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@ In DNG: g = det(gmn), is the determinant of the induced metric
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r—symmetry and SUGRA constraints
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Schwarz 84 for p=1, Achucarro, Gauntlett, Itoh and Townsend 89 for p=2, D=4] is
important: it reflects the supersymmetry preserved by the ground state
of the supermembrane (which is thus the 1/2 BPS state).
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Supermembrane action

We can obtain the supermembrane supercurrent varying the
supermembrane action with respect to SUGRA superfields

To this end we have to chose an appropriate off—shell SUGRA
formulation

This SUGRA formulation must allow for the existence of closed 4-form
Hs = dCs on its (off-shell) superspace.
The standard minimal supergravity allows for the existence of such

Hs = dCs, so that the supermembrane can propagate in the off—shell
minimal SUGRA background.

But, as we will see, the supermembrane coupling to dynamical
supergravity implies an additional restriction on minimal supergravity
supermultiplet.




Special min SUGRA

Outline

9 Minimal and special minimal supergravity.
@ Supergravity in superspace. Minimal off—shell formulation.
@ Closed 4-form in SSP and supermembrane in minimal SUGRA
background
@ Closed 3-form potential and special minimal SUGRA
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@ Minimal supergravity constraints and their consequences can be collected in (see
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superfields R = (R)*, and Ga = (Ga)*, which obey (Gng = Gao?l )

DoR=0, DyR=0,
D%Gus = —DaR, D*Gps = —Ds R

@ One more main superfields enter the decomposition of the superfield
generalization of the gravitino field strength Tp.*(2),

— b 5 _ 1 A 1
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@ Itis symmetric, W,3, = W(QBW), and chiral

DeWeBY =0, D WY =0 .
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@ The superfield generalization of the Ricci tensor is

Roc™ = H(DPDEIGHD — DPDEGY4)od 0,5 —
~&(DDR + DDR — 4RR)% .
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SUGRA equations of motion from superspace formulation

@ The superfield generalization of the Ricci tensor is
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@ and the superfield generalization of the L.h.s. of the supergravity
Rarita—Schwinger equation reads
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@ This suggests that superfield supergravity equation should have the form
G2=0, R=0, R=0.

@ Indeed, these = 'free’ SUGRA equations of motion

ac abcd «
Ry =0, € T 0dac =0 .
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Closed 4-form in the superspace of minimal SUGRA

@ The superspace of minimal supergravity allows for existence of two
closed 4-forms

Hat = —5EP NEANE* NEPoap ap — g EY N E° A EP A EleapeqR,

dHy =0,

and its complex conjugate Hsg = (Har)*.

@ We assume Hy = dCs = Ha + Hag.

@ This knowledge is completely sufficient to study the supermembrane in
the background of minimal D = 4, N" = 1 supergravity.

o Indeed, §Sp_> = —1 [ *E.A8E? — [ §Cs, and, when the variation are

w3 w3

produced by sZM only, the variations of the ’potentials’ are expressed in
terms of ‘contractions’ of the field strengths superforms §E? = 5 T2,
0Cs = isHy

o (with isE” := 6ZMEQ(Z), is(Qp A Qq) == Qp A isQq + (=) %i5Qp A Qg for
any p- and g—forms).
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Basic variations and prepotentials of minimal supergravity

@ The knowledge of T2 = DE? and H, = dC; is not sufficient when one
studies the supermemrbane interaction with dynamical supergravity.

e in this case, 6Sp—o = —1 [ *EaASE? — [ 6Cs with 6E? = 63| ju_su
W3 ws
and 6Cs = dCs|m_sm With 6E?(Z) and 6C3(Z) expressed in terms of
basic supergravity variations.

@ Clearly §E?(Z) and §Cs5(Z) are not arbitrary as far as E#(Z) and C3(2)
obey the superspace SUGRA constraints. The basic variations are free
parameters of the solution of the equations stating that the constraints
are preserved by variation.

@ The admissible variations of supervielbein read [Wess & Zumino 78]
SE2 = E3(A(8) + A(0)) — }E"&?O‘[Da, Dy|0H? + IE¥DodH? — iIESD4dH? |
SE* = E?=5(8) + E“N(9) + %EdﬂoadadHa ,

where

2A() + A(6) = 168°DaDadH? + 1 GadH? + 3(DD — R)sUU

and the explicit expression for =5 (4) is not needed for our discussion.
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@ The above expressions for §E4 in terms of §H? and (DD — R)dU can be
used to obtains the superfield equations of supergravity from the
superspace action [Wess & Zumino 77, 78]

Ssa = / o*x&*0 sdet(Ef) = / FZE.
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@ The above expressions for §E4 in terms of §H? and (DD — R)dU can be
used to obtains the superfield equations of supergravity from the
superspace action [Wess & Zumino 77, 78]

Ssa = / o*x&*0 sdet(Ef) = / FZE.

@ To this end one calculates the variation of superdeterminant of the
supervielbein

SE = E[—165°[Da, Ds]sH? + £ Ga H? + 2(DD — R)sU + 2(DD — R)6U]
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used to obtains the superfield equations of supergravity from the
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Superfield SUGRA equations from SUGRA action

@ The above expressions for §E4 in terms of §H? and (DD — R)dU can be
used to obtains the superfield equations of supergravity from the
superspace action [Wess & Zumino 77, 78]

Ssa = / o*x&*0 sdet(Ef) = / FZE.
@ To this end one calculates the variation of superdeterminant of the

supervielbein

0E =  E[~1568°[Da, Dal0H? + L Ga 6H? + 2(DD — R)3U + 2(DD — R)

12%a

e finding 6Sse = [ d®ZE [1Ga 6H® — 2R §U — 2R sU] ,

5U]

@ = the expected SUGRA superfield equations G, = 0 and R = 0.
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@ When supermembrane action interacting with dynamical minimal
supergravity is considered one has to vary as well the three form
potential Cs.
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+c.c. is expressed in terms of SUGRA potentials.

@ Then itis natural to expect that 6 Cs is expressed through the same basic
SUGRA variations 6 H?, 6U/, 5U.

@ However, the situation is more complicated.

@ In the search for §C; = §C3(5H?, 6U, 6U) starting from §Hj, one finds

that the solution exists provided the 64 and §I{ are expressed
(essentially) in terms of one real variation 6V = (6 V)*,
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@ When supermembrane action interacting with dynamical minimal
supergravity is considered one has to vary as well the three form
potential Cs.

® Hy=dCs=—4E° NEANE* NEP0apap — 55 EY AN E° A EP A EPeancaR
+c.c. is expressed in terms of SUGRA potentials.

@ Then itis natural to expect that 6 Cs is expressed through the same basic
SUGRA variations 6 H?, 6U/, 5U.

@ However, the situation is more complicated.

@ In the search for §Cs = §C3(§H?, 6U, 6U) starting from 6H,, one finds
that the solution exists provided the o4 and 6/ are expressed
(essentially) in terms of one real variation 6V = (6 V)*,

(DD — R)oU = 112(732) _R) </5v+ %ﬁdaad) .

@ This implies certain modification of the auxiliary field sector of SUGRA,
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Closed 3-form potential in SSP of minimal SUGRA

@ When supermembrane action interacting with dynamical minimal
supergravity is considered one has to vary as well the three form
potential Cs.

® Hy=dCs=—4E° NEANE* NEP0apap — 55 EY AN E° A EP A EPeancaR
+c.c. is expressed in terms of SUGRA potentials.

@ Then it is natural to expect that § C; is expressed through the same basic
SUGRA variations §H?2, 6U, 8.

@ However, the situation is more complicated.

@ In the search for §C; = §C3(5H?, 6U, 6U) starting from §Hj, one finds
that the solution exists provided the 64 and §I{ are expressed
(essentially) in terms of one real variation 6V = (6 V)*,

1

(DD — R)oU = ﬁ(

DD - R) </5v+ %ﬁdaad) .
@ This implies certain modification of the auxiliary field sector of SUGRA,

@ The corresponding off—shell formulation of SUGRA which we call special
minimal SUGRA was described by Siegel [78], Siegel and Gates [79]
and Waldram and Ovrut [97]
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@ Superfield equations of special minimal SUGRA
@ Dynamical generation of cosmological constant in sMin SUGRA
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the case of 'free’ supergravity:
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Special minimal SUGRA. Dynamical generation of cosmological constant

@ In terms of prepotential approach, the special minimal SUGRA has the
chiral compensator which is not a generic but a special chiral superfield,
constructed from real scalar prepotential V = V* and not from the
complex one (DDV with V = V* vs DDU with U # U™ in the flat
superspace).

@ In terms of component formulation, in special minimal SUGRA one of
two auxiliary scalars of the generic minimal SUGRA [Stelle & West 78,
Ferrara & van Nieuwenhuizen 78] is replaced by a divergence of an
auxiliary vector, S — 0,k".

@ This seemingly minor modification has drastic consequence already in
the case of 'free’ supergravity:

@ it results in the dynamical generation of cosmological constant [the effect
first described in superfield context by Ogievetsky and Sokatchev
[1980]].
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@ Substituting (DD — R)sU = 5(DD — R) (isV + }Dadk®), one finds

6Ssc = § [ d*ZE [Ga 6H? + (R— R)isV] —
— 15 [ d®*ZE (RDa6k™ + RD&d0R®) .
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@ Thus special minimal SUGRA is characterized by the same vector
superfield equation G, = 0,
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@ Substituting (DD — R)sU = 5(DD — R) (isV + }Dadk®), one finds
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@ Thus special minimal SUGRA is characterized by the same vector
superfield equation G, = 0,
@ but, instead of complex scalar superfield equation, R = 0, one obtains

only R— R=0.
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@ Substituting (DD — R)sU = 5(DD — R) (isV + }Dadk®), one finds

0Ssg = %deZE [Ga 6H? + (R — I_?)iév] —
— 15 [ d®ZE (RDadk® + RD4ORY) .
@ Thus special minimal SUGRA is characterized by the same vector
superfield equation G, = 0,
@ but, instead of complex scalar superfield equation, R = 0, one obtains

only R— R=0.

@ Due to chirality, D4R =0, D,R = 0and {D,,Ds} = 2ic? Dy, this
implies that the complex superfield R is actually equal to a real constant,

R=4c, R =4c, c=const=c".
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@ Substituting (DD — R)sU = 5(DD — R) (isV + }Dadk®), one finds

0Ssg = %deZE [Ga 6H? + (R — I_?)iév] —
— 15 [ d®ZE (RDadk® + RD4ORY) .
@ Thus special minimal SUGRA is characterized by the same vector
superfield equation G, = 0,
@ but, instead of complex scalar superfield equation, R = 0, one obtains

only R— R=0.
@ Due to chirality, D4R =0, D,R = 0and {D,,Ds} = 2ic? Dy, this
implies that the complex superfield R is actually equal to a real constant,

R=4c, R =4c, c=const=c".

o Asfaras Rp® = —&(DDR + DDR — 4RR)5; + O(Ga) the superfield
equations = Einstein equation with cosmological constant

R = 3¢%6,2 .
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@ Substituting (DD — R)sU = 5(DD — R) (isV + }Dadk®), one finds

0Ssg = %deZE [Ga 6H? + (R — I_?)iév] —
— 15 [ d®ZE (RDadk® + RD4ORY) .
@ Thus special minimal SUGRA is characterized by the same vector
superfield equation G, = 0,
@ but, instead of complex scalar superfield equation, R = 0, one obtains

only R— R=0.

@ Due to chirality, D4R =0, D,R = 0and {D,,Ds} = 2ic? Dy, this
implies that the complex superfield R is actually equal to a real constant,

R=4c, R =4c, c=const=c".

o Asfaras Rp® = —&(DDR + DDR — 4RR)5; + O(Ga) the superfield
equations = Einstein equation with cosmological constant

R = 3¢%6,2 .

@ —A x ¢?, cis an arbitrary integration constant = cosmological constant
is generated dynamically in the special min SUGRA.
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Special minimal SUGRA variations.

@ Resuming the special minimal SUGRA variation of the bosonic
supervielbein and three form potential read (simplified):

SE? = E3(N(S) + N(6)) — $EP55%[Da, Da)dH? + iIE*DadH? — iIE*DadH?
6Cs = FEC N EB A E*Bagc(6)
where
2N (8) + A(8) = 16§°DaDadH? + L GadH? +i/4(DD — R)SV
and ﬂaﬁv( )=0,  Baps(0) =0,
Bupal8) = 08V, Bapa(d) = —0abasdH’
Baab(8) = yeaboaoa D*6H? + J0ab o’ DbV
Babo(6) = %eavca (DD —1/2R) 6H? — c.c.) +
7 ! eabcd GOV + eabcdadw[Dy, DW](SV




Dynamical generation of A
o] ]

Dynamical generation of cosmological constant in sMin SUGRA

Special minimal SUGRA variations.

@ Resuming the special minimal SUGRA variation of the bosonic
supervielbein and three form potential read (simplified):

SE? = E3(N(S) + N(6)) — $EP55%[Da, Da)dH? + iIE*DadH? — iIE*DadH?
6Cs = FEC N EB A E*Bagc(6)
where
2N (8) + A(8) = 16§°DaDadH? + L GadH? +i/4(DD — R)SV
and ﬂaﬁv( )=0,  Baps(0) =0,
Bupal8) = 08V, Bapa(d) = —0abasdH’
Baab(8) = yeaboaoa D*6H? + J0ab o’ DbV
Babo(6) = %eavca (DD —1/2R) 6H? — c.c.) +
7 ! eabcd GOV + eabcdadw[Dy, DW](SV

@ Now we are ready to study the interacting system action Ssg + Sp—o.
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e Supermembrane supercurrent and its contribution to the supergravity
superfield equations
@ Supermembrane supercurrent vector superfield J;
@ Supergravity superfield equations with supermembrane current
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Supermembrane supercurrent vector superfield

@ Now we see that the oc §H? variation of the supermembrane action gives us the
vector supercurrent of the form

1 0 A oa .
Ja = /EE"AE@AE%&MJB(Z_Z)_
ws

- / - (E SR IN - E:Beabcd&dﬂ'a) Dad®(Z - 2) + c.c

=

ws
1 am . re. e 1 N
+/2 WE EP NECAE? eapey (DD—EF{) 8(Z—-2)+cc +
ws ’

1 & pEbpa 8 2
+/4!E*Eb/\E Gad®(Z - 2) -

w3
o ) )
B /3 nE *Een Eb595> (35568 — 6365 ) [Da, Dalo®(Z - 2) ,
w:

where E = sdet(Ey*(Z2)) and §8(Z) := {5 64(x) 06 00 is the superspace delta
function which obeys [ d8Z §8(Z — Z’)f(Z) = f(Z') for any superfield f(Z).
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@ The supercurrent enters the vector superfield eq. of SUGRA G; = J,
which follows from the action of the SUGRA+SM interacting system

S=Ssa+4Spe=[dPZE(Z)+ 5 [dcvg -1 [ Cs,
w3
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SUGRA superfield eqgs and egs. for supercurrent

@ The supercurrent enters the vector superfield eq. of SUGRA G; = J,
which follows from the action of the SUGRA+SM interacting system

S=Ssa+4Spe=[dPZE(Z)+ 5 [dcvg -1 [ Cs,
ws

@ The scalar superfield equations (6S/éV = 0) reads
R-R=-ix
@ where the real superfield X = X* is given by

x=4i fsl::a/\li—‘a/\lf:dagdés(Z—z)-i-
W

b @ £b  fc p d . _ A
+ f ( 7’5 af i Oaba’Dp + C.C+ ELELE Qi.CEAE Gabcdffaaa[Da,Da]) 8(Z-2)+

A EC A B9y G? ) 87— 2).

+ f ( *Ea/\E (D'D R)
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SUGRA superfield eqgs and egs. for supercurrent

@ The supercurrent enters the vector superfield eq. of SUGRA G; = J,
which follows from the action of the SUGRA+SM interacting system

S=Ssa+4Spe=[dPZE(Z)+ 5 [dcvg -1 [ Cs,
ws

@ The scalar superfield equations (6S/éV = 0) reads
R-R=-ix
@ where the real superfield X = X* is given by

x=4i fsl::a/\li—‘a/\lf:dagdés(Z—z)-i-
W

b o Eb A EC A Bd . _ A
+ f ( 7’5 af i Oaba’Dp + C.C+ ELELE Qi.CEAE Gabcdﬂaaa[Da,DaD 8(Z-2)+

A EC A B9y G? ) 87— 2).

+ f ( *Ea/\E (D'D R)

@ Notice that D¥Gas = —D.R and c.c. =

D¥Jns = IDalX | D og = —iDa X .
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e Spacetime component equations of the D =4 A = 1
supergravity—supermembrane interacting system
® WZ;_, gauge
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@ We use the general coordinate invariance to fix the Wess—Zumino (WZ2)
gauge on supergravity superfields

pE* = 0%Eg* =0,  jpE% :=0%E5Y = 0%,
@ . E @ N . __ B &
0 =0258, 0% =075,

pEq = 0%Ex2=0, ipw®.=0tw2 =0

= B
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WZ;_, gauge

@ We use the general coordinate invariance to fix the Wess—Zumino (WZ2)
gauge on supergravity superfields

pE* = 0%Eg* =0,  jpE% :=0%E5Y = 0%,
o E a NG .__ B &
6= 6285, 0% =058,

pEE = 0%Ex2=0, ipwd .= 9§wg—b=o

@ and the local spacetime SUSY to set to zero the fermionic Goldstone
field of the supermembrane,

26 =0 & 029 =0, #%=0.
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WZ;_, gauge

@ We use the general coordinate invariance to fix the Wess—Zumino (WZ2)
gauge on supergravity superfields

pE* = 0%Eg* =0,  jpE% :=0%E5Y = 0%,
o B a NG .__ B &
6= 6285, 0% =058,

pEE = 0%Ex2=0, ipwd .= 9§w§—b=o

@ and the local spacetime SUSY to set to zero the fermionic Goldstone
field of the supermembrane,

2 =0 e 099 =0, =0
@ The leading componet of supervielbein matrix has a triangular form

a o v BV
ENA|0:0 = (eu(()X) g;’;g(X)) = EAN|0:0 = <e3()(;) ;:/’Ba (X)>
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WZ;_, gauge

@ We use the general coordinate invariance to fix the Wess—Zumino (WZ2)
gauge on supergravity superfields

pE* = 0%Eg* =0,  jpE% :=0%E5Y = 0%,
o B a NG .__ B &
6= 6285, 0% =058,

pEE = 0%Ex2=0, ipwd .= 9§w§—b=o

@ and the local spacetime SUSY to set to zero the fermionic Goldstone
field of the supermembrane,

2 =0 e 099 =0, =0
@ The leading componet of supervielbein matrix has a triangular form

a o v BV
ENA|0:0 = (eu(()X) g;’;g(X)) = EAN|0:0 = <e3()(;) ;:/’Ba (X)>

@ Relation between the leading componet of T, and the true gravitino field
strength

Tap®lo—0 = 2e5eyDy,¥5(x) — £(¢[a0b])5 GBg_g — $(P1a61))* Rlo=o
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Current superfields in the WZ;_, gauge

@ We find that the vector and scalar superfields have the following form,

050, ) :
Juiljog = Tﬂ( 3PL(x)08 450" — 260847 PpP(x))

(00 — 00
—1(372)021&73‘3(”-‘,- oc g3
00530 (60 — 00
_ ‘176 Pa"r’( i )Paa(X)+O(Q/\3

Xlo_o =
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Current superfields in the WZ;_, gauge

@ We find that the vector and scalar superfields have the following form,

050, ) :
Juiljog = Tﬂ( 3PL(x)08 450" — 260847 PpP(x))

_,'(‘993;299)0?(&793()()4_ A
00%_ (60— 00)

a A3
16 a+/716 Pa(x)+ o< 0

Xlo_o =

@ Where we have introduced the current pre-potential fields,

1 . ~ N
PL(x) = /é*ea/\ebé“(x—x),
w3
1 a a " A
Pa(x) = /geabcdeb/\eCAed Hx—%) =
ws

= ex) / €pvpo dXY A dRP A dRT 6% (x — X)

ws
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Current superfields in the WZ;_, gauge

@ We find that the vector and scalar superfields have the following form,

050, ) :
Juiljog = Tﬂ( 3PL(x)08 450" — 260847 PpP(x))

_,'(693;290)&(&793()()4_ A
00%_ (60— 00)

T Pat i Paf(x)+ ox 0

Xlo_o =

@ Where we have introduced the current pre-potential fields,

1 7~ A ~
Pal(x) = /é*ea/\ebé“(x—x) ,

w3

1 A 2 A ~
Pa(x) = / geabcdeb/\ecAed 54()(7)():
ws
= ex) / €pvpo dXY A dRP A dRT 6% (x — X)
ws

@ There is no explicit supermembrane contributions to the
Rarita-Schwinger equations ,
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Einstein equation in the WZ;_, gauge

@ We calculate the Einstein eq. using the vector and scalar current
superfields,

3 1 3 _
ac _ a ap C 2 a
Aoy oo = —ap Te (PH00 = J08P00) + SR+ FPly ot
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@ We calculate the Einstein eq. using the vector and scalar current
superfields,

3 1 3 _
ac _ a ap C 2 a
Aoy oo = —ap Te (PH00 = J08P00) + SR+ FPly ot

@ The last term needs a separate study,

_ _ T e )
R-R=-Bpx =  0uA+R),, =2 /Euupadx" AdR? A dRT 84 (X — R)
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Einstein equation in the WZ;_, gauge

@ We calculate the Einstein eq. using the vector and scalar current
superfields,

3 1 3 _
ac _ a ap C 2 a
Aoy oo = —ap Te (PH00 = J08P00) + SR+ FPly ot

@ The last term needs a separate study,

_ _ T e )
R-R=-Bpx =  0uA+R),, =2 /Euupadx" AdR? A dRT 84 (X — R)
w3

@ The solution can be written in the form,

X
— T- . " . ~ . “
R(x) + R(x) = 8¢ + % / dxH / CuvpodXY A dXP A dRT 54 (X — X)

X0 w3
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Einstein equation in the WZ;_, gauge

@ Itis easy to check that

X
O(X, XolR) = /d)“(“ / Cavpo RV A dRP A dRT 64(% — R)

X0 ws
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Einstein equation in the WZ;_, gauge

@ Itis easy to check that

X
O(X, XolR) = /d)“(“ / Cavpo RV A dRP A dRT 64(% — R)

X0 ws
@ obeys

0,0(x, Xo|%) = / v po XY A dRP A dRT 64(x — R) .

ws
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Einstein equation in the WZ;_, gauge

@ Itis easy to check that
X
O(X, XolR) = /d)?“ / Cavpo RV A dRP A dRT 64(% — R)
X0 ws
@ obeys

0,0(x, Xo|%) = / v po XY A dRP A dRT 64(x — R) .

ws
@ Then, we can writte

R(x) + R(x) = 8¢ + %@(X, Xo|%)
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Einstein equation in the WZ;_, gauge

@ Itis easy to check that
X
O(X, XolR) = /d)?“ / Cavpo RV A dRP A dRT 64(% — R)
X0 ws
@ obeys

0,0(x, Xo|%) = / v po XY A dRP A dRT 64(x — R) .

ws
@ Then, we can writte
R(x) + R(x) = 8¢+ %@(X, Xo|X)

@ And finally we obtain,

3T, 1
22 (P00 - 08Peo)

T, 2 .
+367 <c2 + <(1228 + c) - c2> @(x,xox)>

Rbcac(x) = -
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Supermembrane contributions to Einstein equation

@ We can separate these contributions in three different classes

Racb®(X) = 1ap 362 + T (Esbing(x) + 7_ar§g(x)>
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@ The first one is proportional to an arbitrary integration constant
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Supermembrane contributions to Einstein equation

@ We can separate these contributions in three different classes

Raco®(X) = 16362 + To (TS (x) + T22())

@ The first one is proportional to an arbitrary integration constant
@ The second one contains singular terms o P.%(x)

Tar?(0) = ~Ta gy (Poalt) = J16aPe(4)) =

3T, 3T, 1 .
2 /g*ea/\ech (x-R)+ 2 ba/g*ec/\ecﬁ“(x—x)
w3 w3
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Supermembrane contributions to Einstein equation

@ We can separate these contributions in three different classes

Raco®(X) = 16362 + To (TS (x) + T22())

@ The first one is proportional to an arbitrary integration constant
@ The second one contains singular terms o P.%(x)

Tar?(0) = ~Ta gy (Poalt) = J16aPe(4)) =

3T, 3T, 1 .
2 /g*ea/\ech (x-R)+ 2 ba/g*ec/\ecﬁ“(x—x)
w3 w3

@ The last one contains regular terms proportional to the supermembrane
tension,

64 \ 256

I: .
Tae (X) = 1apT™(x) T9(x) = +372 (— + C) O(x, X|X) .
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Regular supermembrane contributions

@ Considering the Einstein eq. in two pieces of space time separated by
the supermembrane worldvolume

T 2
M Rac®(X) = £
Gt ach” (X) = 3nap (128 + C)

M Racb®(X) = 3nap c?
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Regular supermembrane contributions

@ Considering the Einstein eq. in two pieces of space time separated by
the supermembrane worldvolume

128
M Racb®(X) = 3nap c?

4 T2 2
M- Rach’(X) = 3nap (7 + C)

@ Where M} denotes the half-space where 9(x, xo|%) = 1
(M% = O(x, x0|X) = 0)
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constant
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Regular supermembrane contributions

@ Considering the Einstein eq. in two pieces of space time separated by
the supermembrane worldvolume

128
M Racb®(X) = 3nap c?

4 T2 2
M- Rach’(X) = 3nap (7 + C)

@ Where M} denotes the half-space where 9(x, xo|%) = 1
(M% = O(x, x0|X) = 0)

@ Two branches of spacetime have different values of cosmological
constant

@ These values coincide if ¢ =
such choice

T2

— o, but we do not find any reason for
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Supersymmetric solutions of the interacting system egs.

@ If we search purely bosonic supersymmetric solutions (; = 0), we
study Killing spinor equations (6.v;, = 0)

i i
De® + gec(wc&d)ﬁa GY0p—0 + §ec (€6¢)* Rlgp—0 =0
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Supersymmetric solutions of the interacting system egs.

@ If we search purely bosonic supersymmetric solutions (; = 0), we
study Killing spinor equations (6.v;, = 0)

i i
De® + gec(fgc5d)6a G%g—0 + gec (€5¢)* Rlo=0 =0

@ Using the auxiliary field equations of motion, we obtain
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Supersymmetric solutions of the interacting system egs.

@ If we search purely bosonic supersymmetric solutions (; = 0), we
study Killing spinor equations (6.v;, = 0)

De® + £6(c0c69)3” Glo—o + 56° (E0%)° Rlo—o = 0
@ Using the auxiliary field equations of motion, we obtain

i T, A
De™ + 5ea (€5a2) (c + ée(x, x0|x)) =0.

@ We can split this eq. on two killing equations valid in the two different
branches
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Supersymmetric solutions of the interacting system egs.

@ If we search purely bosonic supersymmetric solutions (; = 0), we
study Killing spinor equations (6.v;, = 0)

De® + £6(c0c69)3” Glo—o + 56° (E0%)° Rlo—o = 0
@ Using the auxiliary field equations of motion, we obtain

. 7 A
De™ + éea (€5a2) (c + —20(x, x0|x)) =0.

128
@ We can split this eq. on two killing equations valid in the two different
branches
MY . De 4 éea (€5a)*c =0,

LY . T
M De +§ea(eoa) (c+@):0
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Integrability conditions

@ Applying the covariant derivative and using the Ricci identities

DDe* = —%Rabeﬁoabga
1
M* Habeﬁaabga = Z|C|2ed A €° eﬂacdga ,
2
M4. Rab€BO' a_lc+£ ed/\ecﬁ @
+ p =717 128 = ood
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@ For purely bosonic solution preserving all SUSY the formers should be
obeyed for arbitrary ¢*
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@ Applying the covariant derivative and using the Ricci identities

DDe* = —%Rabeﬁoabga
1
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@ For purely bosonic solution preserving all SUSY the formers should be
obeyed for arbitrary ¢*

1
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Integrability conditions

@ Applying the covariant derivative and using the Ricci identities

DDe* = —%Rabeﬁoabga
1
M Habeﬁaabga = Z|C|2ed A €° eﬂacdgo‘ ,
2
M4. Rab€BO' a_lc+£ ed/\ecﬁ @
+ p =717 128 = ood

@ For purely bosonic solution preserving all SUSY the formers should be
obeyed for arbitrary ¢*

1
M4, : Rcdab = 5‘0‘25[Ca5d]b 5
1 T ||?
4 . b _ 2 b
M  Rua™=gc+ @’ d1c%0a)

@ These equations solve our equations of motion and describe the
completely SUSY solution (At least modulo singular terms)




Spacetime component eqs
00000000@

WZ;_, gauge

Final remarks

@ These equations contain supermembrane contributions




Spacetime component eqs
00000000@

WZ;_, gauge

Final remarks

@ These equations contain supermembrane contributions
o Indirect: Arbitrary cosmological constant generated dinamically




Spacetime component eqs
00000000@

WZ;_, gauge

Final remarks

@ These equations contain supermembrane contributions

o Indirect: Arbitrary cosmological constant generated dinamically
o Direct: Shift of cosmological constant on one of the sides « T»




Spacetime component eqs
00000000@

WZ;_, gauge

Final remarks

@ These equations contain supermembrane contributions
o Indirect: Arbitrary cosmological constant generated dinamically
o Direct: Shift of cosmological constant on one of the sides « T»

@ This solution preserves 4 SUSY in M* and M% but describes 1/2 BPS
state




Spacetime component eqs
00000000@

WZ;_, gauge

Final remarks

@ These equations contain supermembrane contributions
o Indirect: Arbitrary cosmological constant generated dinamically
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@ because, due to the presence of dynamical supermembrane have to
restrict the local SUSY parameter by boundary conditions which clearly
break 1/2 of the SUSY on W?®
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Final remarks

@ These equations contain supermembrane contributions
o Indirect: Arbitrary cosmological constant generated dinamically
o Direct: Shift of cosmological constant on one of the sides « T»
@ This solution preserves 4 SUSY in M* and M% but describes 1/2 BPS
state

@ because, due to the presence of dynamical supermembrane have to
restrict the local SUSY parameter by boundary conditions which clearly
break 1/2 of the SUSY on W?

@ The SUSY parameter should also obey the boundary condition

W8 = +omi - B = E 4% =¥ (R(E)), & :=ea(X(€)) .
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Final remarks

@ These equations contain supermembrane contributions
o Indirect: Arbitrary cosmological constant generated dinamically
o Direct: Shift of cosmological constant on one of the sides « T»
@ This solution preserves 4 SUSY in M* and M% but describes 1/2 BPS
state

@ because, due to the presence of dynamical supermembrane have to
restrict the local SUSY parameter by boundary conditions which clearly
break 1/2 of the SUSY on W?

@ The SUSY parameter should also obey the boundary condition

W8 = +omi - B = E 4% =¥ (R(E)), & :=ea(X(€)) .
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@ We have derived the complete set of spacetime component egs. of
motion for the interacting system of dynamical D =4 AN =1 SUGRA
and supermembrane

@ To obtain these we have used the WZ gauge supplemented by partial
gauge fixing of the local SUSY on W?

@ The supermembrane current superfields simplify drastically in that gauge

@ When studying the interacting system the supermembrane produces a
kind of renormalization of the cosmological constant

@ The Einstein eq. acquires some non singular terms proportional to a
covariant version of the Heaviside step function

@ In the purely bosonic interacting system of gravity the configuration
consisting in two different Ads spaces provides a SUSY solution outside
W3

@ Generically the difference of these values is proportional to the

supermembrane tension, while its basic value is determined by an
arbitrary constant independent on T,
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@ An interesting subject for future study would be the search for solutions
preserving some part of SUSY

@ Take into account singular terms

@ Develop more general interacting systems including supermembrane,
supergravity and matter multiplets and compere its results with other
spacetime component studies

@ THANK YOU FOR YOUR ATTENTION!
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