Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions

Supermembrane interaction with dynamical D=4 N=1 supergravity

Superfield Lagrangian description and spacetime equations of motion

Igor A. Bandos ** and Carlos Meliveo*

[†] Department of Theoretical Physics, University of the Basque Country, Bilbao, Spain, KERBASQUE, the Basque Foundation for Science, Bilbao, Spain

Naples, November 12–14, 2012

November 12, 2012

intro. Supermembrane Special mil	I SUGHA Dynamical generation	n or A Supercurrents and St	JGRA eqs. Spacetime component eq	s Conclusions

Introduction

- SUSY extended objects, super-p-branes, and their description
- The supermembrane action and its properties
- 2 Minimal and special minimal supergravity.
 - Supergravity in superspace. Minimal off-shell formulation.
 - Closed 4-form in SSP and supermembrane in minimal SUGRA background
 - Closed 3-form potential and special minimal SUGRA
- Oynamical generation of cosmological constant in special minimal supergravity.
 - Superfield equations of special minimal SUGRA
 - Dynamical generation of cosmological constant in sMin SUGRA
- Supermembrane supercurrent and its contribution to the supergravity superfield equations
 - Supermembrane supercurrent vector superfield J_a
 - Supergravity superfield equations with supermembrane current
- 5 Spacetime component equations of the D = 4 N = 1supergravity–supermembrane interacting system
 - $WZ_{\hat{\theta}=0}$ gauge
- 6 Conclusions and outlook
 - Conclusions
 - Outlook

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00

Outline

- Introduction
 - SUSY extended objects, super-p-branes, and their description
 - The supermembrane action and its properties
- Minimal and special minimal supergravity.
 - Supergravity in superspace. Minimal off-shell formulation.
 - Closed 4-form in SSP and supermembrane in minimal SUGRA background
 - Closed 3-form potential and special minimal SUGRA
- Oynamical generation of cosmological constant in special minimal supergravity.
 - Superfield equations of special minimal SUGRA
 - Dynamical generation of cosmological constant in sMin SUGRA
- Generation Supercurrent and its contribution to the supergravity superfield equations
 - Supermembrane supercurrent vector superfield J_a
 - Supergravity superfield equations with supermembrane current
- Spacetime component equations of the D = 4 N = 3supergravity-supermembrane interacting system
 - WZ<sub>
 ^ô=0</sub> gauge
- 6 Conclusions and outlook
 - Conclusions

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
super- <i>n</i> -brane interaction	in with SLIGRA				

 Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
super_o_brane interactio	n with SLIGRA				

- Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
- They can be described by worldvolume actions and by supersymmetric solutions of supergravity

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
0000					
aupor a brono intoractio					

- Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
- They can be described by worldvolume actions and by supersymmetric solutions of supergravity
- A typical example of super-p-brane is supermembrane (p = 2) which exists in D=4,5, 7 and in D=11 (where it is called M2-brane).

The supermembrane action

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
0000					
oupor o brono intoractio					

- Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
- They can be described by worldvolume actions and by supersymmetric solutions of supergravity
- A typical example of super-p-brane is supermembrane (p = 2) which exists in D=4,5, 7 and in D=11 (where it is called M2-brane).

The supermembrane action

 The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$egin{aligned} S_{p=2} &= rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = \ &= -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; . \end{aligned}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
aupor a brono intoractio					

- Supersymmetric extended objects- especially 10D and 11D super-p-branes, play an important role in String/M-theory and ADS/CFT.
- They can be described by worldvolume actions and by supersymmetric solutions of supergravity
- A typical example of super-p-brane is supermembrane (p = 2) which exists in D=4,5, 7 and in D=11 (where it is called M2-brane).

The supermembrane action

 The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$egin{aligned} S_{
ho=2} &= rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = \ &= -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; . \end{aligned}$$

• In DNG: $g = det(g_{mn})$, is the determinant of the induced metric

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
Supermembrane action					

• The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$S_{
ho=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

• In DNG: $g = det(g_{mn})$, is the determinant of the induced metric,

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

 The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$S_{
ho=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int\limits_{W^3} \hat{C}_3 = -rac{1}{6} \int\limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int\limits_{W^3} \hat{C}_3 \; .$$

- In DNG: $g = det(g_{mn})$, is the determinant of the induced metric,
- $g_{mn} = \hat{E}^a_m \eta_{ab} \hat{E}^b_n$ is the induced metric, $\hat{E}^a_m := \partial_m \hat{Z}^M(\xi) E^a_M(\hat{Z})$,

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

• The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$S_{p=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

- In DNG: $g = det(g_{mn})$, is the determinant of the induced metric,
- $g_{mn} = \hat{E}^a_m \eta_{ab} \hat{E}^b_n$ is the induced metric, $\hat{E}^a_m := \partial_m \hat{Z}^M(\xi) E^a_M(\hat{Z})$,
- ²^M(ξ) are coordinates functions which determine the embedding of W³
 into Σ^(4|4) (for D=4 N=1)

$$W^3 \ \subset \Sigma^{(4|4)} \ : \qquad Z^M = \hat{Z}^M(\xi) = (\hat{x}^{\mu}(\xi), \hat{\theta}^{\check{lpha}}(\xi)) \; .$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

• The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$S_{p=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

- In DNG: $g = det(g_{mn})$, is the determinant of the induced metric,
- $g_{mn} = \hat{E}^a_m \eta_{ab} \hat{E}^b_n$ is the induced metric, $\hat{E}^a_m := \partial_m \hat{Z}^M(\xi) E^a_M(\hat{Z})$,
- ²^M(ξ) are coordinates functions which determine the embedding of W³
 into Σ^(4|4) (for D=4 N=1)

$$W^3 \ \subset \Sigma^{(4|4)} \ : \qquad Z^M = \hat{Z}^M(\xi) = (\hat{x}^{\mu}(\xi), \hat{\theta}^{\check{lpha}}(\xi)) \; .$$

• $\xi^m = (\tau, \sigma^1, \sigma^2)$ are local coordinates on the worldvolume W^3

00000 000000 000 000 000 00000000000000	Conclusions
	00

• The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$S_{p=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

- In DNG: $g = det(g_{mn})$, is the determinant of the induced metric,
- $g_{mn} = \hat{E}^a_m \eta_{ab} \hat{E}^b_n$ is the induced metric, $\hat{E}^a_m := \partial_m \hat{Z}^M(\xi) E^a_M(\hat{Z})$,
- ²^M(ξ) are coordinates functions which determine the embedding of W³
 into Σ^(4|4) (for D=4 N=1)

$$W^3 \ \subset \Sigma^{(4|4)} \ : \qquad Z^M = \hat{Z}^M(\xi) = (\hat{x}^{\mu}(\xi), \hat{\theta}^{\check{lpha}}(\xi)) \; .$$

• $\xi^m = (\tau, \sigma^1, \sigma^2)$ are local coordinates on the worldvolume W^3

• pull–back of the $\Sigma^{(4|4)}$ bosonic supervielbein form E^a to W^3 ,

$$\hat{E}^a = d\xi^m \hat{E}^a_m = d\hat{Z}^M(\xi) E^a_M(\hat{Z}) ,$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
Supermembrane action					

• The supermembrane action is given by the sum of the Dirac–Nambu–Goto (DNG) and the Wess–Zumino (WZ) terms,

$$S_{p=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

- In DNG: $g = det(g_{mn})$, is the determinant of the induced metric,
- $g_{mn} = \hat{E}^a_m \eta_{ab} \hat{E}^b_n$ is the induced metric, $\hat{E}^a_m := \partial_m \hat{Z}^M(\xi) E^a_M(\hat{Z})$,
- ²^M(ξ) are coordinates functions which determine the embedding of W³
 into Σ^(4|4) (for D=4 N=1)

$$W^3 \ \subset \Sigma^{(4|4)} \ : \qquad Z^M = \hat{Z}^M(\xi) = (\hat{x}^{\mu}(\xi), \hat{\theta}^{\check{lpha}}(\xi)) \; .$$

• $\xi^m = (\tau, \sigma^1, \sigma^2)$ are local coordinates on the worldvolume W^3

pull-back of the Σ^(4|4) bosonic supervielbein form E^a to W³,

$$\hat{E}^a = d\xi^m \hat{E}^a_m = d\hat{Z}^M(\xi) E^a_M(\hat{Z}) \; ,$$

• \hat{E}^a is the Hodge dual two form $\hat{E}^a := \frac{1}{2} d\xi^m \wedge d\xi^n \sqrt{g} \epsilon_{mnk} g^{kl} \hat{E}_l^a$.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

.

$$S_{p=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

۲

$$S_{
ho=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

The second WZ term is given by integral of the pull–back to W³ of the three form potential defined on Σ^(4|4): C₃ := C₃(Z),

$$\begin{split} C_3 &= C_3(Z) = \frac{1}{3} dZ^{\underline{K}} \wedge dZ^{\underline{N}} \wedge dZ^{\underline{M}} C_{\underline{MNK}}(Z) := \frac{1}{3} E^{\underline{C}} \wedge E^{\underline{B}} \wedge E^{\underline{A}} C_{\underline{ABC}}(Z) \\ E^{\underline{A}} &:= (E^a, E^{\alpha}, \bar{E}^{\dot{\alpha}}) = dZ^{\underline{M}} E_{\underline{M}}^{\underline{A}}(Z) , \quad \alpha = 1, 2, \quad \dot{\alpha} = 1, 2 . \end{split}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

۲

$$S_{
ho=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

 The second WZ term is given by integral of the pull-back to W³ of the three form potential defined on Σ^(4|4): Ĉ₃ := C₃(Ẑ),

$$\begin{split} C_3 &= C_3(Z) = \frac{1}{3} dZ^{\underline{K}} \wedge dZ^{\underline{N}} \wedge dZ^{\underline{M}} C_{\underline{MNK}}(Z) := \frac{1}{3} E^{\underline{C}} \wedge E^{\underline{B}} \wedge E^{\underline{A}} C_{\underline{ABC}}(Z) \\ E^{\underline{A}} &:= (E^a, E^{\alpha}, \bar{E}^{\dot{\alpha}}) = dZ^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(Z) , \quad \alpha = 1, 2, \quad \dot{\alpha} = 1, 2 . \end{split}$$

In flat superspace (SSP) E^a = dX^a − i(dθσ^aθ̄ − c.c.), E^α = dθ^α, C₃ = c₃ such that h₄ = dc₃ := −ⁱ/₄E^b ∧ E^a ∧ E^βσ_{abαβ} + c.c. is closed,

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

$$S_{p=2} = rac{1}{2} \int d^3 \xi \sqrt{g} - \int \limits_{W^3} \hat{C}_3 = -rac{1}{6} \int \limits_{W^3} * \hat{E}_a \wedge \hat{E}^a - \int \limits_{W^3} \hat{C}_3 \; .$$

 The second WZ term is given by integral of the pull–back to W³ of the three form potential defined on Σ^(4|4): Ĉ₃ := C₃(Ż),

$$\begin{split} C_3 &= C_3(Z) = \frac{1}{3} dZ^{\underline{K}} \wedge dZ^{\underline{N}} \wedge dZ^{\underline{M}} C_{\underline{MNK}}(Z) := \frac{1}{3} E^{\underline{C}} \wedge E^{\underline{B}} \wedge E^{\underline{A}} C_{\underline{ABC}}(Z) ,\\ E^{\underline{A}} &:= (E^a, E^{\alpha}, \bar{E}^{\dot{\alpha}}) = dZ^{\underline{M}} E_{\underline{M}}{}^{\underline{A}}(Z) , \quad \alpha = 1, 2, \quad \dot{\alpha} = 1, 2 . \end{split}$$

In flat superspace (SSP) E^a = dX^a − i(dθσ^aθ̄ − c.c.), E^α = dθ^α, C₃ = c₃ such that h₄ = dc₃ := −ⁱ/₄E^b ∧ E^a ∧ E^βσ_{abαβ} + c.c. is closed,

and the action possesses a 2-parametric local fermionic κ–symmetry

$$\begin{split} i_{\kappa}\hat{E}^{a} &:= \delta_{\kappa}\hat{Z}^{M}E_{M}{}^{a}(\hat{Z}) = 0 , \qquad i_{\kappa}\hat{E}^{\alpha} = \kappa^{\alpha} = \bar{\kappa}_{\dot{\alpha}}\tilde{\gamma}^{\dot{\beta}\alpha} , \\ \bar{\gamma}_{\beta\dot{\alpha}} &= \epsilon_{\beta\alpha}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\gamma}^{\dot{\beta}\alpha} = \frac{i}{3!\sqrt{g}}\sigma^{a}_{\beta\dot{\alpha}}\epsilon_{abcd}\epsilon^{mnk}\hat{E}^{b}_{m}\hat{E}^{c}_{n}\hat{E}^{d}_{k} , \quad \bar{\gamma}_{\beta\dot{\beta}}\tilde{\gamma}^{\dot{\beta}\alpha} = \delta_{\beta}{}^{\alpha} \end{split}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000	000000	000	00	00000000	00
Supermembrane action					

 $\bar{\gamma}$

$$\begin{split} i_{\kappa} \hat{E}^{a} &:= \delta_{\kappa} \hat{Z}^{M} E_{M}{}^{a} (\hat{Z}) = 0 , \qquad i_{\kappa} \hat{E}^{\alpha} = \kappa^{\alpha} = \bar{\kappa}_{\dot{\alpha}} \tilde{\bar{\gamma}}^{\dot{\beta}\alpha} , \\ \beta_{\dot{\alpha}} &= \epsilon_{\beta\alpha} \epsilon_{\dot{\alpha}\dot{\beta}} \tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \frac{i}{3! \sqrt{a}} \sigma^{a}_{\beta\dot{\alpha}} \epsilon_{abcd} \epsilon^{mnk} \hat{E}^{b}_{m} \hat{E}^{c}_{n} \hat{E}^{d}_{k} , \quad \bar{\gamma}_{\beta\dot{\beta}} \tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \delta_{\beta}{}^{\alpha} \end{split}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

• κ -symmetry transformations of D = 4 N = 1 supermembrane (p = 2)

$$\begin{split} i_{\kappa} \hat{E}^{a} &:= \delta_{\kappa} \hat{Z}^{M} E_{M}{}^{a} (\hat{Z}) = 0 , \qquad i_{\kappa} \hat{E}^{\alpha} = \kappa^{\alpha} = \bar{\kappa}_{\dot{\alpha}} \tilde{\bar{\gamma}}^{\dot{\beta}\alpha} , \\ \bar{\gamma}_{\beta\dot{\alpha}} &= \epsilon_{\beta\alpha} \epsilon_{\dot{\alpha}\dot{\alpha}} \tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \frac{i}{21/2} \sigma^{a}_{\beta\dot{\alpha}} \epsilon_{abcd} \epsilon^{mnk} \hat{E}^{b}_{m} \hat{E}^{c}_{n} \hat{E}^{d}_{k} , \quad \bar{\gamma}_{\beta\dot{\alpha}} \tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \delta_{\beta} \end{split}$$

 α

 This κ-symmetry [de Azcarraga & Lukierski 82, Siegel 83 for p=0, Green & Schwarz 84 for p=1, Achucarro, Gauntlett, Itoh and Townsend 89 for p=2, D=4] is important: it reflects the supersymmetry preserved by the ground state of the supermembrane (which is thus the 1/2 BPS state).

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000	000000	000	00	000000000	00
Supermembrane action					

$$i_{\kappa}\hat{E}^{a} := \delta_{\kappa}\hat{Z}^{M}E_{M}{}^{a}(\hat{Z}) = 0 , \qquad i_{\kappa}\hat{E}^{\alpha} = \kappa^{\alpha} = \bar{\kappa}_{\dot{\alpha}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha} ,$$

$$\bar{\gamma}_{\beta\dot{\alpha}} = \epsilon_{\beta\alpha}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha} = \frac{i}{3!\sqrt{g}}\sigma^{a}_{\beta\dot{\alpha}}\epsilon_{abcd}\epsilon^{mnk}\hat{E}^{b}_{m}\hat{E}^{c}_{n}\hat{E}^{d}_{k} \;, \quad \bar{\gamma}_{\beta\dot{\beta}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha} = \delta_{\beta}{}^{\alpha}$$

- This κ-symmetry [de Azcarraga & Lukierski 82, Siegel 83 for p=0, Green & Schwarz 84 for p=1, Achucarro, Gauntlett, Itoh and Townsend 89 for p=2, D=4] is important: it reflects the supersymmetry preserved by the ground state of the supermembrane (which is thus the 1/2 BPS state).
- The supermembrane action in curved superspace possesses κ -symmetry if E^a , E^{α} and $H_4 = dC_3$ obey the SSP SUGRA constraints.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

$$i_{\kappa}\hat{E}^{a} := \delta_{\kappa}\hat{Z}^{M}E_{M}{}^{a}(\hat{Z}) = 0 , \qquad i_{\kappa}\hat{E}^{\alpha} = \kappa^{\alpha} = \bar{\kappa}_{\dot{\alpha}}\tilde{\gamma}^{\dot{\beta}\alpha} ,$$

$$\bar{\gamma}_{\beta\dot{\alpha}} = \epsilon_{\beta\alpha}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha} = \frac{i}{3!\sqrt{g}}\sigma^{a}_{\beta\dot{\alpha}}\epsilon_{abcd}\epsilon^{mnk}\hat{E}^{b}_{m}\hat{E}^{c}_{n}\hat{E}^{d}_{k} \;, \quad \bar{\gamma}_{\beta\dot{\beta}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha} = \delta_{\beta}{}^{\alpha}$$

- This κ-symmetry [de Azcarraga & Lukierski 82, Siegel 83 for p=0, Green & Schwarz 84 for p=1, Achucarro, Gauntlett, Itoh and Townsend 89 for p=2, D=4] is important: it reflects the supersymmetry preserved by the ground state of the supermembrane (which is thus the 1/2 BPS state).
- The supermembrane action in curved superspace possesses κ -symmetry if E^a , E^{α} and $H_4 = dC_3$ obey the SSP SUGRA constraints.
- The supermembrane exists in the dimensions in which the H₄ constraints are consistent with SUGRA constraints.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ ΟΟΟ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

$$i_{\kappa}\hat{E}^{a} := \delta_{\kappa}\hat{Z}^{M}E_{M}{}^{a}(\hat{Z}) = 0, \qquad i_{\kappa}\hat{E}^{\alpha} = \kappa^{\alpha} = \bar{\kappa}_{\dot{\alpha}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha},$$

$$\bar{\gamma}_{\beta\dot{\alpha}} = \epsilon_{\beta\alpha}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha} = \frac{i}{3!\sqrt{g}}\sigma^{a}_{\beta\dot{\alpha}}\epsilon_{abcd}\epsilon^{mnk}\hat{E}^{b}_{m}\hat{E}^{c}_{n}\hat{E}^{d}_{k} \;, \quad \bar{\gamma}_{\beta\dot{\beta}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha} = \delta_{\beta}{}^{\alpha}$$

- This κ-symmetry [de Azcarraga & Lukierski 82, Siegel 83 for p=0, Green & Schwarz 84 for p=1, Achucarro, Gauntlett, Itoh and Townsend 89 for p=2, D=4] is important: it reflects the supersymmetry preserved by the ground state of the supermembrane (which is thus the 1/2 BPS state).
- The supermembrane action in curved superspace possesses κ -symmetry if E^a , E^{α} and $H_4 = dC_3$ obey the SSP SUGRA constraints.
- The supermembrane exists in the dimensions in which the H₄ constraints are consistent with SUGRA constraints.
- For D = 4 N = 1 the SUGRA constraints are off-shell

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

$$i_{\kappa}\hat{E}^{a}:=\delta_{\kappa}\hat{Z}^{M}E_{M}{}^{a}(\hat{Z})=0, \qquad i_{\kappa}\hat{E}^{\alpha}=\kappa^{\alpha}=\bar{\kappa}_{\dot{\alpha}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha},$$

$$\bar{\gamma}_{\beta\dot{\alpha}} = \epsilon_{\beta\alpha}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \frac{i}{3!\sqrt{g}}\sigma^{a}_{\beta\dot{\alpha}}\epsilon_{abcd}\epsilon^{mnk}\hat{E}^{b}_{m}\hat{E}^{c}_{n}\hat{E}^{d}_{k} \;, \quad \bar{\gamma}_{\beta\dot{\beta}}\tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \delta_{\beta}{}^{\alpha}$$

- This κ-symmetry [de Azcarraga & Lukierski 82, Siegel 83 for p=0, Green & Schwarz 84 for p=1, Achucarro, Gauntlett, Itoh and Townsend 89 for p=2, D=4] is important: it reflects the supersymmetry preserved by the ground state of the supermembrane (which is thus the 1/2 BPS state).
- The supermembrane action in curved superspace possesses κ -symmetry if E^a , E^{α} and $H_4 = dC_3$ obey the SSP SUGRA constraints.
- The supermembrane exists in the dimensions in which the H₄ constraints are consistent with SUGRA constraints.
- For D = 4 N = 1 the SUGRA constraints are off-shell
- \Rightarrow one can write the superfield action of SUGRA, S_{SG} and the interacting SUGRA+supermembrane action $S_{SG} + S_{p=2}$.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane action					

$$i_{\kappa}\hat{E}^{a}:=\delta_{\kappa}\hat{Z}^{M}E_{M}{}^{a}(\hat{Z})=0, \qquad i_{\kappa}\hat{E}^{\alpha}=\kappa^{\alpha}=\bar{\kappa}_{\dot{\alpha}}\tilde{\tilde{\gamma}}^{\dot{\beta}\alpha},$$

$$\bar{\gamma}_{\beta\dot{\alpha}} = \epsilon_{\beta\alpha}\epsilon_{\dot{\alpha}\dot{\beta}}\tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \frac{i}{3!\sqrt{g}}\sigma^{a}_{\beta\dot{\alpha}}\epsilon_{abcd}\epsilon^{mnk}\hat{E}^{b}_{m}\hat{E}^{c}_{n}\hat{E}^{d}_{k} \;, \quad \bar{\gamma}_{\beta\dot{\beta}}\tilde{\bar{\gamma}}^{\dot{\beta}\alpha} = \delta_{\beta}{}^{\alpha}$$

- This κ-symmetry [de Azcarraga & Lukierski 82, Siegel 83 for p=0, Green & Schwarz 84 for p=1, Achucarro, Gauntlett, Itoh and Townsend 89 for p=2, D=4] is important: it reflects the supersymmetry preserved by the ground state of the supermembrane (which is thus the 1/2 BPS state).
- The supermembrane action in curved superspace possesses κ -symmetry if E^a , E^{α} and $H_4 = dC_3$ obey the SSP SUGRA constraints.
- The supermembrane exists in the dimensions in which the H₄ constraints are consistent with SUGRA constraints.
- For D = 4 N = 1 the SUGRA constraints are off-shell
- \Rightarrow one can write the superfield action of SUGRA, S_{SG} and the interacting SUGRA+supermembrane action $S_{SG} + S_{p=2}$.
- one can obtain the supergravity superfield equations with the contributions of supermembrane supercurrent(s).

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
0000					
Supermembrane action					

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

• We can obtain the supermembrane supercurrent varying the supermembrane action with respect to SUGRA superfields

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

- We can obtain the supermembrane supercurrent varying the supermembrane action with respect to SUGRA superfields
- To this end we have to chose an appropriate off-shell SUGRA formulation

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

- We can obtain the supermembrane supercurrent varying the supermembrane action with respect to SUGRA superfields
- To this end we have to chose an appropriate off-shell SUGRA formulation
- This SUGRA formulation must allow for the existence of closed 4-form $H_4 = dC_3$ on its (off-shell) superspace.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000					
Supermembrane action					

- We can obtain the supermembrane supercurrent varying the supermembrane action with respect to SUGRA superfields
- To this end we have to chose an appropriate off-shell SUGRA formulation
- This SUGRA formulation must allow for the existence of closed 4-form $H_4 = dC_3$ on its (off-shell) superspace.
- The standard minimal supergravity allows for the existence of such $H_4 = dC_3$, so that the supermembrane can propagate in the off-shell minimal SUGRA background.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
0000					
Supermembrane action					

- We can obtain the supermembrane supercurrent varying the supermembrane action with respect to SUGRA superfields
- To this end we have to chose an appropriate off-shell SUGRA formulation
- This SUGRA formulation must allow for the existence of closed 4-form $H_4 = dC_3$ on its (off-shell) superspace.
- The standard minimal supergravity allows for the existence of such $H_4 = dC_3$, so that the supermembrane can propagate in the off-shell minimal SUGRA background.
- But, as we will see, the supermembrane coupling to *dynamical* supergravity implies an additional restriction on minimal supergravity supermultiplet.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Outline					

- Introduction
 - SUSY extended objects, super-p-branes, and their description
 - The supermembrane action and its properties
- 2 Minimal and special minimal supergravity.
 - Supergravity in superspace. Minimal off-shell formulation.
 - Closed 4-form in SSP and supermembrane in minimal SUGRA background
 - Closed 3-form potential and special minimal SUGRA
- Oynamical generation of cosmological constant in special minimal supergravity.
 - Superfield equations of special minimal SUGRA
 - Dynamical generation of cosmological constant in sMin SUGRA
- Supermembrane supercurrent and its contribution to the supergravity superfield equations
 - Supermembrane supercurrent vector superfield J_a
 - Supergravity superfield equations with supermembrane current
- Spacetime component equations of the D = 4 N = 7supergravity–supermembrane interacting system
 - $WZ_{\hat{\theta}=0}$ gauge
- 6 Conclusions and outlook
 - Conclusions

Intro. Supermembrane	Special min SUGRA ●OOOOO	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superspace SUGRA					

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Superspace SUGRA					

• Minimal supergravity constraints and their consequences can be collected in (see [Wess & Zumino 77, Grimm, Wess & Zumino 78])

$$T^{a} := \mathcal{D}E^{a} = -2i\sigma_{\alpha\dot{\alpha}}^{a}E^{\alpha} \wedge \bar{E}^{\dot{\alpha}} - \frac{1}{8}E^{b} \wedge E^{c}\varepsilon^{a}_{bcd}G^{d} ,$$
$$T^{\alpha} := \mathcal{D}E^{\alpha} = \frac{i}{8}E^{c} \wedge E^{\beta}(\sigma_{c}\tilde{\sigma}_{d})_{\beta}{}^{\alpha}G^{d} - \frac{i}{8}E^{c} \wedge \bar{E}^{\dot{\beta}}\epsilon^{\alpha\beta}\sigma_{c\beta\dot{\beta}}R + \frac{1}{2}E^{c} \wedge E^{b}T_{bc}{}^{\alpha}$$

Intro. Supermembrane	Special min SUGRA ●OOOOO	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Superspace SUGRA					

 Minimal supergravity constraints and their consequences can be collected in (see [Wess & Zumino 77, Grimm, Wess & Zumino 78])

$$\begin{split} T^{a} &:= \mathcal{D}E^{a} = -2i\sigma_{\alpha\dot{\alpha}}^{a}E^{\alpha} \wedge \bar{E}^{\dot{\alpha}} - \frac{1}{8}E^{b} \wedge E^{c}\varepsilon^{a}_{bcd}G^{d} ,\\ T^{\alpha} &:= \mathcal{D}E^{\alpha} = \frac{i}{8}E^{c} \wedge E^{\beta}(\sigma_{c}\tilde{\sigma}_{d})_{\beta}{}^{\alpha}G^{d} - \frac{i}{8}E^{c} \wedge \bar{E}^{\dot{\beta}}\epsilon^{\alpha\beta}\sigma_{c\beta\dot{\beta}}R + \frac{1}{2}E^{c} \wedge E^{b}T_{bc}{}^{\alpha} \end{split}$$

• These expressions for bosonic and fermionic torsion 2-forms involve main superfields $R = (\bar{R})^*$, and $G_a = (G_a)^*$, which obey $(G_{\alpha\dot{\alpha}} := G_a \sigma^a_{\alpha\dot{\alpha}})$

$$\begin{split} \mathcal{D}_{\alpha}\bar{R} &= 0 , \qquad \bar{\mathcal{D}}_{\dot{\alpha}}R = 0 , \\ \bar{\mathcal{D}}^{\dot{\alpha}}\mathcal{G}_{\alpha\dot{\alpha}} &= -\mathcal{D}_{\alpha}R , \qquad \mathcal{D}^{\alpha}\mathcal{G}_{\alpha\dot{\alpha}} = -\bar{\mathcal{D}}_{\dot{\alpha}}\bar{R} \end{split}$$

Intro. Supermembrane	Special min SUGRA ●OOOOO	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Superspace SUGRA					

 Minimal supergravity constraints and their consequences can be collected in (see [Wess & Zumino 77, Grimm, Wess & Zumino 78])

$$\begin{split} T^{a} &:= \mathcal{D}E^{a} = -2i\sigma_{\alpha\dot{\alpha}}^{a}E^{\alpha} \wedge \bar{E}^{\dot{\alpha}} - \frac{1}{8}E^{b} \wedge E^{c}\varepsilon^{a}_{bcd}G^{d} ,\\ T^{\alpha} &:= \mathcal{D}E^{\alpha} = \frac{i}{8}E^{c} \wedge E^{\beta}(\sigma_{c}\tilde{\sigma}_{d})_{\beta}{}^{\alpha}G^{d} - \frac{i}{8}E^{c} \wedge \bar{E}^{\dot{\beta}}\epsilon^{\alpha\beta}\sigma_{c\beta\dot{\beta}}R + \frac{1}{2}E^{c} \wedge E^{b}T_{bc}{}^{\alpha} \end{split}$$

• These expressions for bosonic and fermionic torsion 2-forms involve main superfields $R = (\bar{R})^*$, and $G_a = (G_a)^*$, which obey $(G_{\alpha\dot{\alpha}} := G_a \sigma^a_{\alpha\dot{\alpha}})$

$$\mathcal{D}_{\alpha}\bar{R} = 0, \qquad \bar{\mathcal{D}}_{\dot{\alpha}}R = 0,$$

 $\bar{\mathcal{D}}^{\dot{\alpha}}G_{\alpha\dot{\alpha}} = -\mathcal{D}_{\alpha}R, \qquad \mathcal{D}^{\alpha}G_{\alpha\dot{\alpha}} = -\bar{\mathcal{D}}_{\dot{\alpha}}\bar{R}$

 One more main superfields enter the decomposition of the superfield generalization of the gravitino field strength T_{bc}^{\u03c4}(Z),

$$T_{\alpha\dot{\alpha}\ \beta\dot{\beta}\ \gamma} \equiv \sigma^{a}_{\alpha\dot{\alpha}}\sigma^{b}_{\beta\dot{\beta}}\epsilon_{\gamma\delta}T_{ab}^{\delta} = -\frac{1}{8}\epsilon_{\alpha\beta}\bar{\mathcal{D}}_{(\dot{\alpha}|}G_{\gamma|\dot{\beta})} - \frac{1}{8}\epsilon_{\dot{\alpha}\dot{\beta}}[W_{\alpha\beta\gamma} - 2\epsilon_{\gamma(\alpha}\mathcal{D}_{\beta)}R]$$
Intro. Supermembrane	Special min SUGRA ●OOOOO	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Superspace SUGRA					

Minimal SUGRA in superspace

• Minimal supergravity constraints and their consequences can be collected in (see [Wess & Zumino 77, Grimm, Wess & Zumino 78])

$$\begin{split} T^{a} &:= \mathcal{D}E^{a} = -2i\sigma_{\alpha\dot{\alpha}}^{a}E^{\alpha} \wedge \bar{E}^{\dot{\alpha}} - \frac{1}{8}E^{b} \wedge E^{c}\varepsilon^{a}_{bcd}G^{d} ,\\ T^{\alpha} &:= \mathcal{D}E^{\alpha} = \frac{i}{8}E^{c} \wedge E^{\beta}(\sigma_{c}\tilde{\sigma}_{d})_{\beta}{}^{\alpha}G^{d} - \frac{i}{8}E^{c} \wedge \bar{E}^{\dot{\beta}}\epsilon^{\alpha\beta}\sigma_{c\beta\dot{\beta}}R + \frac{1}{2}E^{c} \wedge E^{b}T_{bc}{}^{\alpha} \end{split}$$

• These expressions for bosonic and fermionic torsion 2-forms involve main superfields $R = (\bar{R})^*$, and $G_a = (G_a)^*$, which obey $(G_{\alpha\dot{\alpha}} := G_a \sigma^a_{\alpha\dot{\alpha}})$

$$\mathcal{D}_{lpha} ar{R} = \mathbf{0} , \qquad ar{\mathcal{D}}_{\dot{lpha}} R = \mathbf{0} , \ ar{\mathcal{D}}^{\dot{lpha}} \mathbf{G}_{lpha \dot{lpha}} = - \mathcal{D}_{lpha} R , \qquad \mathcal{D}^{lpha} \mathbf{G}_{lpha \dot{lpha}} = - ar{\mathcal{D}}_{\dot{lpha}} ar{R}$$

 One more main superfields enter the decomposition of the superfield generalization of the gravitino field strength T_{bc}^{\u03c4}(Z),

$$T_{\alpha\dot{\alpha}\ \beta\dot{\beta}\ \gamma} \equiv \sigma^{a}_{\alpha\dot{\alpha}}\sigma^{b}_{\beta\dot{\beta}}\epsilon_{\gamma\delta}T_{ab}^{\delta} = -\frac{1}{8}\epsilon_{\alpha\beta}\bar{\mathcal{D}}_{(\dot{\alpha}|}G_{\gamma|\dot{\beta})} - \frac{1}{8}\epsilon_{\dot{\alpha}\dot{\beta}}[W_{\alpha\beta\gamma} - 2\epsilon_{\gamma(\alpha}\mathcal{D}_{\beta)}R]$$

• It is symmetric, $W_{\alpha\beta\gamma} = W_{(\alpha\beta\gamma)}$, and chiral

$$ar{\mathcal{D}}_{\dot{lpha}} W^{lphaeta\gamma} = \mathbf{0} , \qquad \mathcal{D}_{lpha} ar{W}^{\dot{lpha}\dot{eta}\dot{\gamma}} = \mathbf{0} .$$

Intro. Supermembrane	Special min SUGRA O●OOOO	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superspace SUGRA					

Intro. Supermembrane	Special min SUGRA O●○○○○	Dynamical generation of Λ ΟΟΟ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superspace SUGRA					

• The superfield generalization of the Ricci tensor is

$$egin{array}{lll} R_{bc}{}^{ac} = & rac{1}{32} (\mathcal{D}^eta ar{\mathcal{D}}^{(\dotlpha)} G^{lpha|\doteta)} - ar{\mathcal{D}}^{\doteta} \mathcal{D}^{(eta} G^{lpha)\dotlpha}) \sigma^a_{lpha\dotlpha} \sigma_{beta\doteta} & - \ & - rac{3}{64} (ar{\mathcal{D}}ar{\mathcal{D}}ar{R} + \mathcal{D}\mathcal{D}R - 4Rar{R}) \delta^a_b \;. \end{array}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Superspace SUGRA					

The superfield generalization of the Ricci tensor is

$$egin{array}{lll} R_{bc}{}^{ac} = & rac{1}{32} (\mathcal{D}^eta ar{\mathcal{D}}^{(\dotlpha)} G^{lpha|\doteta)} - ar{\mathcal{D}}^{\doteta} \mathcal{D}^{(eta} G^{lpha)\dotlpha}) \sigma^a_{lpha\dotlpha} \sigma_{beta\doteta} & - \ & - rac{3}{64} (ar{\mathcal{D}}ar{\mathcal{D}}ar{R} + \mathcal{D}\mathcal{D}R - 4Rar{R}) \delta^a_b \;. \end{array}$$

• and the superfield generalization of the *l.h.s.* of the supergravity Rarita–Schwinger equation reads $\epsilon^{abcd} T_{bc}{}^{\alpha} \sigma_{d\alpha\dot{\alpha}} = \frac{i}{8} \tilde{\sigma}^{a\dot{\beta}\beta} \bar{\mathcal{D}}_{(\dot{\beta}|} G_{\beta|\dot{\alpha})} + \frac{3i}{8} \sigma^{a}_{\beta\dot{\alpha}} \mathcal{D}^{\beta} R$,

Intro. Supermembrane	Special min SUGRA O●○○○○	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superspace SUGRA					

• The superfield generalization of the Ricci tensor is

$$egin{array}{lll} R_{bc}{}^{ac} = & rac{1}{32} (\mathcal{D}^eta ar{\mathcal{D}}^{(\dotlpha)} G^{lpha|\doteta)} - ar{\mathcal{D}}^{\doteta} \mathcal{D}^{(eta} G^{lpha)\dotlpha}) \sigma^a_{lpha\dotlpha} \sigma_{beta\doteta} & - \ & - rac{3}{64} (ar{\mathcal{D}} ar{\mathcal{D}} ar{R} + \mathcal{D} \mathcal{D} R - 4 R ar{R}) \delta^a_b \,. \end{array}$$

• and the superfield generalization of the *l.h.s.* of the supergravity Rarita–Schwinger equation reads $\epsilon^{abcd} T_{bc}{}^{\alpha} \sigma_{d\alpha\dot{\alpha}} = \frac{i}{8} \tilde{\sigma}^{a\dot{\beta}\beta} \bar{\mathcal{D}}_{(\dot{\beta}|} \mathcal{G}_{\beta|\dot{\alpha})} + \frac{3i}{8} \sigma^{a}_{\beta\dot{\alpha}} \mathcal{D}^{\beta} \mathcal{R} ,$

• This suggests that superfield supergravity equation should have the form

$$G_a=0\;,\qquad R=0\;,\qquad ar{R}=0\;.$$

Intro. Supermembrane	Special min SUGRA O●○○○○	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superspace SUGRA					

• The superfield generalization of the Ricci tensor is

$$egin{array}{lll} R_{bc}{}^{ac} = & rac{1}{32} (\mathcal{D}^eta ar{\mathcal{D}}^{(\dotlpha)} G^{lpha|\doteta)} - ar{\mathcal{D}}^{\doteta} \mathcal{D}^{(eta} G^{lpha)\dotlpha}) \sigma^a_{lpha\dotlpha} \sigma_{beta\doteta} & - \ & - rac{3}{64} (ar{\mathcal{D}} ar{\mathcal{D}} ar{R} + \mathcal{D} \mathcal{D} R - 4 R ar{R}) \delta^a_b \,. \end{array}$$

• and the superfield generalization of the *l.h.s.* of the supergravity Rarita–Schwinger equation reads $\epsilon^{abcd} T_{bc}{}^{\alpha} \sigma_{d\alpha\dot{\alpha}} = \frac{i}{8} \tilde{\sigma}^{a\dot{\beta}\beta} \bar{\mathcal{D}}_{(\dot{\beta}|} \mathcal{G}_{\beta|\dot{\alpha})} + \frac{3i}{8} \sigma^{a}_{\beta\dot{\alpha}} \mathcal{D}^{\beta} \mathcal{R} ,$

• This suggests that superfield supergravity equation should have the form

$$G_a = 0$$
, $R = 0$, $\bar{R} = 0$.

• Indeed, these \Rightarrow 'free' SUGRA equations of motion

$$R_{bc}^{\ \ ac} = 0 \;, \qquad \epsilon^{abcd} T_{bc}^{\ \ lpha} \sigma_{dlpha \dot{lpha}} = 0 \;.$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 4-form and support	mombrano in minimal				

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions			
	000000							
Closed 4-form and super	losed 4 form and supermembrane in minimal SI IGRA SSP							

 The superspace of minimal supergravity allows for existence of two closed 4-forms

$$\begin{split} H_{4L} &= -\frac{i}{4} E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} - \frac{1}{128} E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd} R \,, \\ dH_{4L} &= 0 \,, \end{split}$$

and its complex conjugate $H_{4R} = (H_{4L})^*$.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 4-form and super	membrane in minimal S	SUGRA SSP			

• The superspace of minimal supergravity allows for existence of two closed 4-forms

$$\begin{split} H_{4L} &= -\frac{i}{4} E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} - \frac{1}{128} E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd} R \,, \\ dH_{4L} &= 0 \,, \end{split}$$

and its complex conjugate $H_{4R} = (H_{4L})^*$.

• We assume $H_4 = dC_3 = H_{4L} + H_{4R}$.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions			
00000	00000	000	00	000000000	00			
Closed 4-form and super	losed 4-form and supermembrane in minimal SUGRA SSP							

 The superspace of minimal supergravity allows for existence of two closed 4-forms

$$\begin{split} H_{4L} &= -\frac{i}{4} E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} - \frac{1}{128} E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd} R \,, \\ dH_{4L} &= 0 \,, \end{split}$$

and its complex conjugate $H_{4R} = (H_{4L})^*$.

- We assume $H_4 = dC_3 = H_{4L} + H_{4R}$.
- This knowledge is completely sufficient to study the supermembrane *in* the background of minimal D = 4, $\mathcal{N} = 1$ supergravity.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	00000				
Closed 4-form and super	membrane in minimal S	SUGRA SSP			

• The superspace of minimal supergravity allows for existence of two closed 4-forms

$$\begin{split} H_{4L} &= -\frac{i}{4} E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} - \frac{1}{128} E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd} R \,, \\ dH_{4L} &= 0 \,, \end{split}$$

and its complex conjugate $H_{4R} = (H_{4L})^*$.

- We assume $H_4 = dC_3 = H_{4L} + H_{4R}$.
- This knowledge is completely sufficient to study the supermembrane *in the background* of minimal D = 4, $\mathcal{N} = 1$ supergravity.
- Indeed, $\delta S_{p=2} = -\frac{1}{2} \int_{W^3} *\hat{E}_a \wedge \delta \hat{E}^a \int_{W^3} \delta \hat{C}_3$, and, when the variation are produced by $\delta \hat{Z}^M$ only, the variations of the 'potentials' are expressed in terms of 'contractions' of the field strengths superforms $\delta \hat{E}^a = i_{\delta} T^a$, $\delta \hat{C}_3 = i_{\delta} H_4$
- (with $i_{\delta}\hat{E}^{A} := \delta \hat{Z}^{M} E^{A}_{M}(\hat{Z})$, $i_{\delta}(\Omega_{\rho} \wedge \Omega_{q}) := \Omega_{\rho} \wedge i_{\delta}\Omega_{q} + (-)^{q} i_{\delta}\Omega_{\rho} \wedge \Omega_{q}$ for any p- and q-forms).

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 3-form potential a	and special minimal SU	GRA			

Basic variations and prepotentials of minimal supergravity

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions			
	000000							

Basic variations and prepotentials of minimal supergravity

• The knowledge of $T^a = DE^a$ and $H_4 = dC_3$ is not sufficient when one studies the supermembaane interaction with *dynamical* supergravity.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				

Basic variations and prepotentials of minimal supergravity

• The knowledge of $T^a = DE^a$ and $H_4 = dC_3$ is not sufficient when one studies the supermembaane interaction with *dynamical* supergravity.

• in this case,
$$\delta S_{p=2} = -\frac{1}{2} \int_{W^3} * \hat{E}_a \wedge \delta \hat{E}^a - \int_{W^3} \delta \hat{C}_3$$
 with $\delta \hat{E}^a = \delta E^a|_{Z^M = \hat{Z}^M}$

and $\delta \hat{C}_3 = \delta C_3|_{Z^M = \hat{Z}^M}$ with $\delta E^a(Z)$ and $\delta C_3(Z)$ expressed in terms of basic supergravity variations.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				

Basic variations and prepotentials of minimal supergravity

• The knowledge of $T^a = DE^a$ and $H_4 = dC_3$ is not sufficient when one studies the supermembaane interaction with *dynamical* supergravity.

• in this case,
$$\delta S_{p=2} = -\frac{1}{2} \int_{W^3} * \hat{E}_a \wedge \delta \hat{E}^a - \int_{W^3} \delta \hat{C}_3$$
 with $\delta \hat{E}^a = \delta E^a|_{Z^M = \hat{Z}^M}$

and $\delta \hat{C}_3 = \delta C_3|_{Z^M = \hat{Z}^M}$ with $\delta E^a(Z)$ and $\delta C_3(Z)$ expressed in terms of basic supergravity variations.

• Clearly $\delta E^a(Z)$ and $\delta C_3(Z)$ are not arbitrary as far as $E^a(Z)$ and $C_3(Z)$ obey the superspace SUGRA constraints. The basic variations are free parameters of the solution of the equations stating that the constraints are preserved by variation.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				

Basic variations and prepotentials of minimal supergravity

• The knowledge of $T^a = DE^a$ and $H_4 = dC_3$ is not sufficient when one studies the supermembaane interaction with *dynamical* supergravity.

• in this case,
$$\delta S_{p=2} = -\frac{1}{2} \int_{W^3} * \hat{E}_a \wedge \delta \hat{E}^a - \int_{W^3} \delta \hat{C}_3$$
 with $\delta \hat{E}^a = \delta E^a|_{Z^M = \hat{Z}^M}$

and $\delta \hat{C}_3 = \delta C_3|_{Z^M = \hat{Z}^M}$ with $\delta E^a(Z)$ and $\delta C_3(Z)$ expressed in terms of basic supergravity variations.

- Clearly $\delta E^a(Z)$ and $\delta C_3(Z)$ are not arbitrary as far as $E^a(Z)$ and $C_3(Z)$ obey the superspace SUGRA constraints. The basic variations are free parameters of the solution of the equations stating that the constraints are preserved by variation.
- The admissible variations of supervielbein read [Wess & Zumino 78]

$$\begin{split} \delta E^{a} &= E^{a}(\Lambda(\delta) + \bar{\Lambda}(\delta)) - \frac{1}{4} E^{b} \tilde{\sigma}^{\dot{\alpha}\alpha}_{b} [\mathcal{D}_{\alpha}, \bar{\mathcal{D}}_{\dot{\alpha}}] \delta H^{a} + i E^{\alpha} \mathcal{D}_{\alpha} \delta H^{a} - i \bar{E}^{\dot{\alpha}} \bar{\mathcal{D}}_{\dot{\alpha}} \delta H^{a} ,\\ \delta E^{\alpha} &= E^{a} \Xi^{a}_{a}(\delta) + E^{\alpha} \Lambda(\delta) + \frac{1}{8} \bar{E}^{\dot{\alpha}} R \sigma_{a\dot{\alpha}}{}^{\alpha} \delta H^{a} , \end{split}$$

where

$$2\Lambda(\delta) + \bar{\Lambda}(\delta) = \frac{1}{4} \tilde{\sigma}_{a}^{\dot{\alpha}\alpha} \mathcal{D}_{\alpha} \bar{\mathcal{D}}_{\dot{\alpha}} \delta H^{a} + \frac{1}{8} G_{a} \delta H^{a} + 3(\mathcal{D}\mathcal{D} - \bar{R}) \delta \mathcal{U}$$

and the explicit expression for $\Xi_a^{\alpha}(\delta)$ is not needed for our discussion.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 3-form potential a	and special minimal SU	GRA			

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 3-form potential a	nd special minimal SUC	GRA			

The above expressions for δE^A in terms of δH^a and (DD - R)δU can be used to obtains the superfield equations of supergravity from the superspace action [Wess & Zumino 77, 78]

$$S_{SG} = \int d^4 x ilde{d}^4 heta \; sdet(E^A_{M}) \; \equiv \int d^8 Z \; E \; .$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 3-form potential a	nd special minimal SUC	GRA			

The above expressions for δE^A in terms of δH^a and (DD - R)δU can be used to obtains the superfield equations of supergravity from the superspace action [Wess & Zumino 77, 78]

$$S_{SG} = \int d^4 x ilde{d}^4 heta \; sdet(E^A_{
m {\it M}}) \; \equiv \int d^8 Z \; E \; .$$

• To this end one calculates the variation of superdeterminant of the supervielbein

$$\delta E = E[-\frac{1}{12}\tilde{\sigma}_{a}^{\dot{\alpha}\alpha}[\mathcal{D}_{\alpha},\bar{\mathcal{D}}_{\dot{\alpha}}]\delta H^{a} + \frac{1}{6}G_{a}\,\delta H^{a} + 2(\bar{\mathcal{D}}\bar{\mathcal{D}}-R)\delta\bar{\mathcal{U}} + 2(\mathcal{D}\mathcal{D}-\bar{R})\delta\bar{\mathcal{U}}]\delta\bar{\mathcal{U}}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 3-form potential a	nd special minimal SUC	GRA			

• The above expressions for δE^A in terms of δH^a and $(\mathcal{DD} - \bar{R})\delta \mathcal{U}$ can be used to obtains the superfield equations of supergravity from the superspace action [Wess & Zumino 77, 78]

$$S_{SG} = \int d^4 x ilde{d}^4 heta \; extsf{sdet}(E^A_{ extsf{M}}) \; \equiv \int d^8 Z \; E \; .$$

• To this end one calculates the variation of superdeterminant of the supervielbein

$$\delta E = E[-\frac{1}{12}\tilde{\sigma}_{a}^{\dot{\alpha}\alpha}[\mathcal{D}_{\alpha},\bar{\mathcal{D}}_{\dot{\alpha}}]\delta H^{a} + \frac{1}{6}G_{a}\,\delta H^{a} + 2(\bar{\mathcal{D}}\bar{\mathcal{D}}-R)\delta\bar{\mathcal{U}} + 2(\mathcal{D}\mathcal{D}-\bar{R})\delta\bar{\mathcal{U}}]\delta\bar{\mathcal{U}}$$

• finding $\delta S_{SG} = \int d^8 Z E \left[\frac{1}{6} G_a \ \delta H^a - 2R \ \delta \bar{\mathcal{U}} - 2\bar{R} \ \delta \mathcal{U} \right]$,

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 3-form potential a	nd special minimal SUC	GRA			

• The above expressions for δE^A in terms of δH^a and $(\mathcal{DD} - \bar{R})\delta \mathcal{U}$ can be used to obtains the superfield equations of supergravity from the superspace action [Wess & Zumino 77, 78]

$$S_{SG} = \int d^4 x ilde{d}^4 heta \; extsf{sdet}(E^A_{ extsf{M}}) \; \equiv \int d^8 Z \; E \; .$$

• To this end one calculates the variation of superdeterminant of the supervielbein

$$\delta E = E[-\frac{1}{12}\tilde{\sigma}_{a}^{\dot{\alpha}\alpha}[\mathcal{D}_{\alpha},\bar{\mathcal{D}}_{\dot{\alpha}}]\delta H^{a} + \frac{1}{6}G_{a}\,\delta H^{a} + 2(\bar{\mathcal{D}}\bar{\mathcal{D}}-R)\delta\bar{\mathcal{U}} + 2(\mathcal{D}\mathcal{D}-\bar{R})\delta\mathcal{U}]$$

- finding $\delta S_{SG} = \int d^8 Z E \left[\frac{1}{6} G_a \ \delta H^a 2R \ \delta \bar{\mathcal{U}} 2\bar{R} \ \delta \mathcal{U} \right]$,
- \Rightarrow the expected SUGRA superfield equations $G_a = 0$ and R = 0.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	00000				
Closed 3-form potential a	and special minimal SU	GRA			

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	00000				
Closed 2 form potential a	and enocial minimal SL				

• When supermembrane action interacting with dynamical minimal supergravity is considered one has to vary as well the three form potential *C*₃.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
Closed 2 form potential a	and apopulation minimal CLU				

- When supermembrane action interacting with dynamical minimal supergravity is considered one has to vary as well the three form potential *C*₃.
- $H_4 = dC_3 = -\frac{i}{4}E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} \frac{1}{128}E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd}R$ +*c.c.* is expressed in terms of SUGRA potentials.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				

- When supermembrane action interacting with dynamical minimal supergravity is considered one has to vary as well the three form potential *C*₃.
- $H_4 = dC_3 = -\frac{i}{4}E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} \frac{1}{128}E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd}R$ +*c.c.* is expressed in terms of SUGRA potentials.
- Then it is natural to expect that δC₃ is expressed through the same basic SUGRA variations δH^a, δU, δŪ.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				

- When supermembrane action interacting with dynamical minimal supergravity is considered one has to vary as well the three form potential *C*₃.
- $H_4 = dC_3 = -\frac{i}{4}E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} \frac{1}{128}E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd}R$ +*c.c.* is expressed in terms of SUGRA potentials.
- Then it is natural to expect that δC₃ is expressed through the same basic SUGRA variations δH^a, δU, δŪ.
- However, the situation is more complicated.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				

- When supermembrane action interacting with dynamical minimal supergravity is considered one has to vary as well the three form potential *C*₃.
- $H_4 = dC_3 = -\frac{i}{4}E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} \frac{1}{128}E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd}R$ +*c.c.* is expressed in terms of SUGRA potentials.
- Then it is natural to expect that δC₃ is expressed through the same basic SUGRA variations δH^a, δU, δŪ.
- However, the situation is more complicated.
- In the search for $\delta C_3 = \delta C_3(\delta H^a, \delta U, \delta \overline{U})$ starting from δH_4 , one finds that the solution exists *provided* the δU and $\delta \overline{U}$ are expressed (essentially) in terms of one real variation $\delta V = (\delta V)^*$,

$$(\mathcal{D}\mathcal{D}-\bar{R})\delta\mathcal{U}=rac{1}{12}(\mathcal{D}\mathcal{D}-\bar{R})\left(i\delta V+rac{1}{2}ar{\mathcal{D}}_{\dot{lpha}}\deltaar{\kappa}^{\dot{lpha}}
ight)$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				

Closed 3-form potential in SSP of minimal SUGRA

- When supermembrane action interacting with dynamical minimal supergravity is considered one has to vary as well the three form potential *C*₃.
- $H_4 = dC_3 = -\frac{i}{4}E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} \frac{1}{128}E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd}R$ +*c.c.* is expressed in terms of SUGRA potentials.
- Then it is natural to expect that δC₃ is expressed through the same basic SUGRA variations δH^a, δU, δŪ.
- However, the situation is more complicated.
- In the search for $\delta C_3 = \delta C_3(\delta H^a, \delta U, \delta \overline{U})$ starting from δH_4 , one finds that the solution exists *provided* the δU and $\delta \overline{U}$ are expressed (essentially) in terms of one real variation $\delta V = (\delta V)^*$,

$$(\mathcal{D}\mathcal{D}-\bar{R})\delta\mathcal{U}=rac{1}{12}(\mathcal{D}\mathcal{D}-\bar{R})\left(i\delta V+rac{1}{2}\bar{\mathcal{D}}_{\dot{lpha}}\deltaar{\kappa}^{\dot{lpha}}
ight)$$

• This implies certain modification of the auxiliary field sector of SUGRA,

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
	000000				
o					

- When supermembrane action interacting with dynamical minimal supergravity is considered one has to vary as well the three form potential *C*₃.
- $H_4 = dC_3 = -\frac{i}{4}E^b \wedge E^a \wedge E^\alpha \wedge E^\beta \sigma_{ab\ \alpha\beta} \frac{1}{128}E^d \wedge E^c \wedge E^b \wedge E^a \epsilon_{abcd}R$ +*c.c.* is expressed in terms of SUGRA potentials.
- Then it is natural to expect that δC₃ is expressed through the same basic SUGRA variations δH^a, δU, δŪ.
- However, the situation is more complicated.
- In the search for $\delta C_3 = \delta C_3(\delta H^a, \delta U, \delta \overline{U})$ starting from δH_4 , one finds that the solution exists *provided* the δU and $\delta \overline{U}$ are expressed (essentially) in terms of one real variation $\delta V = (\delta V)^*$,

$$(\mathcal{D}\mathcal{D}-\bar{R})\delta\mathcal{U}=rac{1}{12}(\mathcal{D}\mathcal{D}-\bar{R})\left(i\delta V+rac{1}{2}\bar{\mathcal{D}}_{\dot{lpha}}\delta\bar{\kappa}^{\dot{lpha}}
ight)$$

- This implies certain modification of the auxiliary field sector of SUGRA,
- The corresponding off–shell formulation of SUGRA which we call *special* minimal SUGRA was described by Siegel [78], Siegel and Gates [79] and Waldram and Ovrut [97]

Intro. Superm	embrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Qualization						
Outline						
1	Intro	duction				
	o Sl	JSY extende	d objects, super-	- <i>p</i> –branes, and their	description	
	• Th	ie supermem	brane action and	d its properties		
2	Minin	nal and spec	ial minimal supe	rgravity.		
	St	upergravity in	superspace. Mi	nimal off–shell formu	lation.	
	• Cl	osed 4-form	in SSP and supe	ermembrane in minin	nal SUGRA	
	ba	ckground				
_	• Cl	osed 3-form	potential and spe	ecial minimal SUGR/	4	
3	Dyna	imical genera	ation of cosmolog	gical constant in spe	cial minimal	
	supe	rgravity.				
	St	perfield equa	ations of special	minimal SUGRA		
	Oy	/namical gen	eration of cosmo	ological constant in s	Min SUGRA	
4		rmembrane	supercurrent and	d its contribution to th	ne supergravity	
		rfield equatio				
	St	upermembrar	he supercurrent v	vector superfield J_a		
_	St	upergravity su	uperfield equatio	ns with supermembr	ane current	
5		etime compo	onent equations (of the $D = 4 \mathcal{N} = 1$		
		rgravity-supe	ermembrane inte	eracting system		
_	• W	$Z_{\widehat{ heta}=0}$ gauge				
6	Conc	lusions and	outlook			

- Conclusions

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ ●○○	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superfield eqs. of sMin S	UGRA				

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ ●○○	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superfield eqs. of sMin S	UGRA				

• In terms of prepotential approach, the special minimal SUGRA has the chiral compensator which is not a generic but a special chiral superfield, constructed from real scalar prepotential $V = V^*$ and not from the complex one $(\overline{D}\overline{D}V$ with $V = V^*$ vs $\overline{D}\overline{D}U$ with $U \neq U^*$ in the flat superspace).

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ ●○○	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superfield eqs. of sMin S	UGRA				

- In terms of prepotential approach, the special minimal SUGRA has the chiral compensator which is not a generic but a special chiral superfield, constructed from real scalar prepotential $V = V^*$ and not from the complex one $(\overline{D}\overline{D}V$ with $V = V^*$ vs $\overline{D}\overline{D}U$ with $U \neq U^*$ in the flat superspace).
- In terms of component formulation, in special minimal SUGRA one of two auxiliary scalars of the generic minimal SUGRA [Stelle & West 78, Ferrara & van Nieuwenhuizen 78] is replaced by a divergence of an auxiliary vector, S → ∂_μk^μ.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ ●○○	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superfield eqs. of sMin S	UGRA				

- In terms of prepotential approach, the special minimal SUGRA has the chiral compensator which is not a generic but a special chiral superfield, constructed from real scalar prepotential $V = V^*$ and not from the complex one $(\overline{D}\overline{D}V$ with $V = V^*$ vs $\overline{D}\overline{D}U$ with $U \neq U^*$ in the flat superspace).
- In terms of component formulation, in special minimal SUGRA one of two auxiliary scalars of the generic minimal SUGRA [Stelle & West 78, Ferrara & van Nieuwenhuizen 78] is replaced by a divergence of an auxiliary vector, S → ∂_μk^μ.
- This seemingly minor modification has drastic consequence already in the case of 'free' supergravity:

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ ●○○	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
Superfield eqs. of sMin S	UGRA				

- In terms of prepotential approach, the special minimal SUGRA has the chiral compensator which is not a generic but a special chiral superfield, constructed from real scalar prepotential $V = V^*$ and not from the complex one $(\overline{D}\overline{D}V$ with $V = V^*$ vs $\overline{D}\overline{D}U$ with $U \neq U^*$ in the flat superspace).
- In terms of component formulation, in special minimal SUGRA one of two auxiliary scalars of the generic minimal SUGRA [Stelle & West 78, Ferrara & van Nieuwenhuizen 78] is replaced by a divergence of an auxiliary vector, S → ∂_μk^μ.
- This seemingly minor modification has drastic consequence already in the case of 'free' supergravity:
- it results in the dynamical generation of cosmological constant [the effect first described in superfield context by Ogievetsky and Sokatchev [1980]].

Intro. Supermembrane Spec	cial min SUGRA Dynam	ical generation of A Supercurre	ents and SUGRA eqs. Spacetime	e component eqs Conclusions
00000 000	0000 000	00	00000	000 00

Dynamical generation of cosmological constant in sMin SUGRA

Dynamical generation of cosmological constant in sMin SUGRA
Intro. Supermembrane Special mir	SUGRA Dynamical generation	of A Supercurrents and S	SUGRA eqs. Spacetime compone	nt eqs Conclusions
	000			

Dynamical generation of cosmological constant in sMin SUGRA

• Substituting
$$(\mathcal{D}\mathcal{D} - \bar{R})\delta\mathcal{U} = \frac{1}{12}(\mathcal{D}\mathcal{D} - \bar{R})(i\delta V + \frac{1}{2}\bar{\mathcal{D}}_{\dot{\alpha}}\delta\bar{\kappa}^{\dot{\alpha}})$$
, one finds

$$\begin{split} \delta S_{SG} &= \frac{1}{6} \int d^{8} Z E \left[G_{a} \, \delta H^{a} + (R - \bar{R}) i \delta V \right] - \\ &- \frac{1}{12} \int d^{8} Z E \left(R D_{\alpha} \delta \kappa^{\alpha} + \bar{R} \bar{D}_{\dot{\alpha}} \delta \bar{\kappa}^{\dot{\alpha}} \right) \, . \end{split}$$

000000 00000 000 000 00000	000	

Dynamical generation of cosmological constant in sMin SUGRA

• Substituting
$$(\mathcal{D}\mathcal{D} - \bar{R})\delta\mathcal{U} = \frac{1}{12}(\mathcal{D}\mathcal{D} - \bar{R})(i\delta V + \frac{1}{2}\bar{\mathcal{D}}_{\dot{\alpha}}\delta\bar{\kappa}^{\dot{\alpha}})$$
, one finds

$$\begin{split} \delta S_{SG} &= \frac{1}{6} \int d^8 Z E \left[G_a \; \delta H^a + (R - \bar{R}) i \delta V \right] - \\ &- \frac{1}{12} \int d^8 Z E \; \left(R D_\alpha \delta \kappa^\alpha + \bar{R} \bar{D}_{\dot{\alpha}} \delta \bar{\kappa}^{\dot{\alpha}} \right) \; . \end{split}$$

• Thus special minimal SUGRA is characterized by the same vector superfield equation $G_a = 0$,

00000 0000000 0 0 00 0000000 00	Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
		000000	000			

Dynamical generation of cosmological constant in sMin SUGRA

• Substituting
$$(\mathcal{D}\mathcal{D} - \bar{R})\delta\mathcal{U} = \frac{1}{12}(\mathcal{D}\mathcal{D} - \bar{R})(i\delta V + \frac{1}{2}\bar{\mathcal{D}}_{\dot{\alpha}}\delta\bar{\kappa}^{\dot{\alpha}})$$
, one finds

$$\begin{split} \delta S_{SG} &= \frac{1}{6} \int d^8 Z E \left[G_a \ \delta H^a + (R - \bar{R}) i \delta V \right] - \\ &- \frac{1}{12} \int d^8 Z E \left(R D_\alpha \delta \kappa^\alpha + \bar{R} \bar{D}_{\dot{\alpha}} \delta \bar{\kappa}^{\dot{\alpha}} \right) \ . \end{split}$$

- Thus special minimal SUGRA is characterized by the same vector superfield equation $G_a = 0$,
- but, instead of complex scalar superfield equation, R = 0, one obtains only $R \overline{R} = 0$.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
		000			

Dynamical generation of cosmological constant in sMin SUGRA

• Substituting
$$(\mathcal{D}\mathcal{D} - \bar{R})\delta\mathcal{U} = \frac{1}{12}(\mathcal{D}\mathcal{D} - \bar{R})(i\delta V + \frac{1}{2}\bar{\mathcal{D}}_{\dot{\alpha}}\delta\bar{\kappa}^{\dot{\alpha}})$$
, one finds

$$\begin{split} \delta S_{SG} &= \frac{1}{6} \int d^8 Z E \left[G_a \, \delta H^a + (R - \bar{R}) i \delta V \right] - \\ &- \frac{1}{12} \int d^8 Z E \left(R \mathcal{D}_\alpha \delta \kappa^\alpha + \bar{R} \bar{\mathcal{D}}_{\dot{\alpha}} \delta \bar{\kappa}^{\dot{\alpha}} \right) \,. \end{split}$$

- Thus special minimal SUGRA is characterized by the same vector superfield equation G_a = 0,
- but, instead of complex scalar superfield equation, R = 0, one obtains only R - R
 = 0.

$$R = 4c$$
, $\overline{R} = 4c$, $c = const = c^*$.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
		000			

Dynamical generation of cosmological constant in sMin SUGRA

• Substituting
$$(\mathcal{D}\mathcal{D} - \bar{R})\delta\mathcal{U} = \frac{1}{12}(\mathcal{D}\mathcal{D} - \bar{R})(i\delta V + \frac{1}{2}\bar{\mathcal{D}}_{\dot{\alpha}}\delta\bar{\kappa}^{\dot{\alpha}})$$
, one finds

$$\begin{split} \delta S_{SG} &= \frac{1}{6} \int d^8 Z E \left[G_a \, \delta H^a + (R - \bar{R}) i \delta V \right] - \\ &- \frac{1}{12} \int d^8 Z E \left(R \mathcal{D}_\alpha \delta \kappa^\alpha + \bar{R} \bar{\mathcal{D}}_{\dot{\alpha}} \delta \bar{\kappa}^{\dot{\alpha}} \right) \,. \end{split}$$

- Thus special minimal SUGRA is characterized by the same vector superfield equation G_a = 0,
- but, instead of complex scalar superfield equation, R = 0, one obtains only $R \overline{R} = 0$.

$$R = 4c$$
, $\overline{R} = 4c$, $c = const = c^*$.

• As far as $R_{bc}{}^{ac} = -\frac{3}{64}(\bar{D}\bar{D}\bar{R} + DDR - 4R\bar{R})\delta^a_b + O(G_a)$ the superfield equations \Rightarrow Einstein equation with cosmological constant

$$R_{bc}{}^{ac} = 3c^2 \delta_b{}^a$$
 .

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
		000			

Dynamical generation of cosmological constant in sMin SUGRA

• Substituting
$$(\mathcal{D}\mathcal{D} - \bar{R})\delta\mathcal{U} = \frac{1}{12}(\mathcal{D}\mathcal{D} - \bar{R})(i\delta V + \frac{1}{2}\bar{\mathcal{D}}_{\dot{\alpha}}\delta\bar{\kappa}^{\dot{\alpha}})$$
, one finds

$$\begin{split} \delta S_{SG} &= \frac{1}{6} \int d^8 Z E \left[G_a \, \delta H^a + (R - \bar{R}) i \delta V \right] - \\ &- \frac{1}{12} \int d^8 Z E \left(R \mathcal{D}_\alpha \delta \kappa^\alpha + \bar{R} \bar{\mathcal{D}}_{\dot{\alpha}} \delta \bar{\kappa}^{\dot{\alpha}} \right) \,. \end{split}$$

- Thus special minimal SUGRA is characterized by the same vector superfield equation $G_a = 0$,
- but, instead of complex scalar superfield equation, R = 0, one obtains only R - R
 = 0.

$$R = 4c$$
, $\overline{R} = 4c$, $c = const = c^*$.

• As far as $R_{bc}{}^{ac} = -\frac{3}{64}(\bar{D}\bar{D}\bar{R} + DDR - 4R\bar{R})\delta^{a}_{b} + O(G_{a})$ the superfield equations \Rightarrow Einstein equation with cosmological constant

$$R_{bc}^{ac} = 3c^2 \delta_b^a$$
.

• $-\Lambda \propto c^2$, *c* is an arbitrary integration constant \Rightarrow *cosmological constant is generated dynamically* in the special min SUGRA.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions			
		000						
Dynamical generation of cosmological constant in sMin SUGRA								

Special minimal SUGRA variations.

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A ○○●	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
Dynamical generation of	cosmological constant i	n sMin SUGRA			

Special minimal SUGRA variations.

• Resuming the special minimal SUGRA variation of the bosonic supervielbein and three form potential read (simplified):

$$\begin{split} \delta E^{a} &= E^{a}(\Lambda(\delta) + \bar{\Lambda}(\delta)) - \frac{1}{4} E^{b} \tilde{\sigma}_{b}^{\dot{\alpha}\alpha} [\mathcal{D}_{\alpha}, \bar{\mathcal{D}}_{\dot{\alpha}}] \delta H^{a} + i E^{\alpha} \mathcal{D}_{\alpha} \delta H^{a} - i \bar{E}^{\dot{\alpha}} \bar{\mathcal{D}}_{\dot{\alpha}} \delta H^{a} ,\\ \delta C_{3} &= \frac{1}{3!} E^{C} \wedge E^{B} \wedge E^{A} \beta_{ABC}(\delta) \end{split}$$

where

$$\begin{aligned} 2\Lambda(\delta) + \bar{\Lambda}(\delta) &= \frac{1}{4} \tilde{\sigma}_{a}^{\dot{\alpha}\alpha} \mathcal{D}_{\alpha} \bar{\mathcal{D}}_{\dot{\alpha}} \delta H^{a} + \frac{1}{8} G_{a} \delta H^{a} + i/4 (\mathcal{D}\mathcal{D} - \bar{R}) \delta V ,\\ \text{and} \qquad \beta_{\alpha\beta\gamma}(\delta) &= 0 , \qquad \beta_{\alpha\beta\dot{\gamma}}(\delta) = 0 ,\\ \beta_{\alpha\dot{\beta}a}(\delta) &= i\sigma_{a\alpha\dot{\beta}} \delta V , \qquad \beta_{\alpha\beta a}(\delta) = -\sigma_{ab\ \alpha\beta} \delta H^{b} ,\\ \beta_{\alpha ab}(\delta) &= \frac{1}{2} \epsilon_{abcd} \sigma_{\alpha\dot{\alpha}}^{c} \bar{\mathcal{D}}^{\dot{\alpha}} \delta H^{d} + \frac{1}{2} \sigma_{ab\ \alpha}^{\beta} \mathcal{D}_{\beta} \delta V ,\\ \beta_{abc}(\delta) &= \frac{i}{8} \epsilon_{abcd} \left((\bar{\mathcal{D}}\bar{\mathcal{D}} - 1/2R) \delta H^{d} - c.c. \right) + \\ &+ \frac{1}{4} \epsilon_{abcd} G^{d} \delta V + \frac{1}{8} \epsilon_{abcd} \tilde{\sigma}^{d\dot{\gamma}\gamma} [\mathcal{D}_{\gamma}, \bar{\mathcal{D}}_{\dot{\gamma}}] \delta V . \end{aligned}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A ○○●	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
Dynamical generation of	cosmological constant i	n sMin SUGRA			

Special minimal SUGRA variations.

• Resuming the special minimal SUGRA variation of the bosonic supervielbein and three form potential read (simplified):

$$\begin{split} \delta E^{a} &= E^{a}(\Lambda(\delta) + \bar{\Lambda}(\delta)) - \frac{1}{4} E^{b} \tilde{\sigma}_{b}^{\dot{\alpha}\alpha} [\mathcal{D}_{\alpha}, \bar{\mathcal{D}}_{\dot{\alpha}}] \delta H^{a} + i E^{\alpha} \mathcal{D}_{\alpha} \delta H^{a} - i \bar{E}^{\dot{\alpha}} \bar{\mathcal{D}}_{\dot{\alpha}} \delta H^{a} ,\\ \delta C_{3} &= \frac{1}{3!} E^{C} \wedge E^{B} \wedge E^{A} \beta_{ABC}(\delta) \end{split}$$

where

Now we are ready to study the interacting system action S_{SG} + S_{p=2}.

Intro. Superm	embrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Outline						
1	Introd • SU • Th Minin	Juction JSY extended le supermem nal and speci	d objects, super- brane action and ial minimal super	<i>p</i> -branes, and their its properties gravity.	description	
	 St Cloba Cloba 	osed 4-form i ckground osed 3-form j	superspace. Min In SSP and super potential and spe	rmembrane in minim cial minimal SUGRA	nation. nal SUGRA	
3	Dyna supe • St • Dy	mical genera rgravity. perfield equa namical gene	ation of cosmolog ations of special r eration of cosmo	ical constant in spec ninimal SUGRA ogical constant in sl	cial minimal Min SUGRA	
4	Supe supe • Su • Su	rmembrane s rfield equatio ipermembrar ipergravity su	supercurrent and ns ne supercurrent v uperfield equatior	its contribution to the ector superfield J_a is with supermembra	e supergravity ane current	
5	Spac supe • W	etime compo rgravity–supe $Z_{\hat{\theta}=0}$ gauge	enent equations of ermembrane inter	f the $D = 4 \mathcal{N} = 1$ racting system		

- Conclusions and outlookConclusions
 - o Outloals

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions		
			\odot				
Suparmembrane suparcurrent /-							

Supermembrane supercurrent vector superfield

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Supermembrane superci	irrent /-				

Supermembrane supercurrent vector superfield

• Now we see that the $\propto \delta H^a$ variation of the supermembrane action gives us the vector supercurrent of the form

$$\begin{split} J_{a} &= \int_{W^{3}} \frac{1}{2\hat{E}} \hat{E}^{b} \wedge \hat{E}^{\alpha} \wedge \hat{E}^{\beta} \sigma_{ab\alpha\beta} \delta^{8}(Z - \hat{Z}) - \\ &- \int_{W^{3}} \frac{i}{2\hat{E}} \left(*\hat{E}_{a} \wedge \hat{E}^{\alpha} - \frac{i}{2} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \hat{E}_{\dot{\beta}} \epsilon_{abcd} \tilde{\sigma}^{d\dot{\beta}\alpha} \right) \mathcal{D}_{\alpha} \delta^{8}(Z - \hat{Z}) + c.c + \\ &+ \int_{W^{3}} \frac{1}{2 \cdot 4! \hat{E}} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \hat{E}^{d} \epsilon_{abcd} \left(\mathcal{D}\mathcal{D} - \frac{1}{2} \bar{R} \right) \delta^{8}(Z - \hat{Z}) + c.c. + \\ &+ \int_{W^{3}} \frac{1}{4! \hat{E}} * \hat{E}_{b} \wedge \hat{E}^{b} G_{a} \delta^{8}(Z - \hat{Z}) - \\ &- \int_{W^{3}} \frac{1}{4! \hat{E}} * \hat{E}_{c} \wedge \hat{E}^{b} \tilde{\sigma}^{d\dot{\alpha}\alpha} \left(3\delta^{c}_{a} \delta^{d}_{b} - \delta^{d}_{a} \delta^{c}_{b} \right) [\mathcal{D}_{\alpha}, \bar{\mathcal{D}}_{\dot{\alpha}}] \delta^{8}(Z - \hat{Z}) , \end{split}$$

where $\hat{E} = sdet(E_M^A(\hat{Z}))$ and $\delta^8(Z) := \frac{1}{16} \delta^4(x) \,\theta\theta \,\bar{\theta}\bar{\theta}$ is the superspace delta function which obeys $\int d^8Z \,\delta^8(Z-Z')f(Z) = f(Z')$ for any superfield f(Z).

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000	000000	000	0•	00000000	00
SUGRA superfield equati	ions				

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
			00		
011004					

• The supercurrent enters the vector superfield eq. of SUGRA $G_a = J_a$ which follows from the action of the SUGRA+SM interacting system

$$S = S_{SG} + rac{1}{6}S_{
m
ho=2} = \int d^8 Z E(Z) + rac{1}{12}\int d^3 \xi \sqrt{g} - rac{1}{6}\int\limits_{W^3} \hat{C}_3 \; ,$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000	000000	000	0•	00000000	00
SUGRA superfield equati	ions				

• The supercurrent enters the vector superfield eq. of SUGRA $G_a = J_a$ which follows from the action of the SUGRA+SM interacting system

$$S = S_{SG} + rac{1}{6}S_{
m p=2} = \int d^8 Z E(Z) + rac{1}{12}\int d^3 \xi \sqrt{g} - rac{1}{6}\int\limits_{W^3} \hat{C}_3 \; ,$$

• The scalar superfield equations $(\delta S / \delta V = 0)$ reads

$$R - \bar{R} = -i\mathcal{X}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
00000	000000	000	00	00000000	00
SUGRA superfield equati	ions				

• The supercurrent enters the vector superfield eq. of SUGRA $G_a = J_a$ which follows from the action of the SUGRA+SM interacting system

$$S = S_{SG} + rac{1}{6}S_{
m p=2} = \int d^8 Z E(Z) + rac{1}{12}\int d^3 \xi \sqrt{g} - rac{1}{6}\int\limits_{W^3} \hat{C}_3 \; ,$$

• The scalar superfield equations ($\delta S/\delta V = 0$) reads

$$R - \bar{R} = -i\mathcal{X}$$

• where the *real* superfield $\mathcal{X} = \mathcal{X}^*$ is given by

$$\begin{split} \mathcal{X} &= \frac{i}{E} \int_{W^3} \hat{E}^a \wedge \hat{E}^\alpha \wedge \hat{E}^{\dot{\alpha}} \sigma^a_{\alpha\dot{\alpha}} \, \delta^8(Z - \hat{Z}) + \\ &+ \int_{W^3} \left(-\frac{\hat{E}^b \wedge \hat{E}^a \wedge \hat{E}^\alpha}{4\hat{E}} \, \sigma_{ab\alpha}{}^\beta \mathcal{D}_\beta + c.c + \frac{\hat{E}^b \wedge \hat{E}^c \wedge \hat{E}^d}{2\cdot4!\hat{E}} \, \epsilon_{abcd} \tilde{\sigma}^{a\dot{\alpha}\alpha} [\mathcal{D}_\alpha, \bar{\mathcal{D}}_{\dot{\alpha}}] \right) \delta^8(Z - \hat{Z}) + \\ &+ \int_{W^3} \left(i \frac{*\hat{E}_a \wedge \hat{E}^a}{4!\hat{E}} \left(\mathcal{D}\mathcal{D} - \bar{R} \right) + c.c. + \frac{1}{4!\hat{E}} \hat{E}^b \wedge \hat{E}^c \wedge \hat{E}^d \epsilon_{abcd} G^a \right) \delta^8(Z - \hat{Z}) \, . \end{split}$$

	000000	000	O●	000000000000000	OO
SLIGRA superfield equat	ions				

• The supercurrent enters the vector superfield eq. of SUGRA $G_a = J_a$ which follows from the action of the SUGRA+SM interacting system

$$S = S_{SG} + rac{1}{6}S_{
ho=2} = \int d^8 Z E(Z) + rac{1}{12}\int d^3 \xi \sqrt{g} - rac{1}{6}\int\limits_{W^3} \hat{C}_3 \; ,$$

• The scalar superfield equations $(\delta S/\delta V = 0)$ reads

$$R - \bar{R} = -i\mathcal{X}$$

• where the *real* superfield $\mathcal{X} = \mathcal{X}^*$ is given by

$$\begin{split} \mathcal{X} &= \frac{i}{E} \int_{W^3} \hat{E}^a \wedge \hat{E}^\alpha \wedge \hat{\bar{E}}^{\dot{\alpha}} \sigma^a_{\alpha\dot{\alpha}} \, \delta^8(Z - \hat{Z}) + \\ &+ \int_{W^3} \left(-\frac{\hat{E}^b \wedge \hat{E}^a \wedge \hat{E}^\alpha}{4\hat{E}} \, \sigma_{ab\alpha}{}^\beta \mathcal{D}_\beta + \text{c.c} + \frac{\hat{E}^b \wedge \hat{E}^c \wedge \hat{E}^d}{2\cdot 4!\hat{E}} \, \epsilon_{abcd} \tilde{\sigma}^{a\dot{\alpha}\alpha} [\mathcal{D}_\alpha, \bar{\mathcal{D}}_{\dot{\alpha}}] \right) \delta^8(Z - \hat{Z}) + \\ &+ \int_{W^3} \left(i \frac{*\hat{E}_a \wedge \hat{E}^a}{4!\hat{E}} \left(\mathcal{D}\mathcal{D} - \bar{R} \right) + \text{c.c.} + \frac{1}{4!\hat{E}} \hat{E}^b \wedge \hat{E}^c \wedge \hat{E}^d \epsilon_{abcd} G^a \right) \delta^8(Z - \hat{Z}) \, . \end{split}$$

• Notice that $\bar{\mathcal{D}}^{\dot{\alpha}} G_{\alpha \dot{\alpha}} = -\mathcal{D}_{\alpha} R$ and c.c. \Rightarrow

 $ar{\mathcal{D}}^{\dot{lpha}} J_{lpha \dot{lpha}} = i \mathcal{D}_{lpha} \mathcal{X} \;, \qquad \mathcal{D}^{lpha} J_{lpha \dot{lpha}} = -i ar{\mathcal{D}}_{\dot{lpha}} \mathcal{X} \;.$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ ΟΟΟ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
Outline					
 Introd SL Th Minin Su Closed Cl	Juction JSY extended le supermem nal and speci upergravity in osed 4-form i ickground osed 3-form j	d objects, super- brane action and ial minimal super superspace. Mir n SSP and super potential and spe	p–branes, and their its properties gravity. imal off–shell formu rmembrane in minim cial minimal SUGR/	description Ilation. nal SUGRA	
 3 Dyna super • Su • Dyna super 	mical genera rgravity. Iperfield equa namical gen	ation of cosmolog ations of special r eration of cosmol	ical constant in spec minimal SUGRA logical constant in sl	cial minimal Min SUGRA	
 Super super super	rmembrane s rfield equatio permembrar pergravity su etime compo rgravity-supe	supercurrent and ns ne supercurrent v uperfield equation onent equations o ermembrane inter	its contribution to the ector superfield J_a is with supermembrations of the $D = 4 \ \mathcal{N} = 1$ racting system	ne supergravity ane current	

- WZ_{∂=0} gauge
 Conclusions and outlook
 - Conclusions

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
WZ a gauge					

$\mathsf{WZ}_{\hat{ heta}=\mathbf{0}}$ gauge

• We use the general coordinate invariance to fix the Wess–Zumino (WZ) gauge on supergravity superfields

$$\begin{split} \underline{i}_{\underline{\theta}} E^{\alpha} &:= \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\alpha} = \theta^{\alpha} , \qquad \underline{i}_{\underline{\theta}} E^{\dot{\alpha}} := \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\dot{\alpha}} = \overline{\theta}^{\dot{\alpha}} \\ \theta^{\alpha} &:= \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\alpha} , \qquad \overline{\theta}^{\dot{\alpha}} := \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\dot{\alpha}} , \\ \underline{i}_{\underline{\theta}} E^{\underline{a}} &:= \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\underline{a}} = 0 , \quad \underline{i}_{\theta} w^{\underline{a}\underline{b}} := \theta^{\underline{\beta}} w^{\underline{a}\underline{b}}_{\underline{\beta}} = 0 \end{split}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
WZ 🔬 . gauge					

 $\mathsf{WZ}_{\hat{ heta}=0}$ gauge

 We use the general coordinate invariance to fix the Wess–Zumino (WZ) gauge on supergravity superfields

$$\begin{split} \underline{i}_{\underline{\theta}} E^{\alpha} &:= \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\alpha} = \theta^{\alpha} , \qquad \underline{i}_{\underline{\theta}} E^{\dot{\alpha}} := \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\dot{\alpha}} = \overline{\theta}^{\dot{\alpha}} \\ \theta^{\alpha} &:= \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\alpha} , \qquad \overline{\theta}^{\dot{\alpha}} := \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\dot{\alpha}} , \\ \underline{i}_{\underline{\theta}} E^{\underline{a}} &:= \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\underline{a}} = 0 , \quad \underline{i}_{\theta} w^{\underline{a}\underline{b}} := \theta^{\underline{\beta}} w^{\underline{a}\underline{b}}_{\underline{\beta}} = 0 \end{split}$$

• and the local spacetime SUSY to set to zero the fermionic Goldstone field of the supermembrane,

$$\hat{ heta}^{lpha}(\xi) = 0 \qquad \Leftrightarrow \qquad \hat{ heta}^{lpha}(\xi) = 0 \;, \qquad \hat{ar{ heta}}^{\dot{lpha}}(\xi) = 0 \;.$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
WZ o gauge					

 $\mathsf{WZ}_{\hat{ heta}=0}$ gauge

 We use the general coordinate invariance to fix the Wess–Zumino (WZ) gauge on supergravity superfields

$$\begin{split} \underline{i}_{\underline{\theta}} E^{\alpha} & := \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\alpha} = \theta^{\alpha} , \qquad \underline{i}_{\underline{\theta}} E^{\dot{\alpha}} := \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\dot{\alpha}} = \overline{\theta}^{\dot{\alpha}} \\ \theta^{\alpha} & := \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\alpha} , \qquad \overline{\theta}^{\dot{\alpha}} := \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\dot{\alpha}} , \\ \underline{i}_{\underline{\theta}} E^{\underline{a}} & := \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\underline{a}} = 0 , \quad \underline{i}_{\theta} w^{\underline{a}\underline{b}} := \theta^{\underline{\beta}} w^{\underline{a}\underline{b}}_{\underline{\beta}} = 0 \end{split}$$

 and the local spacetime SUSY to set to zero the fermionic Goldstone field of the supermembrane,

$$\hat{ heta}^{\underline{lpha}}(\xi) = 0 \qquad \Leftrightarrow \qquad \hat{ heta}^{lpha}(\xi) = 0 \;, \qquad \hat{ar{ heta}}^{\dot{lpha}}(\xi) = 0 \;.$$

• The leading componet of supervielbein matrix has a triangular form

$$E_N{}^{\mathcal{A}}|_{\theta=0} = \begin{pmatrix} e_{\nu}^{\mathfrak{a}}(x) & \psi_{\overline{\nu}}^{\underline{\alpha}}(x) \\ 0 & \delta_{\beta}^{\underline{\alpha}} \end{pmatrix} \qquad \Rightarrow \qquad E_A{}^{\mathcal{N}}|_{\theta=0} = \begin{pmatrix} e_a^{\nu}(x) & -\psi_a^{\beta}(x) \\ 0 & \delta_{\underline{\alpha}}^{\beta} \end{pmatrix}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
WZ o gauge					

 $\mathsf{WZ}_{\hat{\theta}=\mathbf{0}}$ gauge

 We use the general coordinate invariance to fix the Wess–Zumino (WZ) gauge on supergravity superfields

$$\begin{split} \underline{i}_{\underline{\theta}} E^{\alpha} &:= \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\alpha} = \theta^{\alpha} , \qquad \underline{i}_{\underline{\theta}} E^{\dot{\alpha}} := \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\dot{\alpha}} = \overline{\theta}^{\dot{\alpha}} \\ \theta^{\alpha} &:= \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\alpha} , \qquad \overline{\theta}^{\dot{\alpha}} := \theta^{\underline{\beta}} \delta_{\underline{\beta}}^{\dot{\alpha}} , \\ \underline{i}_{\underline{\theta}} E^{\underline{a}} &:= \quad \theta^{\underline{\alpha}} E_{\underline{\alpha}}^{\underline{a}} = 0 , \quad \underline{i}_{\theta} w^{\underline{a}\underline{b}} := \theta^{\underline{\beta}} w^{\underline{a}\underline{b}}_{\underline{\beta}} = 0 \end{split}$$

 and the local spacetime SUSY to set to zero the fermionic Goldstone field of the supermembrane,

$$\hat{ heta}^{lpha}(\xi) = 0 \qquad \Leftrightarrow \qquad \hat{ heta}^{lpha}(\xi) = 0 \;, \qquad \hat{ar{ heta}}^{\dot{lpha}}(\xi) = 0 \;.$$

• The leading componet of supervielbein matrix has a triangular form

$$\mathsf{E}_{\mathsf{N}}{}^{\mathsf{A}}|_{\theta=0} = \begin{pmatrix} \mathsf{e}_{\nu}^{a}(x) & \psi_{\nu}^{\underline{\alpha}}(x) \\ 0 & \delta_{\underline{\beta}}{}^{\underline{\alpha}} \end{pmatrix} \qquad \Rightarrow \qquad \mathsf{E}_{\mathsf{A}}{}^{\mathsf{N}}|_{\theta=0} = \begin{pmatrix} \mathsf{e}_{a}^{\nu}(x) & -\psi_{a}^{\underline{\beta}}(x) \\ 0 & \delta_{\underline{\alpha}}{}^{\underline{\beta}} \end{pmatrix}$$

• Relation between the leading componet of T^{α}_{ab} and the true gravitino field strength

$$T_{ab}{}^{\alpha}|_{\theta=0} = 2e^{\mu}_{a}e^{\nu}_{b}\mathcal{D}_{[\mu}\psi^{\alpha}_{\nu]}(x) - \frac{i}{4}(\psi_{[a}\sigma_{b]})_{\dot{\beta}}G^{\alpha\dot{\beta}}|_{\theta=0} - \frac{i}{4}(\bar{\psi}_{[a}\tilde{\sigma}_{b]})^{\alpha}R|_{\theta=0}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
W7					

Current superfields in the $WZ_{\hat{\theta}=0}$ gauge

• We find that the vector and scalar superfields have the following form,

$$\begin{aligned} J_{\alpha\dot{\alpha}}|_{\dot{\theta}=0} &= \frac{\theta_{\beta}\,\bar{\theta}_{\dot{\beta}}}{8} (\,3\mathcal{P}_{a}{}^{b}(x)\sigma^{a}_{\alpha\dot{\alpha}}\tilde{\sigma}^{\beta\dot{\beta}}_{b} - 2\delta_{\alpha}{}^{\beta}\delta_{\dot{\alpha}}{}^{\dot{\beta}}\mathcal{P}_{b}{}^{b}(x) \\ &-i\frac{(\theta\theta - \bar{\theta}\bar{\theta})}{32}\sigma^{a}_{\alpha\dot{\alpha}}\mathcal{P}_{a}(x) + \propto \underline{\theta}^{\wedge3} \\ \mathcal{X}|_{\hat{\theta}=0} &= -\frac{\theta\sigma^{a}\bar{\theta}}{16}\mathcal{P}_{a} + i\frac{(\theta\theta - \bar{\theta}\bar{\theta})}{16}\mathcal{P}_{a}{}^{a}(x) + \propto \underline{\theta}^{\wedge3} \end{aligned}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
WZ gaugo					

Current superfields in the $WZ_{\hat{\theta}=0}$ gauge

• We find that the vector and scalar superfields have the following form,

$$\begin{aligned} J_{\alpha\dot{\alpha}}|_{\dot{\theta}=0} &= \frac{\theta_{\beta}\,\bar{\theta}_{\dot{\beta}}}{8} (\,3\mathcal{P}_{a}{}^{b}(x)\sigma_{\alpha\dot{\alpha}}^{a}\tilde{\sigma}_{b}^{\dot{\beta}\dot{\beta}} - 2\delta_{\alpha}{}^{\beta}\delta_{\dot{\alpha}}{}^{\dot{\beta}}\mathcal{P}_{b}{}^{b}(x) \\ &-i\frac{(\theta\theta-\bar{\theta}\bar{\theta})}{32}\sigma_{\alpha\dot{\alpha}}^{a}\mathcal{P}_{a}(x) + \propto \underline{\theta}^{\wedge3} \\ \mathcal{X}|_{\hat{\theta}=0} &= -\frac{\theta\sigma^{a}\bar{\theta}}{16}\mathcal{P}_{a} + i\frac{(\theta\theta-\bar{\theta}\bar{\theta})}{16}\mathcal{P}_{a}{}^{a}(x) + \propto \underline{\theta}^{\wedge3} \end{aligned}$$

• Where we have introduced the current pre-potential fields,

$$\begin{aligned} \mathcal{P}_{a}{}^{b}(x) &:= \int_{W^{3}} \frac{1}{\hat{e}} * \hat{e}_{a} \wedge \hat{e}^{b} \, \delta^{4}(x - \hat{x}) , \\ \mathcal{P}_{a}(x) &:= \int_{W^{3}} \frac{1}{\hat{e}} \epsilon_{abcd} \hat{e}^{b} \wedge \hat{e}^{c} \wedge \hat{e}^{d} \, \delta^{4}(x - \hat{x}) = \\ &= e_{a}^{\mu}(x) \int_{W^{3}} \epsilon_{\mu\nu\rho\sigma} d\hat{x}^{\nu} \wedge d\hat{x}^{\rho} \wedge d\hat{x}^{\sigma} \, \delta^{4}(x - \hat{x}) \end{aligned}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
WZ. gauge					

Current superfields in the WZ $_{\hat{\theta}=0}$ gauge

• We find that the vector and scalar superfields have the following form,

$$\begin{aligned} J_{\alpha\dot{\alpha}}|_{\dot{\theta}=0} &= \frac{\theta_{\beta}\,\bar{\theta}_{\dot{\beta}}}{8} (\,3\mathcal{P}_{a}{}^{b}(x)\sigma^{a}_{\alpha\dot{\alpha}}\tilde{\sigma}^{\beta\dot{\beta}}_{b} - 2\delta_{\alpha}{}^{\beta}\delta_{\dot{\alpha}}{}^{\dot{\beta}}\mathcal{P}_{b}{}^{b}(x) \\ &-i\frac{(\theta\theta - \bar{\theta}\bar{\theta})}{32}\sigma^{a}_{\alpha\dot{\alpha}}\mathcal{P}_{a}(x) + \propto \underline{\theta}^{\wedge3} \\ \mathcal{X}|_{\hat{\theta}=0} &= -\frac{\theta\sigma^{a}\bar{\theta}}{16}\mathcal{P}_{a} + i\frac{(\theta\theta - \bar{\theta}\bar{\theta})}{16}\mathcal{P}_{a}{}^{a}(x) + \propto \underline{\theta}^{\wedge3} \end{aligned}$$

Where we have introduced the current pre-potential fields,

$$\begin{aligned} \mathcal{P}_{a}{}^{b}(x) &:= \int_{W^{3}} \frac{1}{\hat{e}} * \hat{e}_{a} \wedge \hat{e}^{b} \, \delta^{4}(x - \hat{x}) , \\ \mathcal{P}_{a}(x) &:= \int_{W^{3}} \frac{1}{\hat{e}} \epsilon_{abcd} \hat{e}^{b} \wedge \hat{e}^{c} \wedge \hat{e}^{d} \, \delta^{4}(x - \hat{x}) = \\ &= e_{a}^{\mu}(x) \int_{W^{3}} \epsilon_{\mu\nu\rho\sigma} d\hat{x}^{\nu} \wedge d\hat{x}^{\rho} \wedge d\hat{x}^{\sigma} \, \delta^{4}(x - \hat{x}) \end{aligned}$$

• There is no explicit supermembrane contributions to the Rarita-Schwinger equations ,

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• We calculate the Einstein eq. using the vector and scalar current superfields,

$$\left. R_{bc}{}^{ac} \right|_{_{\theta=0}, \ \hat{\theta}=0} \quad = \quad -\frac{3}{32} T_2 \left(\mathcal{P}_b{}^a(x) - \frac{1}{2} \delta^a_b \mathcal{P}_c{}^c(x) \right) + \frac{3}{64} (R + \bar{R})^2 |_{_{\theta=0}} \delta^a_b \, .$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• We calculate the Einstein eq. using the vector and scalar current superfields,

$$R_{bc}{}^{ac}|_{\theta=0,\ \theta=0} = -\frac{3}{32} T_2 \left(\mathcal{P}_b{}^a(x) - \frac{1}{2} \delta^a_b \mathcal{P}_c{}^c(x) \right) + \frac{3}{64} (R+\bar{R})^2|_{\theta=0} \delta^a_b.$$

The last term needs a separate study,

$$R - \bar{R} = -iT_2 \mathcal{X} \qquad \Rightarrow \qquad \partial_\mu (R + \bar{R})|_{\theta=0} = \frac{T_2}{16} \int_{W^3} \epsilon_{\mu\nu\rho\sigma} d\hat{x}^\nu \wedge d\hat{x}^\rho \wedge d\hat{x}^\sigma \,\,\delta^4(x - \hat{x})$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• We calculate the Einstein eq. using the vector and scalar current superfields,

$$R_{bc}{}^{ac}|_{_{\theta=0}, \hat{\theta}=0} = -\frac{3}{32} T_2 \left(\mathcal{P}_b{}^a(x) - \frac{1}{2} \delta^a_b \mathcal{P}_c{}^c(x) \right) + \frac{3}{64} (R + \bar{R})^2|_{_{\theta=0}} \delta^a_b.$$

The last term needs a separate study,

$$|R-\bar{R}=-iT_2\mathcal{X}$$
 \Rightarrow $\partial_{\mu}(R+\bar{R})|_{\theta=0}=rac{T_2}{16}\int\limits_{W^3}\epsilon_{\mu
u
ho\sigma}d\hat{x}^{
u}\wedge d\hat{x}^{
ho}\wedge d\hat{x}^{\sigma}\,\delta^4(x-\hat{x})$

• The solution can be written in the form,

$$R(x) + \bar{R}(x) = 8c + \frac{T_2}{16} \int_{x_0}^x d\tilde{x}^{\mu} \int_{W^3} \epsilon_{\mu\nu\rho\sigma} d\hat{x}^{\nu} \wedge d\hat{x}^{\rho} \wedge d\hat{x}^{\sigma} \,\,\delta^4(\tilde{x} - \hat{x})$$

W7. 02000					
00000	000000	000	00	00000000	00
Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions

• It is easy to check that

$$\Theta(x,x_0|\hat{x}):=\int\limits_{x_0}^x d ilde{x}^\mu \int\limits_{W^3} \epsilon_{\mu
u
ho\sigma} d\hat{x}^
u\wedge d\hat{x}^
ho\wedge d\hat{x}^\sigma \; \delta^4(ilde{x}-\hat{x})$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
WZ o gauge					

• It is easy to check that

$$\Theta(x,x_0|\hat{x}) := \int\limits_{x_0}^{x} d\tilde{x}^{\mu} \int\limits_{W^3} \epsilon_{\mu\nu\rho\sigma} d\hat{x}^{\nu} \wedge d\hat{x}^{\rho} \wedge d\hat{x}^{\sigma} \ \delta^4(\tilde{x}-\hat{x})$$

obeys

$$\partial_\mu \Theta(x,x_0|\hat{x}) = \int\limits_{W^3} \epsilon_{\mu
u
ho\sigma} d\hat{x}^
u \wedge d\hat{x}^
ho \wedge d\hat{x}^\sigma \,\, \delta^4(x-\hat{x}) \; .$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
WZ o gauge					

• It is easy to check that

$$\Theta(x,x_0|\hat{x}) := \int\limits_{x_0}^{x} d\tilde{x}^{\mu} \int\limits_{W^3} \epsilon_{\mu\nu\rho\sigma} d\hat{x}^{\nu} \wedge d\hat{x}^{\rho} \wedge d\hat{x}^{\sigma} \ \delta^4(\tilde{x}-\hat{x})$$

obeys

$$\partial_{\mu}\Theta(x,x_0|\hat{x}) = \int\limits_{W^3} \epsilon_{\mu
u
ho\sigma} d\hat{x}^{
u} \wedge d\hat{x}^{
ho} \wedge d\hat{x}^{\sigma} \,\,\delta^4(x-\hat{x}) \;.$$

• Then, we can writte

$$R(x) + \bar{R}(x) = 8c + \frac{T_2}{16}\Theta(x, x_0|\hat{x})$$

W/7	000000				
00000	000000	000	00	00000000	00
Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions

• It is easy to check that

$$\Theta(x,x_0|\hat{x}) := \int\limits_{x_0}^{x} d\tilde{x}^{\mu} \int\limits_{W^3} \epsilon_{\mu\nu\rho\sigma} d\hat{x}^{\nu} \wedge d\hat{x}^{\rho} \wedge d\hat{x}^{\sigma} \ \delta^4(\tilde{x}-\hat{x})$$

obeys

$$\partial_{\mu}\Theta(x,x_0|\hat{x}) = \int\limits_{W^3} \epsilon_{\mu
u
ho\sigma} d\hat{x}^{
u} \wedge d\hat{x}^{
ho} \wedge d\hat{x}^{\sigma} \,\,\delta^4(x-\hat{x}) \;.$$

• Then, we can writte

$$R(x)+\bar{R}(x)=8c+\frac{T_2}{16}\Theta(x,x_0|\hat{x})$$

• And finally we obtain,

$$\begin{aligned} R_{bc}{}^{ac}(x) &= -\frac{3T_2}{32} \left(\mathcal{P}_b{}^a(x) - \frac{1}{2} \delta_b^a \mathcal{P}_c{}^c(x) \right) \\ &+ 3\delta_b^a \left(c^2 + \left(\left(\frac{T_2}{128} + c \right)^2 - c^2 \right) \Theta(x, x_0 | \hat{x}) \right) \end{aligned}$$

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• We can separate these contributions in three different classes

$$R_{acb}{}^{c}(x) = \eta_{ab} \, 3c^{2} + T_{2} \left(\mathcal{T}_{ab}^{sing}(x) + \mathcal{T}_{ab}^{reg}(x) \right)$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• We can separate these contributions in three different classes

$$R_{acb}{}^{c}(x) = \eta_{ab} \, 3c^{2} + T_{2} \left(\mathcal{T}_{ab}^{sing}(x) + \mathcal{T}_{ab}^{reg}(x) \right)$$

• The first one is proportional to an arbitrary integration constant

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• We can separate these contributions in three different classes

$$R_{acb}{}^{c}(x) = \eta_{ab} \, 3c^{2} + T_{2} \left(\mathcal{T}_{ab}^{sing}(x) + \mathcal{T}_{ab}^{reg}(x) \right)$$

- The first one is proportional to an arbitrary integration constant
- The second one contains singular terms $\propto \mathcal{P}_c^{\ d}(x)$

$$\begin{aligned} \mathcal{T}_{ab}^{sing}(x) &= -T_2 \frac{3}{32} \left(\mathcal{P}_{ba}(x) - \frac{1}{2} \eta_{ba} \mathcal{P}_c^{\,c}(x) \right) = \\ &= -\frac{3T_2}{32} \int_{W^3} \frac{1}{\hat{e}} * \hat{e}_a \wedge \hat{e}_b \, \delta^4(x - \hat{x}) + \frac{3T_2}{64} \eta_{ba} \int_{W^3} \frac{1}{\hat{e}} * \hat{e}_c \wedge \hat{e}^c \, \delta^4(x - \hat{x}) \end{aligned}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• We can separate these contributions in three different classes

$$R_{acb}{}^{c}(x) = \eta_{ab} \, 3c^{2} + T_{2} \left(\mathcal{T}_{ab}^{sing}(x) + \mathcal{T}_{ab}^{reg}(x) \right)$$

- The first one is proportional to an arbitrary integration constant
- The second one contains singular terms $\propto \mathcal{P}_c^{\ d}(x)$

$$\begin{aligned} \mathcal{T}_{ab}^{sing}(x) &= -T_2 \frac{3}{32} \left(\mathcal{P}_{ba}(x) - \frac{1}{2} \eta_{ba} \mathcal{P}_c^{\,c}(x) \right) = \\ &= -\frac{3T_2}{32} \int_{W^3} \frac{1}{\hat{e}} * \hat{e}_a \wedge \hat{e}_b \, \delta^4(x - \hat{x}) + \frac{3T_2}{64} \eta_{ba} \int_{W^3} \frac{1}{\hat{e}} * \hat{e}_c \wedge \hat{e}^c \, \delta^4(x - \hat{x}) \end{aligned}$$

 The last one contains regular terms proportional to the supermembrane tension,

$$\mathcal{T}^{reg}_{ab}(x) = \eta_{ab}\mathcal{T}^{reg}(x) \ , \qquad \mathcal{T}^{reg}(x) = + rac{3T_2}{64}\left(rac{T_2}{256} + c
ight)\Theta(x,x_0|\hat{x}) \ .$$
Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• Considering the Einstein eq. in two pieces of space time separated by the supermembrane worldvolume

$$M_{+}^{4} : \qquad R_{acb}^{c}(x) = 3\eta_{ab} \left(\frac{T_{2}}{128} + c\right)^{2}$$
$$M_{+}^{4} : \qquad R_{acb}^{c}(x) = 3\eta_{ab} c^{2}$$

$$M_-^4 : \qquad R_{acb}{}^c(x) = 3\eta_{ab} c^2$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

 Considering the Einstein eq. in two pieces of space time separated by the supermembrane worldvolume

$$M_{+}^{4} : \qquad R_{acb}{}^{c}(x) = 3\eta_{ab} \left(\frac{T_{2}}{128} + c\right)^{2}$$
$$M_{-}^{4} : \qquad R_{acb}{}^{c}(x) = 3\eta_{ab} c^{2}$$

• Where M^4_+ denotes the half-space where $\Theta(x, x_0 | \hat{x}) = 1$ $(M^4_- \to \Theta(x, x_0 | \hat{x}) = 0)$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

 Considering the Einstein eq. in two pieces of space time separated by the supermembrane worldvolume

$$M_{+}^{4} : \qquad R_{acb}{}^{c}(x) = 3\eta_{ab} \left(\frac{T_{2}}{128} + c\right)^{2}$$
$$M^{4} : \qquad R_{acb}{}^{c}(x) = 3\eta_{ab} c^{2}$$

- Where M_{+}^{4} denotes the half-space where $\Theta(x, x_{0}|\hat{x}) = 1$ $(M_{-}^{4} \rightarrow \Theta(x, x_{0}|\hat{x}) = 0)$
- Two branches of spacetime have different values of cosmological constant

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

 Considering the Einstein eq. in two pieces of space time separated by the supermembrane worldvolume

$$M_{+}^{4} : \qquad R_{acb}{}^{c}(x) = 3\eta_{ab} \left(\frac{T_{2}}{128} + c\right)^{2}$$
$$M_{-}^{4} : \qquad R_{acb}{}^{c}(x) = 3\eta_{ab} c^{2}$$

- Where M_{+}^{4} denotes the half-space where $\Theta(x, x_{0}|\hat{x}) = 1$ $(M_{-}^{4} \rightarrow \Theta(x, x_{0}|\hat{x}) = 0)$
- Two branches of spacetime have different values of cosmological constant
- These values coincide if $c = -\frac{T_2}{256}$, but we do not find any reason for such choice

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• If we search purely bosonic supersymmetric solutions ($\psi^{\alpha}_{\mu} = 0$), we study Killing spinor equations ($\delta_{\epsilon}\psi^{\alpha}_{\mu} = 0$)

$$D\epsilon^{\alpha} + \frac{i}{8} e^{c} (\epsilon \sigma_{c} \tilde{\sigma}_{d})_{\beta}^{\alpha} G^{d}|_{\theta=0} + \frac{i}{8} e^{c} (\bar{\epsilon} \tilde{\sigma}_{c})^{\alpha} R|_{\theta=0} = 0$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• If we search purely bosonic supersymmetric solutions ($\psi^{\alpha}_{\mu} = 0$), we study Killing spinor equations ($\delta_{\epsilon}\psi^{\alpha}_{\mu} = 0$)

$$D\epsilon^{\alpha} + \frac{i}{8} e^{c} (\epsilon \sigma_{c} \tilde{\sigma}_{d})_{\beta}{}^{\alpha} G^{d}|_{\theta=0} + \frac{i}{8} e^{c} (\bar{\epsilon} \tilde{\sigma}_{c})^{\alpha} R|_{\theta=0} = 0$$

• Using the auxiliary field equations of motion, we obtain

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• If we search purely bosonic supersymmetric solutions ($\psi^{\alpha}_{\mu} = 0$), we study Killing spinor equations ($\delta_{\epsilon}\psi^{\alpha}_{\mu} = 0$)

$$D\epsilon^{\alpha} + \frac{i}{8} e^{c} (\epsilon \sigma_{c} \tilde{\sigma}_{d})_{\beta}^{\alpha} G^{d}|_{\theta=0} + \frac{i}{8} e^{c} (\bar{\epsilon} \tilde{\sigma}_{c})^{\alpha} R|_{\theta=0} = 0$$

Using the auxiliary field equations of motion, we obtain

$$D\epsilon^{\alpha} + \frac{i}{2}e^{a}\left(\bar{\epsilon}\tilde{\sigma}_{a}\right)^{\alpha}\left(c + \frac{T_{2}}{128}\Theta(x, x_{0}|\hat{x})\right) = 0.$$

• We can split this eq. on two killing equations valid in the two different branches

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• If we search purely bosonic supersymmetric solutions ($\psi^{\alpha}_{\mu} = 0$), we study Killing spinor equations ($\delta_{\epsilon}\psi^{\alpha}_{\mu} = 0$)

$$D\epsilon^{\alpha} + \frac{i}{8} e^{c} (\epsilon \sigma_{c} \tilde{\sigma}_{d})_{\beta}^{\alpha} G^{d}|_{\theta=0} + \frac{i}{8} e^{c} (\bar{\epsilon} \tilde{\sigma}_{c})^{\alpha} R|_{\theta=0} = 0$$

Using the auxiliary field equations of motion, we obtain

$$D\epsilon^{\alpha} + \frac{i}{2}e^{a}\left(\bar{\epsilon}\tilde{\sigma}_{a}\right)^{\alpha}\left(c + \frac{T_{2}}{128}\Theta(x, x_{0}|\hat{x})\right) = 0.$$

• We can split this eq. on two killing equations valid in the two different branches

$$\begin{split} M_{-}^{4} &: \qquad D\epsilon^{\alpha} + \frac{i}{2}e^{a}\left(\bar{\epsilon}\tilde{\sigma}_{a}\right)^{\alpha}c = 0 \ , \\ M_{+}^{4} &: \qquad D\epsilon^{\alpha} + \frac{i}{2}e^{a}\left(\bar{\epsilon}\tilde{\sigma}_{a}\right)^{\alpha}\left(c + \frac{T_{2}}{128}\right) = 0 \end{split}$$

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• Applying the covariant derivative and using the Ricci identities $DD\epsilon^{\alpha} = -\frac{1}{4}R^{ab}\epsilon^{\beta}\sigma_{ab\beta}{}^{\alpha}$

$$\begin{split} M_{-}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} |c|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} , \\ M_{+}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} \left| c + \frac{T_{2}}{128} \right|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} \end{split}$$

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• Applying the covariant derivative and using the Ricci identities $DD\epsilon^{\alpha} = -\frac{1}{4}R^{ab}\epsilon^{\beta}\sigma_{ab\beta}{}^{\alpha}$

$$\begin{split} M_{-}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} |c|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} , \\ M_{+}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} \left| c + \frac{T_{2}}{128} \right|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} \end{split}$$

 For purely bosonic solution preserving all SUSY the formers should be obeyed for arbitrary ϵ^{α}

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• Applying the covariant derivative and using the Ricci identities $DD\epsilon^{\alpha} = -\frac{1}{4}R^{ab}\epsilon^{\beta}\sigma_{ab\beta}{}^{\alpha}$

$$\begin{split} M_{-}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} |c|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} , \\ M_{+}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} \left| c + \frac{T_{2}}{128} \right|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} \end{split}$$

 For purely bosonic solution preserving all SUSY the formers should be obeyed for arbitrary ϵ^{α}

$$M_{-}^{4} : \qquad R_{cd}^{ab} = \frac{1}{2} |c|^{2} \delta_{[c}^{a} \delta_{d]}^{b} ,$$

$$M_{+}^{4} : \qquad R_{cd}^{ab} = \frac{1}{2} \left| c + \frac{T_{2}}{128} \right|^{2} \delta_{[c}^{a} \delta_{d]}^{b}$$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions 00
$WZ_{\hat{ heta}=0}$ gauge					

• Applying the covariant derivative and using the Ricci identities $DD\epsilon^{\alpha} = -\frac{1}{4}R^{ab}\epsilon^{\beta}\sigma_{ab\beta}{}^{\alpha}$

$$\begin{split} M_{-}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} |c|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} , \\ M_{+}^{4} : & R^{ab} \epsilon^{\beta} \sigma_{ab\beta}{}^{\alpha} = \frac{1}{4} \left| c + \frac{T_{2}}{128} \right|^{2} e^{d} \wedge e^{c} \epsilon^{\beta} \sigma_{cd\beta}{}^{\alpha} \end{split}$$

 For purely bosonic solution preserving all SUSY the formers should be obeyed for arbitrary ϵ^{α}

$$M_{-}^{4} : \qquad R_{cd}^{ab} = \frac{1}{2} |c|^{2} \delta_{[c}^{a} \delta_{d]}^{b} ,$$

$$M_{+}^{4} : \qquad R_{cd}^{ab} = \frac{1}{2} \left| c + \frac{T_{2}}{128} \right|^{2} \delta_{[c}^{a} \delta_{d]}^{b}$$

 These equations solve our equations of motion and describe the completely SUSY solution (At least modulo singular terms)

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

• These equations contain supermembrane contributions

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

- These equations contain supermembrane contributions
 - Indirect: Arbitrary cosmological constant generated dinamically

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

- These equations contain supermembrane contributions
 - Indirect: Arbitrary cosmological constant generated dinamically
 - Direct: Shift of cosmological constant on one of the sides $\propto T_2$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

- These equations contain supermembrane contributions
 - Indirect: Arbitrary cosmological constant generated dinamically
 - Direct: Shift of cosmological constant on one of the sides $\propto T_2$
- This solution preserves 4 SUSY in M^4_- and M^4_+ but describes 1/2 BPS state

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

- These equations contain supermembrane contributions
 - Indirect: Arbitrary cosmological constant generated dinamically
 - Direct: Shift of cosmological constant on one of the sides $\propto T_2$
- This solution preserves 4 SUSY in M^4_- and M^4_+ but describes 1/2 BPS state
- because, due to the presence of dynamical supermembrane have to restrict the local SUSY parameter by boundary conditions which clearly break 1/2 of the SUSY on W³

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

- These equations contain supermembrane contributions
 - Indirect: Arbitrary cosmological constant generated dinamically
 - Direct: Shift of cosmological constant on one of the sides $\propto T_2$
- This solution preserves 4 SUSY in M⁴₋ and M⁴₊ but describes 1/2 BPS state
- because, due to the presence of dynamical supermembrane have to restrict the local SUSY parameter by boundary conditions which clearly break 1/2 of the SUSY on W³
- The SUSY parameter should also obey the boundary condition

 $W^3 = \pm \partial M^4_{\pm} : \qquad \hat{\epsilon}^\alpha = \hat{\epsilon}_{\dot{\alpha}} \tilde{\tilde{\gamma}}^{\dot{\alpha}\alpha} , \qquad \hat{\epsilon}^\alpha := \epsilon^\alpha(\hat{x}(\xi)) , \quad \hat{\bar{\epsilon}}_{\dot{\alpha}} := \bar{\epsilon}_{\dot{\alpha}}(\hat{x}(\xi)) .$

Intro. Supermembrane	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions OO
$WZ_{\hat{ heta}=0}$ gauge					

- These equations contain supermembrane contributions
 - Indirect: Arbitrary cosmological constant generated dinamically
 - Direct: Shift of cosmological constant on one of the sides $\propto T_2$
- This solution preserves 4 SUSY in M⁴₋ and M⁴₊ but describes 1/2 BPS state
- because, due to the presence of dynamical supermembrane have to restrict the local SUSY parameter by boundary conditions which clearly break 1/2 of the SUSY on W³
- The SUSY parameter should also obey the boundary condition

 $W^3 = \pm \partial M^4_{\pm} : \qquad \hat{\epsilon}^\alpha = \hat{\epsilon}_{\dot{\alpha}} \tilde{\tilde{\gamma}}^{\dot{\alpha}\alpha} , \qquad \hat{\epsilon}^\alpha := \epsilon^\alpha(\hat{x}(\xi)) , \quad \hat{\bar{\epsilon}}_{\dot{\alpha}} := \bar{\epsilon}_{\dot{\alpha}}(\hat{x}(\xi)) .$

Intro. Supern	embrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions
Outline						
3	Introd Sl Th Minin Sl Cl	duction JSY extended le supermem nal and speci lipergravity in osed 4-form i	d objects, super- brane action and al minimal super superspace. Mir n SSP and supe	p-branes, and their its properties gravity. imal off-shell formu rmembrane in minim	description lation. nal SUGRA	
3	 Cli Dyna supe St Dy 	osed 3-form mical genera rgravity. Iperfield equa mamical gen	ootential and spe ttion of cosmolog ations of special r eration of cosmol	cial minimal SUGR/ ical constant in spec minimal SUGRA logical constant in sl	A cial minimal Min SUGRA	
4	Supe supe • St • St Space	rmembrane s rfield equatio upermembrar upergravity su setime compo	supercurrent and ns ne supercurrent v uperfield equation onent equations c	its contribution to the ector superfield J_a as with supermembrations of the $D = 4 \ N = 1$	ne supergravity ane current	
		roravitv–sube	ermembrane inte	racting system		

- WZ_{θ=0} gauge
 Conclusions and outlook
 - Conclusions

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ●○
Conclusions					

• We have derived the complete set of spacetime component eqs. of motion for the interacting system of dynamical D = 4 $\mathcal{N} = 1$ SUGRA and supermembrane

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ●○
Conclusions					

- We have derived the complete set of spacetime component eqs. of motion for the interacting system of dynamical D = 4 $\mathcal{N} = 1$ SUGRA and supermembrane
- To obtain these we have used the WZ gauge supplemented by partial gauge fixing of the local SUSY on W³

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ●○
Conclusions					

- We have derived the complete set of spacetime component eqs. of motion for the interacting system of dynamical D = 4 $\mathcal{N} = 1$ SUGRA and supermembrane
- To obtain these we have used the WZ gauge supplemented by partial gauge fixing of the local SUSY on *W*³
- The supermembrane current superfields simplify drastically in that gauge

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ●○
Conclusions					

- We have derived the complete set of spacetime component eqs. of motion for the interacting system of dynamical D = 4 $\mathcal{N} = 1$ SUGRA and supermembrane
- To obtain these we have used the WZ gauge supplemented by partial gauge fixing of the local SUSY on *W*³
- The supermembrane current superfields simplify drastically in that gauge
- When studying the interacting system the supermembrane produces a kind of renormalization of the cosmological constant

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ●○
Conclusions					

- We have derived the complete set of spacetime component eqs. of motion for the interacting system of dynamical D = 4 $\mathcal{N} = 1$ SUGRA and supermembrane
- To obtain these we have used the WZ gauge supplemented by partial gauge fixing of the local SUSY on *W*³
- The supermembrane current superfields simplify drastically in that gauge
- When studying the interacting system the supermembrane produces a kind of renormalization of the cosmological constant
- The Einstein eq. acquires some non singular terms proportional to a covariant version of the Heaviside step function

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of Λ 000	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ●○
Conclusions					

- We have derived the complete set of spacetime component eqs. of motion for the interacting system of dynamical D = 4 $\mathcal{N} = 1$ SUGRA and supermembrane
- To obtain these we have used the WZ gauge supplemented by partial gauge fixing of the local SUSY on *W*³
- The supermembrane current superfields simplify drastically in that gauge
- When studying the interacting system the supermembrane produces a kind of renormalization of the cosmological constant
- The Einstein eq. acquires some non singular terms proportional to a covariant version of the Heaviside step function
- In the purely bosonic interacting system of gravity the configuration consisting in two different Ads spaces provides a SUSY solution outside W³

Intro. Supermembrane 00000	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ●○
Conclusions					

- We have derived the complete set of spacetime component eqs. of motion for the interacting system of dynamical D = 4 $\mathcal{N} = 1$ SUGRA and supermembrane
- To obtain these we have used the WZ gauge supplemented by partial gauge fixing of the local SUSY on *W*³
- The supermembrane current superfields simplify drastically in that gauge
- When studying the interacting system the supermembrane produces a kind of renormalization of the cosmological constant
- The Einstein eq. acquires some non singular terms proportional to a covariant version of the Heaviside step function
- In the purely bosonic interacting system of gravity the configuration consisting in two different Ads spaces provides a SUSY solution outside W³
- Generically the difference of these values is proportional to the supermembrane tension, while its basic value is determined by an arbitrary constant independent on T₂

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions O
Outlook					

• An interesting subject for future study would be the search for solutions preserving some part of SUSY

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ○●
Outlook					

- An interesting subject for future study would be the search for solutions preserving some part of SUSY
- Take into account singular terms

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ○●
Outlook					

- An interesting subject for future study would be the search for solutions preserving some part of SUSY
- Take into account singular terms
- Develop more general interacting systems including supermembrane, supergravity and matter multiplets and compere its results with other spacetime component studies

Intro. Supermembrane	Special min SUGRA	Dynamical generation of A	Supercurrents and SUGRA eqs.	Spacetime component eqs	Conclusions ○●
Outlook					

- An interesting subject for future study would be the search for solutions preserving some part of SUSY
- Take into account singular terms
- Develop more general interacting systems including supermembrane, supergravity and matter multiplets and compere its results with other spacetime component studies

THANK YOU FOR YOUR ATTENTION!