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PLAN OF THE TALK 

•  Motivation. 
•  T-duality in bosonic closed string theory. 
•  Looking for a T-duality symmetric formulation: 
      -   circle compactification; 
      -   toroidal compactification. 
•  Implications on the gravitational effective theory. 
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MOTIVATION 

The presence of  compact dimensions implies the existence of different kind of  
modes for bosonic closed strings: 

momentum modes 

€ 

pa =
ka
R

, ka ∈Z

   winding modes 

€ 

€ 

X a (τ,σ +π ) = X a (τ,σ ) + 2πRwa ; wa ∈Z

 dual coordinates 

€ 

X a , pa

˜ X a , wa

quantized along the 
compact direction. 

representing the number of 
times the string winds around 
the compact dimension 

WHAT PROVIDES THIS “NEW” COORDINATE? 
                           T-DUALITY 



T-duality  is a symmetry for the bosonic closed string theory and, in the case of a  
circle compactification, it is encoded by the following transformations: 

€ 

R↔ α '
R

; k↔ w

which imply a transformation on the string coordinate X along  the     
compact dimension: 

€ 

€ 

X(τ,σ ) = XL (τ +σ) + XR (τ −σ )↔ ˜ X (τ,σ ) = XL (τ +σ) − XR (τ −σ )

IT WOULD BE INTERESTING TO FIND A MANIFESTLY T-DUAL INVARIANT 
FORMULATION OFTHE BOSONIC CLOSED STRING THEORY! 

associated with the winding mode  

€ 

X ↔ ˜ X 

T-duality is an old subject in String Theory.  It implies that in many cases two 
different geometries for the extra-dimensions are physically equivalent. In the 
simplest case, a circle of radius R is equivalent to a circle of radius α’/R. 



All of this implies that, if interested in writing down the complete effective field 
theory of a compactified bosonic closed string, one has to include both momentum 
excitations and  winding excitations or, equivalently  

The fields associated with the string states will depend on   

€ 

X i = (X a , ˜ X a, X µ ) .

The effective closed string field theory would look like: 

€ 

S = dX a∫ d ˜ X a dX µ L X a, ˜ X a , X µ( ).

Hence, it is a fact that the closed string effective field theory is a  
                                   DOUBLE FIELD THEORY. 

€ 

X a and ˜ X a .



This has to be true, in particular, for the well-known effective gravitational action 
involving the fields associated with string massless states gµν, Bµν  and φ: 

€ 

S = dX µ∫ | g | e−2ϕ R + 4(∂ϕ)2 − 1
12
H 2⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

                                                QUESTIONS 

WHAT DOES THIS ACTION BECOME IN THE LIGHT THAT ALL THE  FIELDS               
ARE “DOUBLED”?    
WHAT SYMMETRIES AND WHAT PROPERTIES WOULD  IT HAVE?      

deriving from the  question: 

                HOW WOULD  THE CLOSED STRING LOOK LIKE  WHEN  
                              T- DUALITY IS  MADE  MANIFEST?  

…hopefully shedding light on aspects of string gravity so far unexplored. 



 T-DUALITY IN BOSONIC CLOSED 
STRING THEORY 

World-sheet action for a bosonic closed string in a Minkowski space background: 

Single coordinate compactified on a circle of radius R. 

€ 

S =
T
2

dσ dτ ( ˙ X 2 − X '2 )
−∞

+∞

∫
0

π

∫ ˙ X = ∂τ X ; X '= ∂σ X

Compactification is defined by the period identification: 

€ 

X ≈ X + 2πRw w ∈ Z

€ 

(∂τ
2 −∂σ

2 )X = 0

€ 

X(τ,σ ) = XL (τ +σ) + XR (τ −σ )

€ 

p =
k
R

k ∈ Z The momentum in the compact direction is 
quantized 

€ 

S = −
T
2

dσ dτηαβ
−∞

+∞

∫
0

π

∫ ∂αX
i∂βX

jηij

Circle compactification 

€ 

X(τ,σ ) = x + 2α ' pτ + 2Rwσ +
i
2
2α ' 1

nn≠0
∑ α ne

−2in(τ+σ ) +
i
2
2α ' 1

nn≠0
∑ αne

−2in(τ−σ )



€ 

XL and XR describe, respectively, “left-moving” and “right-moving” modes: 

€ 

XL (τ +σ) =
1
2

(x + ˜ x ) + α ' k
R

+ wR
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (τ +σ) +

i
2

2α ' 1
nn≠0

∑ α ne
−2in(τ +σ ) ;

XR (τ −σ) =
1
2

(x − ˜ x ) + α ' k
R
− wR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (τ −σ) +

i
2

2α ' 1
nn≠0

∑ αne
−2in(τ−σ ) .

€ 

xL

€ 

α ' pL

€ 

xR

€ 

α ' pR

The Hamiltonian reads: 

€ 

H =
1
2

pL
2 +
1
2

pR
2 + α−nαn

n≠0
∑ + α −nα n

n≠0
∑ =

1
2

pL
2 +
1
2

pR
2 + N + N 

It turns to be invariant under the transformations: 

€ 

R↔ ˜ R = α '
R

; k ↔ w
under which: 

€ 

pL → pL ; pR →−pR
αn → α−n

€ 

XL →XL ; XR →−XR

X(τ,σ ) →X L(τ +σ) − XR (τ −σ ) ≡ ˜ X (τ,σ )

T-DUALITY 



T-duality symmetry is a clear indication that ordinary geometric concepts 
can break down in string theory at the string scale. 

The  interchange of w and k means that the momentum excitations in one description 
correspond to winding mode excitations in the dual description and viceversa. 

€ 

˜ X (τ,σ ) = ˜ x + 2Rwτ + 2α ' k
R
σ +

i
2

2α ' 1
nn≠0

∑ α ne
−2in(τ+σ ) +

i
2

2α ' 1
nn≠0

∑ αne
−2in(τ−σ )

€ 

∂σ X = ∂τ ˜ X ; ∂τ X = ∂σ ˜ X 

€ 

∗dX = d ˜ X 

€ 

∗dXL = dXL , ∗ dXR = −dXR

The T dual field is given by: 

duality conditions 

dual anti-dual € 

∂α ˜ X = −εα
β∂β X ; ε 01 = −ε10 =1



A general scalar field theory in 2D Minkowski space theory  with the 
usual Lagrangian density  

€ 

L = −
1
2
∂αφ∂

αφ =
1
2

( ˙ φ 2 −φ '2 )

admits a dual description  

€ 

L→ 1
2

( ˜ φ 2
⋅

− ˜ φ '2 )

with  

€ 

∂σφ = ∂τ ˜ φ , ∂τφ = ∂σ ˜ φ 

€ 

∗dφ = d ˜ φ € 

Looking for a T-duality symmetric formulation: 
                   circle compactification 

€ 

€ 

ηαβ =
−1 0
0 1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

This can be easily seen, by noting that the two Lagrangians are equivalent to: 

€ 

L = −
1
2
VαVα −ε

αβφ∂βVα



In fact, starting from 

€ 

S = − dτ dσ −
1
2
VαVα −ε

αβφ∂βVα
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ∫

€ 

δφ S = 0 ⇒εαβ∂βVα = 0

€ 

Vα = ∂α ˜ φ 

 arbitrary function 

€ 

S = dτ dσ∫ −
1
2
∂α ˜ φ ∂α ˜ φ 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

Alternatively: 

€ 

δV α S = 0 ⇒Vα = −εαβ∂βφ

€ 

S = dτ dσ∫ −
1
2
∂αφ∂

αφ
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

€ 

∂α ˜ φ = −εα
β∂βφ Duality conditions 

€ 

dσ φ∂τφ[ ]∫ τ=−∞
τ=+∞ = dτ φ∂σφ[ ]∫ σ =σ 0

σ =σ 1 = 0



                                               Procedure 

   Regard p as a Lagrange multiplier:  

€ 

p = ˜ φ '

It is possible to rewrite L in such a way that the two fields appear on an equal footing.  

€ 

L = p ˙ φ −
1
2
p2 −

1
2
φ ' 2

   and then add a second multiplier b for the constraint: € 

p = ˙ φ 

€ 

L'= ˙ φ ˜ φ '− 1
2
φ'2 − 1

2
˜ φ '2

equations of motion 

€ 

∂σ φ = ∂τ ˜ φ , ∂τφ = ∂σ ˜ φ 

They are dual to each other on the mass-shell 

[F. Bastianelli and P. van Nieuwenhuizen (1989)]  



€ 

Lsim =
1
2

˙ φ ˜ φ '+ 1
2
φ ' ˜ ˙ φ −

1
2
φ'2 − 1

2
˜ φ '2

equations of motion 

€ 
€ 

∂σ φ = ∂τ ˜ φ , ∂τφ = ∂σ ˜ φ 

invariant under  

€ 

φ↔ ˜ φ 

€ 

Furthermore Lsim can be diagonalized by introducing the chiral fields: 

Symmetrization: 

proviso: 

€ 

dτ∫ ˙ φ ˜ φ [ ]
σ =σ 0

σ =σ1

= dσ φ ' ˜ φ [ ]∫
τ =−∞

τ =∞

= 0 (reproducing the previous conditions)  

€ 

φ =
1
2
φ+ + φ_( )

˜ φ =
1
2
φ+ −φ_( )

€ 

φ± =
1
2
φ ± ˜ φ ( )



€ 

Lsim (φ, ˜ φ ) = L+(φ+) + L−(φ−)

L±(φ±) = ±
1
2

˙ φ ±φ '± −
1
2
φ'±

2

Only on shell  

€ 

φ+ , φ− become respectively functions of  

€ 

τ +σ , τ −σ

€ 

˙ φ + = φ+
' (dual) , ˙ φ − = −φ−

' (anti − dual)

SYMMETRIES 

€ 

Lsim , L± invariant under space-time translations 

€ 

L± invariant under  

€ 

δLφ± = (τ ±σ)φ'± , δφ± = f (τ ±σ ), δφ± = τ ˙ φ ± +σφ± '

€ 

Lsim invariant under  

€ 

δLφ = τφ '+σ ˜ φ ' , δL ˜ φ = τ ˜ φ '+σφ '

€ 

δφ = τ φ'+σ ˙ φ on-shell 

usual 2-dim Lorentz rotation 

    No manifest  
Lorentz invariance! 

Lorentz invariance recovered on-shell! 



€ 

 The Lagrangians so far considered belong to a general class of first-order Lagrangians: 

€ 

L =
1
2

qi cij ˙ q j −V (q) i, j =1,...,N

canonically conjugate momentum to qj . 

€ 

Qjk ≡ Tj , Tk{ }
PB

= c jk ≠ 0 All constraints are second class 

characterized by  N primary constraints 

€ 

Tj ≡ p j −
1
2
qi cij ≈ 0

€ 

detcij ≠ 0

Dirac bracket for any two functions of the phase-space variables: 

€ 

f ,g{ }
D
≡ f ,g{ }

P
− f ,Tj{ }

P
(Q−1) jk Tk,g{ }

P



 The Dirac formalism allows for a transition to the quantum theory: 

€ 

qi , q j[ ] = i(c −1)ij

qi , p j[ ] =
1
2
iδ ij

pi, p j[ ] = −
1
4
icij

€ 

φ(σ,τ), φ(σ ',τ)[ ] =± iε (σ −σ ')

π (σ,τ), φ(σ ',τ)[ ] =
i
2
δ(σ −σ ')

π (σ,τ), π (σ ',τ)[ ] = −
1
8
iε (σ −σ ')

showing that the field φ is non-local with  
local dynamics. 

€ 

L =
1
2

qi cij ˙ q j −V (q) i, j =1,...,N

€ 

L =
1
4

dσ dσ 'φ(σ )ε(σ −σ ') ˙ φ (σ ')∫ −
1
2

dσ∫ ˙ φ 2(σ)

€ 

φ , ˜ φ X, ˜ X [ ] behave like “non-commuting” phase 
space type coordinates. 

€ 

i f ,g{ }
D
→ ˆ f , ˆ g [ ]



   STRINGS IN TOROIDAL BACKGROUNDS 

€ 

S = SG + SB = −
T
2

dσ dτ hαβ ∂αX
i∂βX

jGij +εαβ∂αX
i∂βX

j Bij[ ]−∞

+∞

∫0

π

∫

periodic coordinates 

€ 

X a ≈ X a + 2π Rwa

The closed string background fields G and B are DxD matrices 

€ 

Gij=
ˆ G ab 0
0 ηµν

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ , Bij =

ˆ B ab 0
0 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

In this case the Hamiltonian reads as: 

€ 

H =
1
2

Z t M Z + N + N 

€ 

M(E) =
G − BG−1B BG−1

−G−1B G−1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

Z =
wi

pi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2D column vector consisting of integer winding 
and momentum quantum numbers.  

€ 

Eij =Gij + Bij

generalized  
 metric 2DX2D 

€ 

X i = (X a ,X µ )

€ 

i = 0,...,D −1

background 
matrix 



H  results to be invariant under the elements  

€ 

g∈O(D,D;R) g =
a b
c d
# 

$ 
% 

& 

' 
( 

a,b,c,d are DxD  matrices 

€ 

E '= g(E) = (aE + b)(cE + d)−1

generating on E the following transformation: 

A particular element of O(D,D;R): Inversion of the background matrix E  

€ 

E =G + B→E '=G'+B'= E −1

analog in D dimensions to the circle duality 

€ 

R→ 1
R

under which 

€ 

2πα 'Pi = Gij
˙ X j + Bij X

j ' ↔ X i '



GENERAL “SIGMA MODEL” 

€ 

S = d2σ e φ + Ai
a∇aΧ

i +Dij
ab∇aΧ

i∇bΧ
j[ ]∫ ∇a = ea

m∇m

2-bien 

€ 

detea
m

€ 

gmn = em
aηabem

b

Usual manifestly invariant Lorentz-invariant sigma-model obtained if:   

€ 

i, j =1,...,D

€ 

φ = 0, Ai
a = 0 , Dij

ab =
1
2
(ηabGij +ε abBij )

One can choose the “kinetic” term in the general form: 

Includes all fields 

€ 

S =
1
2

d2∫ σe Cij (Χ)∇0Χ
i∇1Χ

j + Mij (Χ)∇1Χ
i∇1X

j[ ]
symmetric 

manifestly diffeomorphism and Weyl invariant but not Lorentz invariant  



€ 

δem
a = λem

a
Weyl invariance 

€ 

en
'a (σ '=σ −ξ) = em

a ∂σ
m

∂σ 'n
→ δen

a = em
a∂nξ

m +∂men
aξm

two-dimensional reparametrizations 

€ 

e'n
a = Λb

a en
b →δen

a =ω b
aen

b ; ω ab = −ω ba

Lorentz transformations 

The action variation of the action under these latter transformazion is proportional 
to the energy-momentum tensor  



The vanishing of the energy-momentum tensor on the classical implies:  

€ 

€ 

C = MC−1M

while its vanishing at quantum level requires that C has zero signature  

€ 

C =
I 0
0 −I
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I = diag(1,...,1) D-dimensional matrix 

The action describes a mixture of D left and D right scalars: 

€ 

Χi = (X+
µ , X−

µ ) µ =1,...,D

in terms of which one can define the non-chiral basis of fields: 

€ 

X µ =
1
2

(X+
µ + X−

µ ) , ˜ X µ =
1
2

(X+
µ − X−

µ )



Introducing the basis of non chiral fields, one has: 

€ 

C =Ω ; Ω =
0 I
I 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =Ω−1 ; Ω = MΩM

with 

€ 

M = ±
a bT

b ˜ a 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ a = aT ˜ a = ˜ a T

and 

€ 

a = ˜ G −1, ˜ a = G−1, ˜ G −1 ≡G − BG−1B
b = BG−1, BT = −B, GT = G

parametrized by D2 elements of the symmetric matrix G and antisymmetric matrix B 



€ 

S =
1
2

d2∫ σe Cij (Χ)∇0Χ
i∇1Χ

j + Mij (Χ)∇1Χ
i∇1X

j[ ]

Hence 

with C and M dictated by the requirement of Lorentz-invariance is invariant under 
the combined O(D,D) transformations of Xi and the matrix of coupling parameters M: 

€ 

Χ'= Λ−1Χ, M '= ΛT MΛ, ΛTΩΛ =Ω Λ∈O(D,D)

The Lorentz invariance constraint 

€ 

Ω = MΩM

€ 

M ∈O(D,D)
and its invariance under Λ.      

S is invariant under the duality transformations: 

€ 

Χ'=ΩΧ, M '=ΩMΩ = M −1

X ↔ ˜ X , a↔ ˜ a , b↔ bT , (G + B)↔ (G + B)−1,
G↔ ˜ G , ˜ G = (G − BG−1B)−1, BG−1 ↔ −G−1B



In component form one has: 

€ 

S X, ˜ X [ ] =
1
2

d2∫ σ e(∇0X µ∇1
˜ X µ +∇0

˜ X µ∇1Xµ − aµν∇1X
µ∇1X

ν

− a µν∇1
˜ X µ∇1

˜ X ν − 2bν
µ∇1X

ν∇1
˜ X µ )

€ 

a = ˜ G −1, ˜ a = G−1, ˜ G −1 = G − BG−1B, b = BG−1

dictated by Lorentz invariance conditions  

€ 

S[X] =
1
2

d2∫ σ | h |hab +ε ab( ) G + B( )ij∂aX
i∂bX

j

€ 

˜ X µ (eliminating if from its equation of motion) 

€ 

X µ

€ 

S ˜ X [ ] =
1
2

d2σ( | h |∫ hab +ε ab )(G + B)−1µν ∂m
˜ X µ∂n

˜ X ν

Integrating over  

Integrating over  

€ 

∇a = ea
m∂m



  Work in progress:  quantization of the manifestly 
     duality simmetric action according to the Dirac quantization scheme already  
     considered for the circle compactification. 

  Geometrical interpretation of T-duality in the toroidal compactification 

IMPLICATIONS ON THE GRAVITATIONAL EFFECTIVE THEORY 

As in the standard manifestly  Lorentz invariant formulation, there is a correspondence  
between the sigma model which describes a string in a  background and the vertex  
operators associated with the physical states, now expressed in  terms of X and its 
dual. 

Comparing the spectrum of the duality symmetric theory with the standard 
formulation, one would expect that only the number of the zero-modes is doubled 
while the set of oscillators remains the same. 

The states have to  fulfill constraints coming from the request of local Lorentz  
invariance (satisfied on the equations of motion) plus “diffeomorphism” constraints. 



The set of on-shell vertex operators creating the closed string physical states 
is given by the product of “left” and “right” vertex operators, each of them depending 
on the independent momenta  

€ 

p+, p−
For a graviton one should have something like 

€ 

V ≈ ξµν (p+, p−) :∂X
+∂ X −ei( p+X

+ + ip−X
− ) :

€ 

p+
µξµν = p−

µξµν = 0

3-graviton scattering amplitude 

€ 

S3 = dD X∫ dD ˜ X R3(∂) − R3(∂ )[ ]

∂µ ≈ ∂+µ +∂−µ =
∂

∂X µ ∂ µ ≈ ∂ +µ −∂ −µ =
∂

∂ ˜ X µ

3-graviton term in the expansion of the Ricci scalar for the metric  

€ 

Gµν (X, ˜ X ) =ηµν + hµν (X, ˜ X )

Effective action 



To establish the correspondence with the usual low-energy gravitational 
effective action  

  assume that Gµν does not depend on  

€ 

˜ X 
(considering the case when  

€ 

˜ X is compactified on a small 

torus of radius 

€ 

˜ R << α ' so that the radius of the X-space 

is large) ; 

  integrate over  

€ 

˜ X thus obtaining in this way a factor 

which rescales the usual low-energy coupling constants. 



CONCLUSION 

  T-duality symmetric formulation of bosonic closed string seems 
    to be a very helpful tool for shedding light on string gravity and its corrections 
    to the Einstein-Hilbert action. 

  But it also gives the possibilities of studying more geometrical issues such as 
     Complex Generalized Geometry and the role of Courant brackets in the  
     Double Field Theory, analogue to the one of the Lie brackets in General  
     Relativity.  

Many   things to understand….! 

THANKS 


