, the (deformed) expression for the worldlines can be obtained
by integration:

x(t) = x(t0) +

∫ t

t0

v dt . (5.2)

In the next sections we discuss time delay analyses starting from flat spacetimes and
then we will consider curverd/expanding spacetimes.

5.2 Time delay analysis in flat spacetime

When we analyze time of flights in flat spacetime we cannot distinguish between the
implications of the broken-symmetry and the deformed-symmetry scenarios. In partic-
ular, in both cases one gets the same leading correction ∆t to the special-relativistic
time of flight which reads

∆t = η
E

Ep

T , (5.3)

where T is the time distance of the source, η is a phenomenological dimensionless
parameter, Ep is the Planck energy and E is the energy of the particle. Notice that
even if the ratio E/Ep is very tiny for the particles we have currently access, T can be
a huge amplifier for this effect when cosmological distances are considered, making ∆t

measurable by our present experimental apparata.

5.2.1 Time delay in DSR-deformed Minkowski spacetime

In this subsection we review how to construct DSR models (in 1+1D), when spacetime
curvature is neglected, in order to study Planck-scale deformations of particle kinemat-
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ics. The starting point of this kind of analysis is the special relativistic Casimir C of
the Poincarè algebra :

C = E2 − p2 , (5.4)

where E, p are respectively the time translation and spatial translation generators. The
Casimir generator is invariant under the action of the Poincarè algebra that can be
realized in terms of Poisson brackets in the following way:

{E, p} = 0,

{N,E} = p,

{N, p} = E ,

(5.5)

where N,E, p are respectively the boost generator, the time translation and the spatial
translation generators.
Our analysis takes off from an investigation of the most general Planck-scale deformation
of the Poincarè algebra. In the following, as usual, we denote by ℓ the deformation
parameter, assumed to be of the order of the Planck-scale, and we will work at leading
order in ℓ that is sufficient for phenomenological purposes.
The most general deformation of the Casimir element at leading order in ℓ is given by:

C = E2 − p2 + ℓ(αE3 + βEp2) , (5.6)

where α, β are free dimensionless parameters. In this analysis we required that defor-
mations are analytic and the vectorial properties of the generators are accounted for,
so that the generalization to higher spatial dimensions does not affect space-rotational
invariance.
The most general deformation of the Poincarè algebra that leaves invariant the Casimir
element (5.6) can be described in terms of the following set of Poisson brackets between
the symmetry generators/charges:

{E, p} = 0,

{N,E} = p− ℓE(α + β − σ)p,

{N, p} = E +
ℓ

2

[
(α + 2σ)E2 + βp2

]
.

(5.7)

Notice that, in addition to the parameters characterizing deformations of the Casimir,
the algebra admits an additional numerical parameter σ.
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In the time delay analysis, that relies on the Hamiltonian formalism introduced in the
previous section, it is fundamental to keep safe from possible relativistic artifacts due
to the relativity of locality [109–113] which is in general present in these deformed-
relativistic scenarios. For this purpose we rely on two observers, one local to the emission
event and the other one local to the detection event. Since we are interested in physical
predictions made by the observer at detector we have to perform a finite translation that
allows us to express the coordinates of this observer (tB, xB) in terms of the coordinates
of the observer at the source (tA, xA), defined by the following prescription

(tB, xB) = e−ξp ▷ e−ζE ▷ (tA, xA), (5.8)

where ▷ stands for the action by Poisson bracket of the corresponding generators1 and
ξ and ζ are respectively the space and time translation parameters.

Two photons, emitted simultaneously according to an observer local to the source,
with energy difference ∆E at the detector, will thus reach the detector with a time
difference [108–110]

∆t = ℓ∆ET (α + β), (5.9)

where T is the time distance between the source and the detector.
The same result is also obtained in a LIV scenario assuming the same deformation for
the mass-shell relation but undeformed algebra of symmetry.

5.3 Time delay analysis in curved/expanding space-
time

In this section we extend the time delay analysis to scenarios in which spacetime cur-
vature is not neglected, in order to obtain results suitable for comparison with the
experimental data coming from the astrophysics sector.
The differences between the broken-symmetry and the deformed-symmetry scenario
become tangible if one takes into account the expansion of spacetime. The interplay
between quantum-gravity effects and curvature of spacetime can indeed produce several
alternative forms of redshift dependence of the effect. In the LIV scenario one has no

1For a generator G with parameter a, the finite action on a coordinate x is eaG ▷ x ≡∑∞
n=0

an

n! {G, x}n, where {G, x}n = {G, {G, x}n−1}, {G, x}0 = x. In this formalism, the composed
action of a spatial translation followed by a time translation is given by e−ξp ▷ e−ζE ▷ x.
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constraints from symmetries and in principle any arbitrary form of redshift dependence
could be allowed (see for instance [114,115]); however, LIV-based data analyses all rely
on a particular form of redshift dependence introduced in Ref. [116] (also see Ref. [117])
which gives the following redshift dependence:

∆t = η
∆E

Ep

∫ z

0

1 + z̄

H(z̄)
dz , (5.10)

where z is the redshift distance of the source, related to the scale factor a(t) by the
relation z(t) = 1/a(t) − 1, H(z) is the Hubble parameter, that for the ΛCDM model
is 2 H(z) = H0

√
ΩΛ + (1 + z)3Ωm.

The main assumptions underlying this result are that redshift of momenta works as in
general relativity and the two photons travel the same comoving distance.
In the DSR deformed-symmetry scenario the possibilities for the interplay between
quantum-gravity effects and curvature of spacetime are instead significantly limited by
the requirement that the final picture has to be compatible with deformed relativistic
invariance. In [108] two examples of DSR-compatible forms of redshift dependence were
already identified and here we present what is the most general form of redshift depen-
dence allowed by the requirement of DSR compatibility. In particular, we find that, in
addition to the two forms of redshift dependence already previously identified [108],
only a third possible form of redshift dependence is allowed and of course, also linear
combinations of these three possible forms of redshift dependence are allowed. Our anal-
ysis will start from considering the case of propagation in the maximally symmetric de
Sitter spacetime, where the possible DSR-relativistic scenarios can be characterized fully
in terms of deformations of the relativistic symmetries, which are described, in 3+1D,
by an algebra of 10 generators (spacetime translations, rotations and boosts) [119,120],
and finally we extend our results to expanding spacetimes of FLRW type.

5.3.1 Most general deformation of the de Sitter algebra of sym-
metries

As announced before, our analysis starts from an investigation of the most general
Planck-scale deformation of the de Sitter algebra. In the following we denote by H

2ΩΛ, H0 and Ωm denote, respectively, the cosmological constant, the Hubble constant and the
matter fraction, for which we take the values given in Ref. [118].
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the curvature parameter of the de Sitter algebra and, as before, we denote by ℓ the
deformation parameter and we will be satisfied working at leading order in ℓ.

Working in 1+1 spacetime dimensions, we start by characterizing the most general
deformation of the mass Casimir asking that the limits for vanishing curvature and
vanishing deformation, namely H → 0 and ℓ → 0 respectively, are well-defined and in
particular that the latter leaves us with the standard de Sitter Casimir which reads:

C = E2 − p2 − 2HNp (5.11)

Moreover, as for the flat case, we require that the vectorial properties of the generators
are accounted for, so that the generalization to higher spatial dimensions does not affect
space-rotational invariance. The most general deformation of the de Sitter Casimir
which satisfies these requirements is:

C = E2 − p2 − 2HNp+ ℓ
(
αE3 + βEp2 + 2γHNEp+ 4µH2N2E

)
. (5.12)

Here α, β, γ, µ are dimensionless parameters. The Casimir (5.12) is general and does
not come from a specific quantum gravity model, but we can interpret the terms pro-
portional to ℓH in the framework of a “quantum group" q-deformation of the Poincaré
algebra, where the deformation is triggered by a combination of the curvature scale and
the “quantum gravity" scale encoded in the parameter q (see e.g. [121,122]).
The most general algebra of symmetry generators/charges that leaves the Casimir (5.12)
invariant can be described by the following set of Poisson brackets:

{E, p} = Hp− ℓHE [(α + γ − σ) p+ 4µHN ] ,

{N,E} = p+HN − ℓE [(α + β − σ) p+HN (α + γ − σ)] ,

{N, p} = E +
ℓ

2

[
(α + 2σ)E2 + βp2 + 2γHNp+ 4µH2N2

]
.

(5.13)

These expressions define our deformation of the standard de Sitter algebra. Notice that
in addition to the parameters characterizing deformations of the Casimir, the algebra
admits the additional numerical parameter σ.
Therefore, at kinematical level, five independent parameters characterize departures
from the standard relativistic symmetries. Apart from the deformation of the mass
Casimir and the algebra of relativistic symmetry generators, another important ingre-
dient of DSR models concerns the conservation law of energy-momenta for processes
involving multiple particles. In order for the conservation law to be invariant under the
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deformed symmetries, it must be accordingly deformed [49,53].
In order to study the possible deformations of the energy-momenta conservation law for
the deformed de Sitter scenario, we consider the total energy and momentum charges
resulting from the composition law in the two-particle case. We keep the description
as general as possible considering all the possible terms that can be added to the stan-
dard (linear) special relativistic addition law of energy-momenta at leading order in the
deformation parameter ℓ and asking that no deformation terms which involve only one
particle charge are present, so that we recover the definition of single particle charge
when the charges of the second particle are zero [69, 79]. Moreover, we also require
the same conditions of analyticity, dimensional consistency, and “vectorial properties"
adopted for the algebra deformation. The most general composition laws complying
with these requirements is given by the following:

Etot = E1 + E2 + ℓ(A1P1P2 + A2HN1P2 + A3P1N2

+ A4E1E2 + A5H
2N1N2)

Ptot = P1 + P2 + ℓ (B1E1P2 +B2E2P1 +B3HN1E2 +B4HE1N2)

Ntot = N1 +N2 + ℓ (C1E1N2 + C2E2N1) .

(5.14)

Where Ai, Bi, Ci are dimensionless parameters.
By requiring that the total charges close the same algebra (5.13) as the single particle
energy and momenta in order to guarantee the relativistic properties of the composition
law we obtain:

Etot = E1 + E2 + ℓ((2σ − β − a− b)P1P2 + (c− γ + σ)H(N1P2 + P1N2)

− αE1E2 + 2(c− 2µ)H2N1N2)

Ptot = P1 + P2 + ℓ ((σ − b)E1P2 + (σ − a)E2P1 + cH(N1E2 + E1N2))

Ntot = N1 +N2 + ℓ (aE1N2 + bE2N1) .

(5.15)

Notice that three additional parameters (a, b, c), that didn’t appear in (5.13), are al-
lowed.

5.3.2 Time delays for deformed de Sitter spacetimes

In this section we present the most general result for the time delay in a deformed de
Sitter spacetime. In the time delay analysis, that relies on the Hamiltonian formalism



5.3. TIME DELAY ANALYSIS IN CURVED/EXPANDING SPACETIME 81

introduced before, we recall that we must keep safe from possible relativistic artifacts
due to the relativity of locality [109–113] and, as already described in section 5.2.1, we
accomplish that by relying on two observers (Alice and Bob), one local to the emission
event (A) and the other one local to the detection event (B) whose coordinates are
related by a finite spatial translation followed by a finite time translation:

(tB, xB) = e−ξp ▷ e−ζE ▷ (tA, xA), (5.16)

where ξ and ζ are respectively the space and time translation parameters. These pa-
rameters are chosen such that Bob’s origin coincides with the event of detection of a soft
photon for which we neglect Planck-scale effects, namely ζ = T, ξ = 1−e−HT

H
, where T is

the comoving (time) distance between the source and the detector. Moreover, in future
studies, it will be appropriate to investigate the possible dependence on the sequence
of spatial and time translations.
We then find that two photons with energy difference ∆E at the detector, emitted
simultaneously by a distant source, reach the detector with a time difference

∆t = ℓ∆E

(
(β − γ + σ + µ)

e2HT − 1

2H
+ (α + γ − σ − 2µ)T + µ

1− e−2HT

2H

)
, (5.17)

We can rewrite this result in terms of the redshift of the source z = eHT − 1, obtaining:

∆t =
ℓ∆E

H

(
(β−γ+σ+µ)

(
z+

z2

2

)
+ (α+γ−σ−2µ) ln(1+z) + µ

(
z + z2/2

1 + 2z + z2

))
.

(5.18)
As announced, we find that the five numerical parameters that characterize the defor-
mation of the kinematics in Eqs. (5.12)-(5.13) combine in such a way to produce only
three different terms characterizing the functional dependence of the time delay on the
redshift.

5.3.3 Time delay in FLRW spacetime

In the previous sections we showed that in-vacuo dispersion in (DSR-)relativistic quan-
tum de Sitter spacetimes can only be characterized by linear combinations of three
independent forms of redshift dependence just assuming the quantum de Sitter invari-
ance. However, for what concerns the phenomenology of in-vacuo dispersion, we cannot
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rely on the constant curvature assumption that applies to de Sitter spacetime but we
need to generalize our results to a FLRW expanding spacetime. However, a DSR rel-
ativistic FLRW quantum geometry has still not been developed. We would need some
generalization of Einstein’s equation applicable to quantum geometries, but that looks
still like a distant goal for quantum spacetime research.

We shall thus rely on a semi-heuristic approach, which makes the reasonable as-
sumption that the relationship between travel times in quantum de Sitter and FLRW
spacetimes should preserve at least some aspects of the structure of the corresponding
relationship between travel times in classical de Sitter and FLRW spacetimes.

Our strategy of analysis can be better appreciated by taking as reference the suc-
cessful semi-heuristic approach of Refs. [114, 116] which led to the identification of the
Jacob-Piran redshift dependence, which is the standard of reference for LIV quantum
spacetime phenomenology. Starting from the results on in-vacuo dispersion in LIV flat
quantum spacetimes, as already stressed in the previous sections, one can in princi-
ple contemplate any arbitrary form of redshift dependence in a LIV FLRW quantum
spacetime, since the LIV case provides no relativistic symmetry constraints. Indeed, in
Ref. [114], some alternative forms of redshift dependence were considered. The Jacob-
Piran redshift dependence was singled out through the assumption [114, 116] that, in
LIV quantum spacetimes, momenta should be affected by redshift as that they do in
classical general-relativistic spacetime. However, it is turning out that this assumption
is valid only in a subgroup of quantum spacetime models since the interplay between
spacetime expansion and quantum properties of spacetime often modifies the effect of
redshift on momenta (see, e.g., [115,123]).

To see how the strategy of analysis that we propose is connected to the Jacob-Piran
approach we observe that in the ordinary general-relativistic case travel times in FLRW
can be equivalently obtained from travel times in de Sitter assuming that momenta
redshift general-relativistically and assuming that the travel time in FLRW is obtained
by “de Sitter slicing", i.e. describing propagation in FLRW, with its time-dependent
expansion rate H(t) = ȧ(t)/a(t), as a sequence of infinitesimal steps of propagation in
de Sitter spacetime with scale factor a(t) = exp(Ht).
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5.3.4 The slicing technique

In this subsection we present the so-called slicing technique according to which we
will describe propagation of signals in a modified (LIV or DSR) FLRW spacetime by
defining a sequence of intermediate observers along the particle’s trajectory, such that
each observer is local to the particle at a given spacetime point. Propagation of signal
between two such nearby observers is described by using the modified de Sitter kinemat-
ics. The full trajectory (and the corresponding total time delay) in the modified FLRW
spacetime is reconstructed by appropriately matching [120] the observations made by
subsequent observers and considering a limiting procedure in which the number of in-
termediate observers is sent to infinity, while decreasing their distance to zero [120].
We consider an observer Alice local to the event of emission (Alice’s frame origin coin-
cides with the emitter), and an observer Bob local to the detector (Bob’s frame origin
coincides with the detector), and we assume that the soft photon has been emitted at
the (comoving) Bob time −T . In order to reconstruct the trajectories of the photons
we divide the time interval between the event of emission and the event of detection
in N time intervals of equal temporal size T/N , such that in each slice spacetime is
described, to good approximation, by a constant expansion rate Hn = H (tn), where tn
is the initial time of the n-th slice, and n = 1, . . . , N . We now consider a set of inter-
mediate observers Bobn such that the soft photon crosses the origin of their reference
frame at the time tn, so that BobN = Bob (and Bob0=Alice). Each observer Bobn, in
the corresponding n-th slice, which goes from tn−1 to tn, will describe the motion of
particles in terms of a constant expansion rate Hn, and will describe the photons to
travel with a speed vBn

n .
To obtain the time-delay at the detector, we are interested in the trajectory that

BobN assigns to the hard photon in the final N -th slice (the soft photon arrives by
assumption in BobN ’s spatial and temporal origin), which is given by

xBN
(
tBN
)
N
= xBN

OA
+

N−1∑
n=1

∫ t
BN
On

t
BN
On−1

vBN
n dtBN +

∫ tBN

t
BN
ON−1

vBN
N dtBN , (5.19)

with vBN
n the velocity that BobN assigns to the photon in the nth slice, and (xBN

On
, tBN

On
)

the coordinates that BobN assigns to the photon when it crosses the (time) origin of
observer Bobn’s frame.

In order to compute these quantities, it is crucial to establish the relations between
the observers coordinates. We describe each Bobn as the observer connected to Alice
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by a set of n spatial translations followed by a set of n time translations, with each
k-th translation characterized by the relative constant expansion rate Hk and finite
translation parameters ζk, ξk, i.e.

(t, x)Bn = e−
∑n

k=1 ξkp ▷ e−
∑n

k=1 ζkEHk ▷ (t, x)A . (5.20)

Before presenting the results for the DSR scenario, our strategy of analysis can be
better appreciated by taking as reference the successful semi-heuristic approach of Refs.
[114,116] which led to the identification of the Jacob-Piran redshift dependence.

5.3.5 de Sitter slicing for the LIV Jacob-Piran scenario

We here focus on showing that applications of the de Sitter slicing to the LIV Jacob-
Piran scenario produce results that are equivalent to those found redshifting the relevant
momenta with the standard general relativistic scale factor.

We work with comoving-time coordinates and we start by considering the folowing
LIV-modified relationship between energy and momentum for a massless particle in
(1+1D) de Sitter spacetime

E2 = e−2Htp2 − λe−2HtEp2 , (5.21)

where λ is the LIV scale, and this formula reproduces the Jacob-Piran redshift depen-
dence [116] in the de Sitter limit for which the FLRW scale factor is a (t) → eHt, with
constant H.

The speed of a massless particle can be easily obtained from (5.21) to be (working
again at first order in λ)

v (t) =
∂E

∂p
≃ e−Ht

(
1− λe−Htp

)
. (5.22)

We want to determine the difference in arrival times between a hard photon (a high-
energy photon, tangibly affected by LIV) and a soft photon (a low energy photon, for
which the LIV effects can be neglected), emitted simultaneously by a distant source,
traveling through a LIV-modified FLRW spacetime corresponding to (5.21). As de-
scribed in the previous subsection, we consider an observer Alice local to the event of
emission (Alice’s frame origin coincides with the emitter), and an observer Bob local at
the detector (Bob’s frame origin coincides with the detector), and we assume that the
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soft photon has been emitted at the (comoving) Bob time −T . Since in the LIV case
the relativistic transformations are not deformed, one easily finds the following relation
between Bobn’s and Alice’s coordinates

tBn
(
tA, xA

)
= tA −

n∑
k=1

ζk,

xBn
(
tA, xA

)
= e

∑n
k=1 Hkζk

(
xA −

n∑
k=1

ξk

)
.

(5.23)

The requirement for each observer Bobn to be along the soft photon trajectories at
the time tn, is then ensured by imposing that the translation parameters satisfy the
conditions

ζn = ζ = T/N, ξn = e−
∑n

k=1 Hkζn
eHnζn − 1

Hn

, (5.24)

and Alice describes each n-th slice to be of temporal size ζ and spatial size ξn.
The computation of vBN

n requires the use of these formulas and a suitable matching
of the scale factors an (t) = exp (Hnt) at the junction of each slice, after which one
obtains

vBN
n =

1

aBN
n (tBN )

(
1− λ

pBN

aBN
n (tBN )

)
, (5.25)

where
aBN
n

(
tBN
)
= e−

∑N
k=n+1 Hkζe(N−n)HnζeHntBN . (5.26)

The velocity (5.25) can be easily integrated in each slice in (5.19), where we take

tBN
On

= tBN
(
tBn = 0

)
= − (N − n) ζ , (5.27)

and considering that, combining (5.23) and (5.24), one has that

xBN
OA

= xBN
(
xA = 0, tA = 0

)
= −

N∑
k=1

e
∑N

s=k Hsζ
1− e−Hkζ

Hk

, (5.28)

the trajectory in the N -th slice is given by

xBN
(
tBN
)
=

1− e−HN tBN

HN

− λpBN

(
N∑

n=1

e2
∑N

k=n Hkζ
1− e−2Hnζ

2Hn

+
1− e−2HN tBN

2HN

)
.

(5.29)



86 CHAPTER 5. PHENOMENOLOGY OF IN-VACUO DISPERSION

From the trajectory we obtain the hard-photon time delay (at first order in λ) by solving
for tBN

(
xBN = 0

)
,

∆tBN = λpBN

N∑
n=1

e2
∑N

k=n Hkζ
1− e−2Hnζ

2Hn

. (5.30)

We take now the limit N → ∞, in which the slices are infinitesimally small. Using the
formulas (ζ = T/N)

nf∑
k=ni+1

ζ →
∫ tnf

tni

dt , (5.31)

and, noticing that, since H(t)= ȧ(t)/a(t), a (tf ) /a (ti) = exp
(∫ tf

ti
dt H (t)

)
, and

e
∑n

s=k+1 Hsζ → a (tn)

a (tk)
, (5.32)

we obtain

∆t→ λph

∫ 0

−T

dt

a2 (t)
, (5.33)

where we denoted by ph the momentum of the hard particle observed at the detector,
we considered that for N → ∞ one has that e2Hkζ−1

2Hk
→ ζ, that t0 = −T , tN = 0,

and that a (tN) = a (0) = 1. Finally, we can rewrite the time delay in terms of the
redshift of the source z ≡ z(−T ), noticing that, for z̄ ≡ z(t), a (t) = 1/(1 + z̄) and
dt = −dz̄/(H(z̄)(1 + z̄)), so that

∆t = λph

∫ z

0

dz̄ (1 + z̄)

H (z̄)
, (5.34)

which coincides with the formula obtained by Jacob and Piran in [116].

5.3.6 DSR-FLRW time delays

In our opinion, in relativistic quantum spacetimes, the status of “de Sitter slicing" is
much safer than that of the effect of redshift of momenta, and we shall therefore rely
on de Sitter slicing.

Following the same strategy presented in the previous subsection we can find that
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from our Eq.(5.18) the time delay in the DSR-deformed FLRW case reads:

∆t =
∆E

Ep

∫ z

0

dz (1+z)

H (z)

[
η1 + η2

(
1−
(
1−H (z)

1+z̄

∫ z

0

dz′

H (z′)

)2
)

+ η3

(
1−
(
1−H (z)

1+z̄

∫ z

0

dz′

H (z′)

)4
)]

.

(5.35)

It describes the most general form of redshift dependence for time delays in FLRW
compatible with the DSR requirements. As we anticipated, the time delay depends on
only three numerical parameters η1, η2, and η3 that are to be determined by experiments.
Their relation with the parameters of the deformed algebra introduced in Sec. 5.3.1 is
given by

η1 = ℓEp(α + β) , η2 = ℓEp(−α− γ + σ + 2µ) , η3 = −ℓEpµ .

Of course, for the case in which the H(z) is actually redshift independent the FLRW
picture turns into a de Sitter picture and our result (5.35) reproduces the one obtained
in (5.18).

In Figure 5.1 we plot the redshift dependence of the three terms in (5.35).
Any linear combination of the three redshift-dependent terms in (5.35) is a good

candidate for a DSR-FLRW time-delay formula but we find that the parametrization
in terms of η1, η2, and η3 turns out to be convenient for the comparison of some
specific phenomenological scenarios that we are going to discuss in the next section. In
particular, when η2 = η3 = 0, we are left with the term parametrized by η1 which gives
the same time delay that was obtained in the LIV scenario by Jacob and Piran in [116].
On the other hand, scenarios with vanishing η1 or η2 characterize, respectively, two
noteworthy cases that we shall discuss in the following: when η1 vanishes one obtains
curvature-induced scenarios (see Subsec. 5.4.1), while vanishing η2 relates to theoretical
models where energies add up trivially (see Subsec. 5.4.2).

5.4 Some noteworthy special cases of DSR-FLRW time
delay

We have shown that only linear combinations of 3 independent forms of redshift de-
pendence are compatible with the DSR requirements, strongly limiting the possible
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η2=η3=0

η1=η3=0

η1=η2=0
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Figure 5.1: The redshift dependence of the three terms contributing to the time delay
in Eq. (5.35). Each curve corresponds to the time delay (5.35) when only one of the
three parameters η1, η2 and η3 is different from zero. The continuous black line assumes
that η1 = 1 (while η2 = η3 = 0) and ∆E = 10 GeV. The dotted purple and dashed blue
lines still assume ∆E = 10 GeV, and they are obtained by fixing, respectively, η2 and
η3 so that the time delay matches the one of the black continuous curve at z = 1.5.

scenarios for our time-delay phenomenology with respect to the LIV case where in prin-
ciple any form of redshift dependence is allowed since relativistic invariance imposes no
constraints when it is broken. Still, even just a 3-parameter formula is a rather wide
“hunting field" for the phenomenology of time delays in astrophysics, where data are
scarce and often of low quality. In this section we attempt to motivate from a theoret-
ical perspective some specific choices of the parameters η1, η2, and η3 in (5.35) which
might deserve being the “first targets" for the phenomenology.

5.4.1 Curvature-induced scenarios

A first scenario that we want to discuss is the curvature induced one, namely a scenario
where the quantum gravity effects are triggered by spacetime curvature. Specifically,
this is a scenario where the interplay between curvature effects and Planck-scale effects
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produces results that are quite distant from what one would guess based on analysing
Planck-scale effects in the flat-spacetime approximation. Indeed, in this scenario in-
vacuo dispersion occurs only in combination with spacetime curvature/expansion so
that when curvature is negligible there is no expected time delay. This scenario so far
received little attention in the literature, but it could have interesting phenomenological
implications as already highlighted in [124], that is the first study of these “curvature-
induced" scenarios and it relies on a toy model where relativistic symmetries are broken
(LIV). The preliminary results reported in [124], confronting the slow onset of the quan-
tum gravity effects in the FLRW time-delays, that are typically expected in curvature-
induced scenarios, with data relative to gamma-ray-burst observations, showed how
these features might have interesting implications for experimental studies.

Theoretically, these scenarios find motivation in some studies based on a Hopf-
algebra description of the symmetries of quantum spacetime [121, 125], as well as in
some considerations arising from loop-quantum-gravity research [126]. Specifically, the
main idea of Ref. [126] is that some non-trivial physical effects can be switched on by a
dimensionless combination of the Planck length and the Hubble length associated to the
cosmological constant. For instance, in a Lorentzian world with a horizon at distance
1
H

a sphere of radius r cannot be seen under an angle smaller than rH. Suppose that no
object with size smaller than lmin = ℓ exists in the universe, then a minimum angular
resolution shows up (see fig. 5.2):

ϕmin = ℓH (5.36)

This result is clearly a manifestation of the interplay between Planck-scale and space-
time curvature effects.

Here we want to show that there is a choice of parameters that produces a curvature-
induced time-delay also in the DSR-FLRW framework we constructed in the previous
sections. As explained in [124], the requirement for having only curvature-induced
terms in the time-delay formula amounts to asking that the coefficient of the first-
order term in an expansion around z = 0 of the expression (5.35) vanishes. Indeed,
expanding the redshift formula z(t) = 1/a(t)−1 for small distances (i.e. small (negative)
times t = −T ), one gets z(−T ) ≃ H0T , where the Hubble constant is defined as
H0 =

1
a
da
dt
|t=0. It follows that terms linear in z in the expansion of ∆t will be proportional

to ∆E
Ep

z
H0

≃ ∆E
Ep
T , and will survive even in the absence of spacetime curvature. Thus,
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Figure 5.2: A sphere of radius ℓ at distance 1/H from an observer cannot be resolved
under an angle smaller than ϕmin = ℓH.

only terms involving powers of z higher than 1 contribute to curvature-induced time-
delay effects.

The leading order expansion in terms of the redshift of Eq. (5.35) gives

∆t ≃ ∆E

EpH0

(
η1z +O(z2)

)
. (5.37)

Setting to zero the first order term corresponds to imposing the constraint η1 = 0 (i.e.
α = −β in terms of the kinematical parameters). Notice also that the same condition
is obtained in the DSR-de Sitter case of Subsec. 5.3.2 if one asks that the time delay of
Eqs. (5.17) and (5.18) vanishes in the limit of vanishing spacetime curvature H. Indeed,
considering the limit H → 0 in (5.17) (or in (5.18), noticing that z ≃ HT + O(H2T 2),
we obtain

∆t = ℓ
∆E

H

(
(α + β)z +O(z2)

)
= ℓ∆E

(
(α + β)T +O(HT 2)

)
, (5.38)

which gives again the condition α = −β, i.e. η1 = 0.
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By imposing the condition η1 = 0 in (5.35) the time delay expression reduces to

∆t =
∆E

Ep

∫ z

0

dz (1 + z)

H (z)

[
η2

(
1−
(
1−H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)2
)

+ η3

(
1−

(
1− H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)4
)]

.

(5.39)

This formula, in which only two independent parameters appear, describes the most
general curvature-induced in-vacuo dispersion scenario arising from the deformation of
symmetries under the assumptions of Subsecs. 5.3.1 and 5.3.3.

5.4.2 Scenarios with undeformed addition of energy

In this subsection we discuss possible choices of the parameters analyzing the possible
forms of the composition law of momenta discussed in section 5.3.1. While all possibil-
ities contemplated by our Eq. (5.15) deserve being investigated, we think that priority
should be given to scenarios in which the addition law of particle energies remains unde-
formed. This is suggested by experience [53,79] with the implications of these modified
addition laws in which one finds that preserving the linearity of addition of energies
is advantageous from the point of view of the interpretation of the results. More-
over this requirement finds further motivation in scenarios where the DSR framework
can be associated with a quantum group deformation of de Sitter symmetries, where
the summation law of the charges/generators corresponds to a “coproduct rule" of the
Hopf-algebra generators. In that case an undeformed summation law of energies would
correspond to a “primitive coproduct" for energy/time-translation generators, that is
necessary for having a “time-like" q-deformation of de Sitter symmetries [127–130].

The requirement for the composition of energy to be undeformed imposes the fol-
lowing constraints between the kinematical parameters:

α = 0 γ − σ = 2µ , (5.40)

amounting to η2 = 0 in (5.35). The expression for time delay in the deformed FLRW
scenario then becomes

∆t =
∆E

Ep

∫ z

0

dz (1 + z)

H (z)

[
η1 + η3

(
1−

(
1− H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)4
)]

, (5.41)

in which, again, only two independent parameters appear.
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5.4.3 A one-parameter scenario: curvature-induced and unde-
formed addition of energy

In this subsection we obtain a one-parameter scenario combining the requirements of
Subsecs. 5.4.1 and 5.4.2. Specifically we obtain a scenario that has only one free numeri-
cal parameter to be determined by experiments, η3, and is characterized by undeformed
composition law of energies and a curvature-induced time delay effect.

The resulting formula for the time delay is

∆t = η3
∆E

Ep

∫ z

0

dz (1 + z)

H (z)

[
1−

(
1− H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)4
]
. (5.42)

In Figure 5.3 we compare the redshift dependence described by this formula to the one
of the Jacob-Piran case (5.10).
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Figure 5.3: The continuous line corresponds to the one-parameter scenario described
by (5.42), with ∆E = 10 GeV and η3 = 1. The dashed line represents the expected time
delay for the Jacob-Piran case (5.10), corresponding to setting η2 = η3 = 0 in (5.35);
the remaining free parameter in (5.35), η1, is fixed by asking that the two lines cross at
z = 1.5. Also for the dashed line we use ∆E = 10 GeV.
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5.4.4 Alternative picture with the time delay changing sign

It is rather noteworthy that in our one-parameter scenario which is curvature induced
and is compatible with undeformed addition of energy the time delay changes sign at
high redshift. So far all the scenarios motivated in the literature gave rise to monotonic
dependence of the time delay on redshift, and it is interesting that our one-parameter
scenario, with its appealing theoretical qualities, is not monotonic. This led us also to
investigate how frequently in our 3-dimensional parameter space such changes of the
sign of the time delay occur and what sort of functional dependence on redshift are
then found in such cases. We found that cases in which the time delay changes sign are
not at all exceptional, and a variety of forms of dependence on redshift can be found.

As an illustrative example we focused on the case of effects which are curvature
induced (η1 = 0) and with η2 = 4, η3 = −3. With this choice, Eq. (5.35) becomes

∆t =
∆E

Ep

∫ z

0

dz (1 + z)

H (z)

[
4

(
1−
(
1−H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)2
)

− 3

(
1−
(
1−H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)4
)]

.

(5.43)

As shown in Figure 5.4, in this scenario the redshift dependence starts off at small
redshifts with opposite sign with respect to the Jacob-Piran case, but then for redshift
greater than 1 (up to redshift of about 4.5) approximates reasonably well (oscillating
around it) the Jacob-Piran case. It would therefore be a valuable aspect of maturity of
this phenomenology when the quality of data at high redshift will prove to be sufficient
for discriminating between this scenario and the Jacob-Piran case.
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Figure 5.4: The continuous line corresponds to the “curvature-induced" scenario de-
scribed by (5.39) with η2 = 4 and η3 = −3, see Eq. (5.43). The dashed line repre-
sents the expected time delay for the Jacob-Piran case (5.10), corresponding to setting
η2 = η3 = 0 in (5.35); the remaining free parameter in (5.35), η1, is fixed by asking that
the two lines cross at z = 1.7 (which allows for a particularly interesting comparison).
As for Figure 5.3, we set ∆E = 10 GeV for both lines.

5.4.5 Another one parameter scenario: curvature-induced and
monotonicity

In the previous subsections we described some noteworthy curvature-induced scenarios
where the redshift dependence of the time delay is not monotonic. We do not see any
robust argument against the lack of monotonicity, the lack of monotonicity produces
no “pathology". Still, one might simply wonder whether monotonicity is at all possible
in the curvature-induced scenario. For this scope we must check if it is possible for the
derivative of the time delay with respect to the redshift parameter z to never change
sign. We find that this condition is satisfied only when η2 = −2η3 (see appendix B.1).
Therefore, the two conditions of monotonicity and curvature-induced effects lead to
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another one-parameter model. With this constraint, Eq. (5.35) reads

∆t = η3
∆E

Ep

∫ z

0

dz (1 + z)

H (z)

[
− 2

(
1−
(
1−H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)2
)

+

(
1−
(
1−H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)4
)]

.

(5.44)

We show the behaviour of this time delay in Figure 5.5. Interestingly, in this scenario
there is a range of redshifts, between ∼ 3 and ∼ 4.5, where the time delay is approx-
imately constant (in particular it has a stationary point at z ∼ 3.8). This range does
not depend on the value of the model parameter.
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Figure 5.5: The continuous line corresponds to the “curvature-induced" monotonic sce-
nario described by (5.44) with η3 = −1 . The dashed line represents the expected time
delay for the Jacob-Piran case (5.10), corresponding to setting η2 = η3 = 0 in (5.35);
the remaining free parameter in (5.35), η1, is fixed by asking that the two lines cross at
z = 1.5. As for Figure 5.3, we set ∆E = 10 GeV for both lines.
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5.4.6 Monotonicity for η1 ̸= 0

In the previous subsection we have found an interesting (at least unique) scenario by
requesting monotonicity in the curvature-induced case (η1 = 0), thus we find appropri-
ate to also explore monotonicity for the most general case (η1 ̸= 0). When η1 ̸= 0 the
requirement of monotonicity of the time delay can be expressed by identifying a region
of the parameter space {η2/η1, η3/η1} where monotonicity holds. We illustrate this in
Figure 5.6 by fixing η1 = 1 and considering the range η2, η3 ∈ [−20, 20]. The blue area
identifies the values of η2, η3 such that d∆t

dz
≥ 0 for every value of the redshift.
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η
3

Figure 5.6: The blue region identifies the range of parameters η2, η3 such that the time
delay of Eq. (5.35) depends monotonically on redshift when η1 = 1.
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We conclude this subsection showing just an example of a monotonic time delay
behaviour (when η1 = 1) that does not coincide with the Jacob and Piran result. A
possible choice of parameters is the following:

η1 = 1 η2 = 2 η3 = −2 (5.45)

With this choice of parameters we obtain the plot in Figure 5.7.
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Figure 5.7: The continuous line corresponds to a monotonic scenario described by
η1 = 1, η2 = 2, η3 = −2 . The dashed line represents the expected time delay for the
Jacob-Piran case (5.10), corresponding to setting η2 = η3 = 0 in (5.35); the remaining
free parameter in (5.35), η1, is fixed by asking that the two lines cross at z = 1.5. As
for Figure 5.3, we set ∆E = 10 GeV for both lines.
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5.5 Concluding remarks

In this chapter we have presented the most general formula that describes the leading or-
der time delays (assuming linear dependence on the particle energy) for ultra-relativistic
particles propagating in an FLRW expanding spacetime with deformed (DSR) relativis-
tic symmetries. In particular, we found that the requirement of relativistic consistency
of the DSR scenario allows for only three possible independent forms of redshift de-
pendence. This result is completely different from the LIV scenario, where relativistic
symmetries are broken and the lack of relativistic constraints allows in principle any
possible form of redshift dependence in the time-delay formula.
In this chapter we have thus made important steps forward from a theoretical per-
spective, but considering the quite poor quality of presently obtainable data, even
the exploration of the small three-parameter space we obtained is a big challenge for
phenomenological studies. For this reason we also present some choices of the param-
eters corresponding to scenarios that according to us might deserve priority from the
quantum-gravity perspective. Nevertheless, we expect that in the (near) future an in-
creasing quantity of astrophysical data will be available allowing us to test this three
parameter space of parameters.

In the next chapter we will explore the possibility of testing in-vacuo dispersion
through gamma ray bursts data. In particular, we present a novel analysis that provides
intriguing preliminary results that encourage further investigation of our novel scenarios
in which the possibility of a non-monotonic dependence of time delay with redshift
emerges.
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In this chapter we concern with the possibility of testing in-vacuo dispersion through
gamma ray bursts (GRBs) data. Gamma ray bursts are indeed the main sources to
test this effect due to their wide energy spectrum of emission (from keV to hundreds of
GeV) and their large redshift distances (up to z ∼ 8) (see [22] and references therein).

In the last decades various works exposed rather strong statistical evidence about
the possibility of having in-vacuo dispersion analyzing data coming from GRBs [22,131–
135]. These results thus motivate and encourage further investigation in this research
direction.

The core of this chapter will be a novel analysis on in vacuo dispersion-like spectral
lags in gamma ray bursts that also includes data coming from the recently observed
GRB221009A. It was the brightest gamma ray burst ever detected and although being
over 2 billion light-years away, it was powerful enough to affect Earth’s atmosphere,
having the strongest effect ever recorded by a gamma-ray burst on our planet [136].
In this analysis we will follow a quite novel strategy inspired by the one in [137]. Pre-
cisely, we will focus on the delay of detection between all the pairs of photons that are
selected according to some selection criteria, described in detail below, coming from the
GRBs reported in table 6.4. We will thus look for a linear correlation between time
of observation and energy of GRB particles testing the in-vacuo dispersion hypothesis.
Specifically, we will rely on the much tested formula for the time delay proposed by
Jacob and Piran that we have extensively illustrated in the previous chapter.

Nevertheless, we are well conscious that the correlation between time of arrival and
energy we are looking for, may be not the consequence of in-vacuo dispersion but rather
the result of some other physical mechanisms related to, so far unknown astrophysical
properties of the sources. It will be indeed not surprising that correlations between
energy and time of arrival of photons are not connected to quantum gravity effects, but
they are consequence of astrophysical spectral lags connected to the pulse evolution.
This hypothesis is indeed the most probable and conservative one and only when more
data will be available and a better understanding of GRBs mechanisms is achieved we
can truly trust on these results.

Before focusing on our novel analysis let us briefly review the main properties of
GRBs and summarize the main aspects of some previous analyses on in-vacuo dispersion
conducted to date.
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6.1 Gamma Ray Bursts

Gamma ray bursts are intense and short pulses of gamma rays observed in distant
galaxies, that can last from fractions of second to several hundred seconds [138]. Then,
they are followed by an afterglow, namely a lower-energy, long-lasting emission [22,139,
140]. Afterglow radiation in GRBs that extends from the radio band to GeV energies,
is produced as a result of the interaction between the relativistic jet and the ambient
medium [141].
The first GRB was detected in 1967 by the Vela satellites and many others have been
observed so far. Their origin is not very clear, but the intense radiation of most observed
GRBs is thought to be released during a supernova or superluminous supernova as a
high-mass star implodes to form a neutron star or a black hole, whereas a subclass of
GRBs appears to originate from the merger of binary neutron stars.
Various observations suggested the existence of two classes of GRBs, short and long,
based on the duration of the prompt phase, with a boundary around 2 s. Short GRBs
account for just about 30% of the observed gamma-ray bursts while the majority of
the observed events (∼ 70%) have a duration of greater than two seconds and are thus
classified as long gamma-ray bursts. Because these events constitute the majority of
the population, they have been observed in greater detail than their short counterparts.

6.2 Preliminaries for the analysis

In this section we introduce some preliminary elements needed to test the in-vacuo
dispersion hypothesis through astrophysical data coming from gamma ray bursts. In
particular, in this chapter, we will focus on the class of scenarios which predict a
linear dependence of corrections to the special relativistic time of flight ∆t on the
energy E of the particle that can be in general described in terms of the following
formula [28,132,133,142,143]:

∆t = ηX
E

Ep

D(z)± δX
E

Ep

D(z) , (6.1)

where D(z) carries information about the redshift distance of the source and the values
of the parameters ηX and δX characterize the specific model we want to investigate.
In principle different kind of particles can be affected by quantum gravity effects in a
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different way and we account for this by allowing for both ηX and δX to take differ-
ent values for different particles and the label X specifies the particle of our interest.
Notice that in (6.1) the notation ±δX reflects the fact that it parametrizes the size of
quantum-uncertainty (fuzziness) effects. On the contrary, the parameter ηX character-
izes systematic effects. For instance, in our conventions for positive ηX and δX = 0 a
high-energy particle is systematically detected after a low-energy one if the two particles
are emitted simultaneously.
In the following we will focus on a particular choice of D(z) characterizing the Jacob
and Piran formula:

D(z) =

∫ z

0

1 + z̄

H0

√
ΩΛ + (1 + z̄)3Ωm

dz , (6.2)

but we will gain interesting insights on alternative choices of D(z) connected to
the analysis presented in the previous chapter 5 that motivate and encourage further
explorations.

The main limitation for this kind of analyses comes from the fact that an intrinsic
time delay due to quite unknown emission mechanisms of the source can contribute to
the observed time delay. Therefore, in order to solve this problem, a better understand-
ing of GRBs mechanisms is required and in this direction recent studies of emission and
acceleration models in order to constrain intrinsic delays in astrophysical sources have
been carried out, but a lot of progress is still needed. However, to alleviate this issue,
some strategies have been developed during these years. In particular, one of these is
based on the introduction of a "distance-rescaled energy" E∗ [131,144] defined as:

E∗ = E
D(z)

D(1)
(6.3)

that allows us to rewrite (6.1) as:

∆t = ηXD(1)
E∗

Ep

± δXD(1)
E∗

Ep

. (6.4)

This reformulation of (6.1) allows us to describe the relevant quantum-spacetime effects,
which in general depend both on redshift and energy, as effects that depend exclusively
on energy. In general, as stressed before, we have to take into account the time offset
toff at the source that would imply that ∆t is not exactly proportional to E∗. Taking
into account the redshift effects on toff we obtain the following expression:

∆t

1 + z
= toff +

ηX
Ep

D(1)
E∗

1 + z
± δX
Ep

D(1)
E∗

1 + z
. (6.5)
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Notice that with this parametrization we can look for a relationship between ∆t
1+z

and
E∗

1+z
such that toff is just a constant contribution.

In the following we will neglect a possible contribution due to δX and we focus only on
the parameter ηX which characterizes possible systematic effects.

6.3 Some previous analyses with GRBs photons and
neutrino candidates

In the previous section, we emphasized the current challenge in comprehending the
intrinsic temporal dependencies of the GRBs spectrum, making it difficult to separate
them from possible effects induced by quantum gravity. Despite this obstacle, the
past 15 years have witnessed significant interest in exploring the possibility of quantum
gravity induced in-vacuo dispersion and numerous analyses have delved into possible
correlations between time of arrival of cosmological particles and their energies. Indeed,
the fact that any given time of arrival difference among two particles can in principle
always be attributed to emission mechanisms can be compensated by suitable techniques
of statistical analysis.

When focusing on analyses involving photons, a common strategy implemented
during these year to conduct these investigations is based on the time difference of
arrival between the highest-energy photons observed in gamma-ray bursts and the first
observed low-energy peak of the GRB [131,132,144]. The main assumption underlying
these analyses is that the most energetic photons coincide with the first peak. Moreover,
these analyses do not typically rely on all the photons coming from a GRB, but some
selection criteria are adopted. For this purpose, in general, many reasonable criteria
can be introduced and these can vary from an analysis to another.

In [131,144], for instance, Ma and collaborators only considered photons with energy
greater than 10 GeV observed within 90 seconds of the first peak.

In [132] instead slightly different selection criteria are introduced. Amelino-Camelia
and collaborators specify the time window by mainly exploiting the fact that, as already
observed in [131], an high percentage of the photons selected by the criteria of Ma and
collaborators are quite consistent with the same value of the time offset at the source.
In particular, it is thus required that selected photons to have emission times consistent
with an offset of up to 20 seconds compared to the time of emission of the first GRB
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peak and also possible effects due to in-vacuo dispersion are taken into account giving
the following requirement:

|∆t| ≤ 10−16D(z) + 20s(1 + z) . (6.6)

In addition to this temporal criteria an energy cut of 40 GeV at the source is introduced,
namely E ≥ 40Gev/(1 + z).

For more than a decade the in-vacuo dispersion analyses through data coming from
GRBs were conducted limiting considerations only to photons. However, recently,
Amelino-Camelia and collaborators have extended in-vacuo dispersion analyses also
to neutrinos [132–134].
The IceCube neutrino telescope, to date, has not identified any evidence of gamma-ray
burst neutrinos assuming equal travel times for neutrinos and photons from source to
telescope. However, accounting for in-vacuo dispersion effects on both photons and
neutrinos could yield intriguing outcomes in the research of GRB-neutrinos as firstly
outlined in [134]. Moreover, the very high energy of observed neutrinos (typically be-
tween TeV and PeV) strongly diminishes the impact of the intrinsic time delay on these
analyses. In fact, we expect delays of the order of days if we assume the quantum grav-
ity scale to be around the Planck-scale. However, even if the intrinsic time delay does
not represent a significant obstacle for these analyses, other non-trivial complications
are still present. Specifically, it is not straightforward to get associations between GRBs
and neutrinos. Consequently, it is very important the role played by the criteria used
for selecting GRB-neutrino candidates that is not at all an easy task. Such criteria for
selecting GRB-neutrino candidates shall involve a temporal window and some criteria
of angular selection to establish whether or not it is reasonable that the direction of the
GRB and the one of the neutrino are compatible.
In [132,133] the following selection criteria are adopted:

• A temporal window of 3 days is contemplated, and only IceCube events with
energy between 60 TeV and 500 TeV are considered;

• the angular distance between the direction of the neutrino and the direction of
the GRB is within a nσ region, with σ =

√
σ2
ν + σ2

GRB, with n = 2 in [132] and
n = 3 in [133] (where σν is the directional uncertainty of the neutrino and σGRB

is the one of the GRB).
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Moreover, it is important to stress that even if the main prediction related to in-vacuo
dispersion is a correlation between time of arrival of particles and their energies, in
these analyses an estimate of this correlation alone is not truly significant. In fact, in
order to estimate the truly significance of the outcomes of these analyses, together with
the computation of the correlations between energy and time of arrival of particles it
is also necessary to characterize quantitatively how rare it would be for such features
to arise accidentally, as a result of unknown aspects of the mechanisms that produce
photons at source or as a result of background neutrinos accidentally fitting the profile
of a GRB neutrino affected by in-vacuo dispersion [132,133].

From many analyses conducted so far, mainly based on these strategies we have just
presented, preliminary evidence of quantum gravity-induced effects on the propagation
of both photons and neutrinos has emerged and the results obtained to date of course
motivate and encourage further investigation. However, only when additional data will
be available, we may truly ascertain the reliability of these observed quantum gravity
effects.

In the following section we present a novel analysis in which we focus only on time
of flights of photons, relying on a quite novel strategy inspired by the one in [137].

6.4 In vacuo dispersion-like spectral lags in gamma
ray bursts

In this section, inspired by the analysis in [137], we will investigate the possibility
of having in vacuo dispersion-like spectral lags. Our strategy, differently from those
discussed in the previous section, does not involve the time delay between the most
energetic photons and the first low-energy peak. Instead, for each GRB considered, we
will focus on the time delay between all the pairs of photons that are selected according
to some selection criteria described in detail below.

The sample of GRBs on which our analysis relies is the one considered in [137], but
also includes the recently observed GRB221009A. For completeness we report in table
6.4 the full list of GRBs that we consider together with their redshift distance z.

Some novel aspects of this analysis are motivated by various results we obtained in
chapter 5. In particular, in the previous chapter, we have shown that in many scenarios



106CHAPTER 6. TESTING IN-VACUO DISPERSION THROUGH GAMMA RAY BURSTS

GRBs
GRB z

GRB080916C 4.35
GRB090510 0.90
GRB090902B 1.82
GRB090926A 2.11
GRB100414A 1.37
GRB130427A 0.34
GRB160509A 1.17
GRB221009A 0.15

Table 6.1: List of all the GRBs considered in this analysis togheter with their redshift
distance z.

the sign of time delay can depend on the redshift distance of the source when it is not
a monotonic function of z. Nevertheless, in this analysis, we will rely on the much
tested Jacob and Piran formula for the time delay expression, but the results we obtain
encourage further analyses involving alternative expressions for the function D(z) as
we will show in the following.

Therefore, inspired by this possibility of having a possible dependence of the sign
of quantum gravity effects on the redshift distance of the source z, we thus organize
our sample of GRBs into three groups according to their redshift distance. Specifically,
we consider a first class of GRBs including the ones with redshift quite smaller than
one. Then, we consider a second class of GRBs including that with redshift z ∼ 1 and
finally we consider the "distant" GRBs which redshift distance is greater than one. In
particular, in the following sections, we will conduct three distinct analyses, one for
each of these three classes of GRBs adopting for the photons the following selection
criteria regarding their energies and their angular compatibility with the source:

• we consider only photons with energy at emission greater than 3 GeV:

E(1 + z) ≥ 3Gev , (6.7)

• the angular direction of the photon must be compatible with the direction of the
GRB within 3◦.
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The main idea of this analysis is to consider a ∆tpair, which gives for each pair of photons
(belonging to the same GRB) in our sample their difference of time of observation. Thus,
for each pair of photons, we can estimate the value of ηγ:

ηpairγ =
Ep∆tpair

D(1)∆E∗
pair

, (6.8)

where ∆E∗
pair is the difference in values of E∗ for the two photons considered.

Of course, many of the pairs considered in this analysis will be bogus in the sense that
the two photons are not emitted nearly simultaneously and will be noise for the analysis.
However, we also expect that various pairs of photons in our sample were emitted nearly
simultaneously, and for those pairs the ∆tpair could really estimate ηpair [137].

We consider bins of width equals to eight for the values of ηpairγ and each pair of
photons typically contributes to more than one of our bins, considering the fact that the
energies of the photons are not known very precisely and we assume that the energy
uncertainty is 10%. The contribution of a given pair to each bin is thus computed
generating a gaussian distribution with mean value ηpairγ and standard deviation σpair

γ

obtained via error propagation. Then, we compute the area of this distribution falling
within each bin, in order to evaluate the value to assign to a given bin. This enable
us to realize histograms for ηpairγ that we restrict to the range ηpairγ ∈ [−80, 80] and we
normalize it in such a way that the sum of the frequencies of the values of ηpairγ within
this range is equal to one.

Furthermore, following the same strategy of analysis as in [137] we estimate how
frequently ηγpair should occur within each bin in absence of correlation between ∆tpair

and ∆E∗ by producing 105 sets of simulated data, each obtained by reshuffling randomly
the times of observation of the photons. In this way any eventual correlation between
energy and time of arrival is of course destroyed and we can estimate the probability of
having values of ηγpair falling within each bin.

We start our analysis by considering the class of GRBs with redshift smaller than
one that is the subject of the next subsection.

6.4.1 Analysis with "close" GRBs

The first class of GRBs of our interest (GRBs with redshift z smaller than one) includes
GRB130427A with redshift z = 0.34 and GRB221009A with z = 0.15. As anticipated
previously, for each GRB in this group we consider all the possible pairs of photons,



108CHAPTER 6. TESTING IN-VACUO DISPERSION THROUGH GAMMA RAY BURSTS

selected according to the selection criteria presented in section 6.4, from which we esti-
mate the values for ηpair. Then, we combine the results obtained from the two GRBs of
our interest into a unique normalized histogram (see the histogram in blue in fig. 6.1).

From this plot, by comparing the histogram in blue which corresponds to the one
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Figure 6.1: Normalized distribution for ηpairγ . The histogram in blue is the one obtained
analyzing photons coming from GRB130427A and GRB221009A. In orange we have the
histogram obtained producing 105 sets of simulated data, each obtained by reshuffling
randomly the times of observation of the photons in our sample.

obtained analyzing the true data and the histogram in orange that is obtained consid-
ering the data that are simulated as explained in the previous section, we can notice an
excess of negative values for ηpair. In particular, the values which occur most frequently
with respect to the expected ones in absence of correlation are those that fall within
the first negative bin, namely within the range [-4,-12].

This result thus suggests the possibility of a quantum gravity parameter ηγ ≤ 0,
implying quantum gravity induced effects that speed up more energetic photons when
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the redshift distance of the source is smaller than one. Thus, in this case, high-energy
photons are detected systematically before low-energy ones if they are emitted simul-
taneously.

6.4.2 Analysis with GRBs with z ∼ 1

In this subsection we focus on our second class of GRBs that includes those which
redshift distance is close to one. Specifically, we included in this analysis GRB090510
that has a redshift z = 0.90, GRB160509A with a redshift z = 1.17 and GRB100414A
with z = 1.37. Perhaps including GRB100414A in this class can be a little questionable
since its redshift distance is close to one but not much. However, this GRB contributes
to this analysis with a tiny number of photons with respect to the other GRBs in this
class, therefore its contribute does not change significantly the outcome of the following
analysis.

Following the same strategy as before, we obtain the histogram 6.2, where again
the histogram in blue is the one obtained analyzing the true data and in orange we
have the histogram obtained by producing 105 sets of simulated data, each obtained by
reshuffling randomly the times of observation of the photons in order to destroy any
eventual correlation between energy and time of arrival.

We can notice that for this second sample of GRBs the distribution of ηγpair is
quite symmetric and piqued around zero. The histogram in blue practically follows the
profile of the orange one, showing a slight excess of values of ηγ in the first negative
bin and in the first positive one. This result thus suggests the possibility that eventual
quantum gravity effects related to in-vacuo dispersion could be negligible when the
redshift distance of the source is z ∼ 1 .
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Figure 6.2: Normalized distribution for ηpairγ . The histogram in blue is the one ob-
tained analyzing photons coming from GRB090510, GRB160509A and GRB100414A.
In orange we have the histogram obtained producing 105 sets of simulated data, each
obtained by reshuffling randomly the times of observation of the photons.

6.4.3 Analysis with "distant" GRBs

Finally, in this subsection, we consider the last class of GRBs of our interest, the
"distant" GRBs, namely the ones with redshift distance quite greater than one. These
class include GRB080916C with redshift z = 4.35, GRB090902B with z = 1.82 and
GRB090926A with z = 2.11.

By repeating the same analysis as done for the two previous classes of GRBs, we
obtain the histogram in fig. 6.3.

As before, in blue we present the normalized distribution for ηγpair in the range
[−80, 80] and we estimate how frequently ηγpair should occur within each bin ( orange
histogram ) in absence of correlation between ∆tpair and ∆E∗ by producing 105 sets of
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Figure 6.3: Normalized distribution for ηpairγ . In blue there is the histogram obtained
analyzing photons of GRB080916C, GRB090902B and GRB090926A. In orange we
have the histogram obtained producing 105 sets of simulated data, each obtained by
reshuffling randomly the times of observation of the photons.

simulated data, each obtained by reshuffling randomly the times of observation of the
photons.

From this plot we can observe that, differently from the "close" GRBs class, an
excess of positive values for ηγpair is now obtained.
This preliminary result, thus highlights the possibility of quantum gravity induced
effects that slow down more energetic photons when the redshift distance of the source
is greater than one. Thus, high-energy photons are detected systematically after low-
energy photons when they are emitted simultaneously.
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6.5 Concluding remarks and future directions

In this analysis of in-vacuo dispersion we relied on the much tested formula for the time
delay proposed by Jacob and Piran. We found results that are not in good agreement
with such formula since for the three different classes of GRBs we obtain outcomes
that are not compatible among themselves. This result instead suggests the intriguing
possibility of having a changing sign time delay with the redshift distance of the source
z. In particular from this analysis the following preliminary picture has emerged:

• quantum gravity effects could speed up more energetic particles when the redshift
distance of the source is smaller than one;

• quantum gravity effects on the propagation of particles emitted by sources with
z ∼ 1 could be negligible;

• quantum gravity effects could slow down more energetic particles when the red-
shift distance of the source is greater than one.

Until now, the possibility of having a redshift dependent sign of the quantum gravity
induced time delay has never been contemplated in literature. People indeed have
always considered the hypothesis that quantum gravity effects should accumulate with
increasing distance, expecting a monotonic behaviour for ∆t as a function of z, keeping
fixed the other parameters.

The preliminary results obtained in this analysis instead encourage future studies
in which the possibility of having a non-monotonic behaviour for the time delay is
considered. In particular, it will be interesting to compare to data also some of the
alternatives formulas derived in the previous chapter and I plan to conduct these novel
analyses in the next months expecting that those in which time delay is not monotonic
as in eq. (5.43) could have a good agreement to data.

Nevertheless, as already stressed at the beginning of this chapter, our findings may
be not the consequence of in-vacuo dispersion but rather the result of some other phys-
ical mechanism related to, so far unknown, astrophysical properties of the sources. It
will be indeed not surprising that such findings are not connected to quantum gravity
effects but they are just astrophysical spectral lags, consequence of pulse evolution. For
this reason, only when a better understanding of GRBs mechanisms is achieved and
more data will be available we shall truly trust on these results.
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We conclude this dissertation providing a summary of the structure of this work
and the main results we obtained.

• In chapter 1 we have introduced the quantum gravity problem and we discussed
how in the last decades the possibility of a quantum gravity phenomenology is
increasing realistic. The primary objective of this research program is to explore
physical effects that are expected to be low-energy remnants of the Planck-scale
physics and to identify amplifiers capable of magnifying these tiny effects expected
from quantum gravity such that we can test them with our present experimental
apparata. The most active area in this research program concerns the investi-
gation of phenomenological opportunities coming from departures from Lorentz
invariance at Planck-scale both in the context of LIV and DSR scenarios.

• In chapter 2 we reviewed the main mathematical structures, namely Hopf algebras
and quantum groups, needed to describe the symmetries of quantum spacetimes.
In particular, we present the θ Moyal-Weyl non-commutativity and finally we in-
troduce the famous κ-Minkowski spacetime and discuss its deformed symmetries.

• In chapter 3 we address the much debated problem of conserved charges in quan-
tum spacetimes. We tackle this problem focusing on first-quantized particles de-
scribed within a Hamiltonian framework, using as toy model the so-called “spatial
kappa-Minkowski non-commutative spacetime”. Within this framework we de-
rived all the Noether charges and we revealed a strong connection between their
properties and the structure of the laws of interaction among particles.

• In chapter 4 we explored the possible role of observers and the notion of refer-
ence frames in quantum spacetimes by focusing on a quantum group toy model.
In particular, we focused on the case in which two observers are exclusively in-
terested in finding out the relative spatial orientations of their respective frames.
For this scope we invoked the quantum group SUq(2) as a description of deformed
spatial rotations. We have interpreted states of a representation of its algebra as
describing the relative orientation between two reference frames and this led to
a quantization of one of the Euler angles and to the new paradigm of agency-
dependence. Specifically, in this framework, space is reconstructed as a collection
of fuzzy points, exclusive to each agent, which depends on their choice of reference
frame. Every agent is limited to selecting a single direction in which points can
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exhibit sharpness. Simultaneously, points in all other directions become fuzzy
in a way that depends on the direction chosen. Consequently, when two agents
make disparate choices, they will perceive the same points with different degrees
of fuzziness. These intriguing results pave the way for further understanding the
connection between quantum gravity and quantum information/quantum founda-
tions, opening the way for new studies to better comprehend the role of observers
and reference frames in quantum gravity.

• In chapter 5 we concerned with the possibility of testing the fate of relativistic
symmetries in quantum gravity through time of flight measurements. Studies
of in-vacuo dispersion are indeed the most active area of quantum-gravity phe-
nomenology. We derived the most general formula for the leading order redshift-
dependent correction to the time of flight for the scenario in which relativistic
symmetries are deformed at the Planck-scale (DSR). We did this first for the
constant-curvature case and then we also derived a generalization of our results
to the FLRW scenario. We found that, contrary to the broken symmetries sce-
nario (LIV), where in principle any arbitrary form of redshift dependence could
be allowed, for the DSR scenario only linear combinations of three possible forms
of redshift dependence are allowed. Finally, we discussed some specific combina-
tions of the three forms of redshift dependence whose investigation might deserve
priority from the quantum-gravity perspective. These noteworthy special cases
can be motivated by theoretical arguments based on the possible requirement
that the quantum gravity effects are “curvature induced”, so that the time-delay
vanishes when the spacetime curvature/expansion is negligible, the possible re-
quirement that the total energy of a multi-particle system should be obtained
with a standard linear law of addition of particle energies and the requirement of
monotonicity of time delay as a function of the redshift distance of the source.

• In the last chapter 6 we discussed the possibility of testing in-vacuo dispersion
through gamma ray bursts data. In particular, after reviewing the strategy of
some of the main analyses conducted to date, we discussed a novel analysis that
also includes data coming from the recently observed GRB221009A. In this anal-
ysis we focused on the delay of detection between all the pairs of photons, that
are selected according to some selection criteria, coming from various GRBs. Of
course, many of these pairs considered in the analysis will be spurious in the sense
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that the two photons are not emitted nearly simultaneously and will be noise for
the analysis. However, we also expect that various pairs of photons in our sample
were emitted nearly simultaneously, and for those pairs we obtain a reasonable
estimate of the quantum gravity parameter. We found results that are not in
good agreement with the much tested formula proposed by Jacob and Piran, but
instead suggest the interesting possibility of having a changing sign time delay
with the redshift distance of the source. These results, thus encourages future
analyses to compare to data also some of the alternatives formulas we derived in
chapter 5 and it is plausible that those in which time delay is not monotonic shall
have a good agreement to data.
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Appendix A

A.1 Numerical construction of semi-classical states

In this appendix we discuss the construction of semi-classical states discussed in chap-
ter 4. In order to construct such states, we have resorted to numerical computations,
focusing on the case q = 0.99 as illustrative example. However, by increasing the value
of q, we have checked that the below states satisfy the condition (4.39), thus approxi-
mating classical rotations with increasing precision.

We will focus on the (y, z)-plane setting χ = 0, ϕ = π
2
, as can be seen from (4.9).

We want to construct states that semi-classically describe a deformed rotation of a
certain angle in this plane. Since n defines the only angle left, θ, we choose to build
superpositions (4.41) centered on particular values of n, dubbed n̄, with coefficients
cn multiplying the states |n, ϕ, χ⟩ rapidly decreasing as θ(n) deviates from θ(n̄). Our
ansatz is that these coefficients have the form of a discretized Gaussian distribution.

The variance is then chosen in the following way. Recalling that

θ(n) = 2 arcsin qn (A.1)

we can define ∆n̄ as

∆n̄ :=
dn

dθ

∣∣∣
θ(n̄)

∆θ . (A.2)

We take ∆θ = π
2
− arcsin q, which is just half of the value of the maximum angular

deviation and weigh it with the rate of change of n with respect to θ, approximated
as the derivative. Therefore, the value of the variance depends on the central value n̄.
This approximation becomes more and more accurate with increasing values of n for
which θ(n) becomes quasi-continuous.
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We then define our superposition coefficients cn as

cn =
e−

(n̄−n)2

2∆n̄2∑∞
n=0 e

− (n̄−n)2

2∆n̄2

. (A.3)

For computational reasons, we do not consider the full superposition going from n = 0

to n = ∞ but we truncate the series by considering the 3-σ range of our Gaussian.
Namely, the sum goes from nmin to nmax, where

nmin − n̄ = −3∆n̄ nmax − n̄ = 3∆n̄ . (A.4)

For relatively small values of n̄, the value for nmin might be negative when considering
the 3-σ range. When this happens, we simply truncate the Gaussian and start the
series from n = 0. We have explicitly verified that this doesn’t affect our results in a
significant way.

We have used this algorithm to construct the states used for the numerical analysis
of table 4.1. In what follows, we show the results for the computation of the expectation
values of the matrix elements (Rq)ij with their relative uncertainties for states centered
around n = 95, 34, 7, 0, corresponding to angles θ = 45.275◦, 90.560◦, 137.518◦, θ = 180◦.

• n = 95, θ = 45.275◦

⟨ψ(45.275◦)|Rq|ψ(45.275◦)⟩ =

0.997 0.000 0.000

0.000 0.695 0.708

0.000 −0.708 0.698


∆Rq =

0.005 0.071 0.030

0.071 0.073 0.069

0.030 0.069 0.073


(A.5)

• n = 34, θ = 90.560◦

⟨ψ(90.560◦)|Rq|ψ(90.560◦)⟩ =

0.990 0.000 0.000

0.000 −0.015 0.990

0.000 −0.990 −0.005


∆Rq =

0.015 0.100 0.100

0.100 0.099 0.004

0.100 0.004 0.100


(A.6)
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• n = 7, θ = 137.518◦

⟨ψ(137.518◦)|Rq|ψ(137.518◦)⟩ =

0.982 0.000 0.000

0.000 −0.739 0.663

0.000 −0.663 −0.721


∆Rq =

0.025 0.067 0.173

0.067 0.067 0.074

0.173 0.074 0.067


(A.7)

• n=0, θ = 180◦

⟨ψ(180◦)|Rq|ψ(180◦)⟩ =

0.99 0 0

0 −0.99 0

0 0 −0.99


∆Rq =

0.014 0.014 0.140

0.014 0.014 0.140

0.140 0.140 0

 .

(A.8)

To obtain the states describing q-deformations of rotations of negative angles ζ < 0, we
just have to consider the same states but with ϕ = −π

2
. It is straightforward to show

that for states of the form (4.41) with χ = 0 having real superposition coefficients like
(A.3), the map ϕ 7→ −ϕ exchanges (Rq)23 with (Rq)32, leaving all the other elements
unchanged, and yields the same uncertainty matrix. Therefore the aperture of the cone
in table 4.1 is the same for opposite angles.

For the θ = 0 case, we use the state in the representation ρ which gives the identity
matrix in computing the expectation values which is simply given by |χ = 0⟩ ∈ Hρ.
From (4.40) we thus have

⟨ψ(0◦)|Rq|ψ(0◦)⟩ = 13×3 ∆Rq = 0003×3 . (A.9)

A.2 Representation ρ as limit of representation π

By adding a phase to the representation π discussed in the mathematical literature [91]
we have



134 APPENDIX A.

ρ(a) |χ⟩ = eiχ |χ⟩ ρ(a∗) |χ⟩ = e−iχ |χ⟩ ρ(c) |χ⟩ = ρ(c∗) |χ⟩ = 0 (A.10)

π(a) |n, ϕ, ϵ⟩ = eiϵ cos

(
θ(n)

2

)
|n− 1, ϕ, ϵ⟩ (A.11)

π(c) |n, ϕ, ϵ⟩ = eiϕ sin

(
θ(n)

2

)
|n, ϕ, ϵ⟩

(A.12)

π(a∗) |n, ϕ, ϵ⟩ = e−iϵ

√
1− q2 cos2

(
θ(n)

2

)
|n+ 1, ϕ, ϵ⟩ (A.13)

π(c∗) |n, ϕ, ϵ⟩ = e−iϕ sin

(
θ(n)

2

)
|n, ϕ, ϵ⟩

with our definition of quantized angle, θ(n) = 2 arcsin qn. Looking at these equations,
it may seem that we have four Euler angles in the representations of SUq(2), namely
the aforementioned (χ, ϵ, ϕ, θ(n)). This is a subtlety solved by observing that, with the
additional ϵ phase that we introduced in the π-representation, the representation ρ can
be obtained as a somewhat trivial limit of representation π. Therefore, we have three
physical degrees of freedom, with the angles χ and ϵ linked by this limit operation, so
that we can ultimately set ϵ = χ.

To see this, we need to find a class of states such that

π(a) |ψ(χ)⟩ → eiχ |ψ(χ)⟩ , π(c) |ψ(χ)⟩ → 0 (A.14)

in this limit. We can show that states of the type (with the identification ϵ = χ)

|ψn⟩ =
1√
n+ 1

2n∑
k=n

|k, ϕ, χ⟩ (A.15)

from the π-representation satisfy requirement (A.14) for n→ ∞.
In fact, for the operator c we can immediately see that

π(c) |ψn⟩ = eiϕ
1√
n+ 1

2n∑
k=n

qk |k, ϕ, χ⟩ (A.16)

and therefore, since q is slightly less than one
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⟨ψn|π(c∗)π(c)|ψn⟩ =
1

n+ 1

q2n (1− q2n+2)

1− q2
→ 0, n→ ∞. (A.17)

Hence, π(c) |ψn⟩
n→∞−−−→ 0. The limit for the operator a is more subtle; in this case we

have that

π(a) |ψn⟩ =
eiχ√
n+ 1

2n∑
k=n

√
1− q2k |k − 1, ϕ, χ⟩ (A.18)

and we consider the difference

|ψ′
n⟩ = π(a) |ψn⟩ − eiχ |ψn⟩ . (A.19)

To show that the limit π(a) |ψn⟩ → eiχ |ψ⟩ holds we will show that the succession of the
norms of the states in (A.19) has 0 limit. We have that

0 ≤ ⟨ψ′
n⟩ = ⟨ψn|π(a∗)π(a)|ψn⟩+ ⟨ψn⟩ − 2Re

{
eiχ ⟨ψn|π(a∗)|ψn⟩

}
=

= 1 +
1− q2n

n+ 1
− 1

n+ 1

2n∑
k=n+1

[
2
√

1− q2k −
(
1− q2k

)]
≤ (A.20)

≤ 1 +
1

n+ 1
− 1

n+ 1

2n∑
k=n+1

(
1− q2k

)
=

1

n+ 1

[
2− q2n+21− q2n

1− q2

]
n→∞−−−→ 0.

This observation that representation π converges for certain states to representation
ρ can be extended to generic functions of operators. In general, such functions can
be written as a sum of powers of the operators π(a), π(a∗), π(c) and π(c∗). We now
prove that these functions acting on a class of states in representation π give, in a
certain limit, the value that the same function yields in the limit of these sates with
π(a) replaced by ρ(a) and so on.

In order to do so, we consider a slightly different class of states than the one in
(A.15). In particular we consider

|Ψn⟩ =
1√
n! + 1

2n!∑
k=n!

|k, ϕ, χ⟩ . (A.21)

The reason why we make this choice with the factorial will be clear in the following.
Consider first the case in which we have an operator of the form π(c)mπ(a)l. If

we act with this operator on the state (A.21) and we compute the norm of the state
obtained in this way we get
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0 ≤ ⟨Ψn|π(a∗)lπ(c∗)mπ(c)mπ(a)l|Ψn⟩ ≤
q2m(n!−l)

[
1− q2m(n!+1)

]
(1− q2m)(n! + 1)

n→∞−−−→
m ̸=0

0 . (A.22)

The same argument holds if we have only powers of the operator π(c) (i.e, l = 0) or
other combinations involving π(a∗), π(c∗) and different orderings. The case with m = 0,
in which the limit above is 1, corresponds to a power of π(a) which will be handled
slightly differently in the following.

Now we turn to powers of the operator π(a), i.e π(a)m. We do something analogous
to the argument used for π(a), namely we define the difference state

|Ψ′
n⟩ = π(a)m |Ψn⟩ − eimχ |Ψn⟩ (A.23)

and show its norm goes to zero as n → ∞. After some algebraic manipulations, this
norm is found to satisfy

0 ≤ ⟨Ψ′
n⟩ ≤

2m

n! + 1
+

1

n! + 1

2n!∑
k=n!+m

[
ql(l+1)q2kl(−1)l

(
q−2k; q2

)
l
− 1
] n→∞−→ 0 , (A.24)

where
(
q−2k; q2

)
l
:=
∏l−1

s=0

(
1− q−2k+2s

)
is the q-Pochhammer symbol. The result of the

limit comes from the fact that the term in the square brackets above is essentially just
a sum of powers of q.

We have thus shown that a generic function of π(a) and π(c) operators applied to
(a class of) states in the π representation converges to the same function applied to
a state in ρ representation (a similar argument holds for functions of π(a∗) and π(c∗)

operators). The reason why we considered a state of the form (A.21) is now clear: it is
necessary to have a number of states in the superposition which goes to infinity faster
than m does in order to properly do the limit when considering generic functions, in
which case we have a series in m.

The states (A.15) can be used also to show directly for the vectorial (co)-representation
that it is possible to obtain the rotations about the z-axis as a limit in the representa-
tion π. In the same way, it is possible to obtain the identity, i.e. the null rotation, in
the same representation.

To obtain a rotation about the z-axis, we must have ϕ = 0 and we have to consider
the large n limit. In this limit, setting ϕ = 0, we can approximate our π representation
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as

π(a) |n, ϕ, χ⟩ = eiχ |n− 1, ϕ, χ⟩ π(c) = π(c∗) = 0 π(a∗) |n, ϕ, χ⟩ = e−iχ |n+ 1, ϕ, χ⟩ .
(A.25)

Therefore, using the states (A.15), we obtain

⟨ψ|Rq|ψ⟩ =


−1+n
1+n

cosχ −1+n
1+n

sinχ 0

−−1+n
1+n

sinχ −1+n
1+n

cosχ 0

0 0 1

 . (A.26)

In the large n limit, we see that (A.26) approximates a rotation matrix around the
z-axis with greater and greater precision and it can be shown that the variances are
equal to 0. Moreover, χ = 0 in (A.26) gives the identity matrix in the limit of large n.





Appendix B

B.1 Monotonicity in the curvature induced scenario

In this appendix we want to investigate the monotonicity of the time delay expression as
a function of the redshift distance when we restrict our focus to the curvature induced
scenario. For this purpose we must check if it is possible for the derivative of the time
delay with respect to the redshift parameter z to never change sign. Starting from the
expression of the time delay in the curvature induced case (5.39), that we report here
for completeness:

∆t =
∆E

Ep

∫ z

0

dz (1 + z)

H (z)

[
η2

(
1−
(
1−H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)2
)

+ η3

(
1−

(
1− H (z)

1 + z̄

∫ z

0

dz′

H (z′)

)4
)]

.

(B.1)

we have to impose that d∆t
dz

, given by

d∆t

dz
=

∆E

Ep

(1 + z)

H (z)

[
η2

(
1−
(
1−H (z)

1 + z

∫ z

0

dz′

H (z′)

)2
)

+ η3

(
1−

(
1− H (z)

1 + z

∫ z

0

dz′

H (z′)

)4
)]

,

(B.2)

never changes sign (≥ 0 or ≤ 0 for every z).
By introducing

(
1− H(z)

z

∫ z

0
dz′

H(z′)

)
= x we can rewrite (B.2) as:

d∆t

dz
=

∆E

Ep

(1 + z)

H (z)

(
η2(1− x2) + η3(1− x4)

)
(B.3)
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which is always positive or always negative if and only if η2 = −2η3.
We can also see this by considering a numerical analysis for the ΛCDM model described
in chapter 5. We illustrate this in Figure B.1 by fixing η3 = −1 . The blue area identifies
the values of η2 such that d∆t

dz
≥ 0. We can observe that only when η2 = 2 the derivative

0 1 2 3 4 5 6 7

-4

-2

0

2

4

z

η
2

Figure B.1: The blue area identifies the values of η2 such that d∆t
dz

≥ 0 when η3 = −1.

of the time delay with respect the redshift parameter z never changes sign.
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