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@ and also M0-brane or M-wave [Bergshoeff & Townsend 1996]

@ Dim reduction of Sy to D=10 produces the action of the DO-brane =
10D type IIA massive superparticle.

@ MO is the natural toy model to study the problems of higher M-branes.

@ One of such is the effective action for multiple Mp-brane (mMp) systems

@ The dim. reduction of (the hypothetical) mMp’ action should produce
mDp (multiple Dp—brane) action

@ which is believed to be written in terms of (9 — p) Hermitian matrices of
scalar fields, X/, the diagonal elements of which describe the positions

of different Dp-branes while the off-diagonal elements account for the
strings stretched between different Dp-branes.
@ SYM description was the basis for the search for a more complete

nonlinear description of mDp system: [Myers 1999] (purely bosonic),
[Sorokin 03], [Howe, Linstrom, Wulff 2005-07] (boundary fermion SSP)....
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unsolved many years, but recently two models were proposed by BLG
[Bagger, Lambert 2007 and Gustavsson 2007] and by ABJM [Aharony,
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[Janssen and Lozano 2002] (as 11D generalization of the Myers’s mDO).

@ Supersymmetric and Lorentz covariant equations of motion for
mMO-system were obtained in [IB 2009] in the frame of superembedding
approach [BPSTV 95, HS 96,...].

@ Their generalization for arbitrary 11D SUGRA background [IB2010]
describe the M(atrix) theory of BFSS [Banks, Fischler, Shenker and
Susskind 1996] in the 11D SUGRA background.

@ The general egs [IB 2010] were specialized for the case of 11D pp-wave

superspace [IB 2011] and shown to reproduce (in some limit) the eqgs of
the BMN Matrix model [Berenstein, Maldacena and Nastase 2002].
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@ This derivation of BMN confirms that general mMO equations [IB 2010]
give curved superspace generalization of the M(atrix) model

@ but also have shown that the superembedding approach based
equations are very difficult to apply.

@ Hence, for applications it is desirable to find an action which reproduces
the mMO eqs of [IB 2010] or their generalizations (which is what is
actually happens).

@ The aim of this talk is to present such an action for mMO in flat target
superspace.
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@ = it can be described by the 11D version of the Brink—Schwarz action

Sps = /W1 (paﬁfa - gpapadr) :

@ where a=0,1,...,10, e(r) is the Lagrange multiplier (for p,p® = 0)
e E2= E%(2) = dZM(r)E}(2) is the pull-back of E3(Z) = dZME}(2)
@ to the worldline W'.

wh xR ZM = ZM(e) = (84(€),09(9)) -

@ In flat target superspace’ E? =N? = dx? — idorae ‘ E* = d§~,
@ and £2 = drE?, E2 = N2 = 8,%%(r) — i0,0r24(r).
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@ The action is invariant under the local fermionic k—symmetry [de Azcarraga &
Lukierski 1982, Siegel 83]

5.X% = —ifras,.o ,

6,0 = pal 3Pk g(7) ‘ ) Sxe = 4ing0-0” .

@ This reflects the SUSY preserved by the ground state ( 3x = |0 > is %BPS)

@ On the other hand the k—symmetry can be identified with worldline SUSY
[Sorokin, Tkach, Volkov 1988]

@ which is not evident as far as the xk-symm. of the BS action is co—reducible (as
P2 =20, Ko ~ Ka + Pbl’gﬁm(‘)@, k(B ~ k(1B _,_pcﬁcﬁw,{gf)’ ).

@ ~ symmetry appears in its irreducible form in the so—called spinor moving frame
formulation of superparticle [IB 1990, IB+AN 1996, IB 2007]
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@ These can be obtained from the co—reducible x symm of Sgg,

8,0 = pai @Bk 5(7), by substituting for p, the solution ps = p# uz of the
constraint pap? = 0. Then ¢t9 = QP#VJC%Q.

@ However, one might still find the origin of our v, * a bit mysterious.
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Moving frame and spinor moving frame

@ To clarify the nature of v, %, it is useful to consider the null-vector uz as
an element of the moving frame matrix,

U(a)_<ub+uzf | Up —
(@ —
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MO in spinor moving frame formulation
@0000

Spinor moving frame

Moving frame and spinor moving frame

@ To clarify the nature of v, %, it is useful to consider the null-vector uz as
an element of the moving frame matrix,

U(a)_<ub+uzf | Up —
(@ —

2 7Ub7 2 > S 80(1,10) =

L= =0, uu=2, =0,
ufvt =0, ufu*=0,

uu® = —46" .

@ v, “ is 8x16 block of Spin(1,10) valued spinor moving frame matrix
o V+a .
Vigy = (vﬁj“*) € Spin(1,10)
@ This is double covering of the moving frame matrix:

VeV = UPre, VIT@Ov=®  vev'=c.

® = vy M, =dglz, 2vq*avq—ﬂ = u3,
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Moving frame and spinor moving frame

@ u; (uzu?= =0)is an element of the moving frame matrix,

— # =
Ué"”:(“bgub,ui,,“"zu") € SO(1,10) o

@ v; “ is 8x16 block of spinor moving frame matrix

o V+a .
Vs = (122 € Spin(1. 10
@ which is double covering of the moving frame matrix:

VoV = UPry,  VIF@v =@ wvev'=cC.

—ray— — = —a, =B _
0 = Vo [V, =0gpUz, 2Vq°V," =g,




MO in spinor moving frame formulation
0@000

Spinor moving frame

Moving frame and spinor moving frame

@ u; (uzu?= =0)is an element of the moving frame matrix,

— # =
Ué"”:(“bgub,ui,,“"zu") € SO(1,10) o

@ v; “ is 8x16 block of spinor moving frame matrix

V+a
Visf' = ( ) € Spin(1,10)

q
Va
@ which is double covering of the moving frame matrix:
VoV = UPry,  VIF@v =@ wvev'=cC.
o = v, M, =dguz, 2v5°v;" =u3,
0 = viTavy = Ui, 2viovgP =T*Puf

o = vy Tavg = —Unyip, 2v(;(‘l vif) = —faehyl




MO in spinor moving frame formulation
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Spinor moving frame

Moving frame and spinor moving frame

@ u; (uzu?= =0)is an element of the moving frame matrix,

— # =
Ué"”:(“bgub,ui,,“"zu") € SO(1,10) o

vg @ is 8x16 block of spinor moving frame matrix

o V+a .
Vs = (122 € Spin(1. 10

which is double covering of the moving frame matrix:

VoV = UPry,  VIF@v =@ wvev'=cC.
= vy M8, = dgplz, 2vq"1vq’ﬁ = [Uf,
= viTaVy = Ufdg, 2vg°vg? =T2Fuf

= vy TaVy = —Uivhp, 2v5vi®) = _facbyl,

= The inverse V¥ = (Vag* vaq*) € Spin(1,10) is constructed from
elements of V by voag = +iCapvy”
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Spinor moving frame

Moving frame and spinor moving frame. Goldstone nature

@ u; (uzu?= =0)is an element of the moving frame matrix,

= A
U,S"”)<”b+”b up, =2 “") € S0(1,10) &

P » Ub, 2

@ v, * is 8x16 block of spinor moving frame matrix

vie .
Vigy = (vq*“> € Spin(1,10)
q
@ which is double covering of the moving frame matrix:
VeV = UPre, VIT@Ov=id®  wvev'=c.

@ The splitting is manifestly invariant under SO(1,D-1) xSO(1,1)®SO(D-2).

@ = Moving frame and spinor moving frame variables can be considered
as homogeneous coordinates of SO(1,D —1)/[SO(1,1) ® SO(D — 2)]

@ These Lorentz harmonics or Goldstone fields were used in superstring
formulation of [IB & Zheltikhin, 1992] (see also [Gomis, Kamimura, West 2006]).

@ For the case of superparticle the coset is oy s50-s5a— [Galperin,

Howe, Stelle, 92, Galperin Delduc, Sokatchev 92, IB & Nurmagambetov 96]
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Spinor moving frame

Moving frame and spinor moving frame. Derivatives and Variations

@ u; (uzu?= =0)is an element of the moving frame matrix,

= A
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P s Ubs P
@ v, * is 8x16 block of spinor moving frame matrix
vie .
Vi = (122 ) € Spin(1,10)
@ which is double covering of the moving frame matrix:

VeV = UPre, VIT@Ov=id®  wvev'=c.
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Moving frame and spinor moving frame. Derivatives and Variations

@ u; (uzu?= =0)is an element of the moving frame matrix,

= A
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P » Ub, P

@ v, * is 8x16 block of spinor moving frame matrix

vie .
Vig) = (V‘La> € Spin(1,10)
q
@ which is double covering of the moving frame matrix:
VeV = UPre, VIT@Ov=id®  wvev'=c.

@ Although our variables are highly constrained, due to their transparent
group-theoretical structure it is quite easy differentiate and to vary them:
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Spinor moving frame

Moving frame and spinor moving frame. Derivatives and Variations

@ u; (uzu?= =0)is an element of the moving frame matrix,

= A
U,S"”)<”b+”b up, =2 “") € S0(1,10) &

P » Ub, P

@ v, * is 8x16 block of spinor moving frame matrix

vie .
Vig) = (V‘La> € Spin(1,10)
q
@ which is double covering of the moving frame matrix:
VeV = UPre, VIT@Ov=id®  wvev'=c.

@ Although our variables are highly constrained, due to their transparent
group-theoretical structure it is quite easy differentiate and to vary them:

° =
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Spinor moving frame

Moving frame and spinor moving frame. Derivatives and Variations

@ u; (uzu?= =0)is an element of the moving frame matrix,

= # =
u,ga><“b2“b,uz,“b2“b> € 50(1,10) -

@ v, * is 8x16 block of spinor moving frame matrix

vie .
Vig) = (V‘La> € Spin(1,10)
q
@ which is double covering of the moving frame matrix:
VeV = UPre, VIT@Ov=id®  wvev'=c.

@ Although our variables are highly constrained, due to their transparent
group-theoretical structure it is quite easy differentiate and to vary them:

o = (U'dU) € Spin(1,10) & Q@® .= y@cqyl? = _q®)a,

(4] V-'aV e Spin(1,10) , V-lav = %Q(a)(b)r(a)(b)
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Spinor moving frame

Moving frame and spinor moving frame. Derivatives and Variations

@ u; (uzu?= =0)is an element of the moving frame matrix,

= # =
u,ga><“b2“b,uz,“b2“b> € 50(1,10) -

@ v, * is 8x16 block of spinor moving frame matrix

Vil = (“ﬁi) € Spin(1,10)

q

@ which is double covering of the moving frame matrix:
VeV = UPT VIF@y =@ . wvevT =cC.
@ Although our variables are highly constrained, due to their transparent
group-theoretical structure it is quite easy differentiate and to vary them:

e = (U 'dU) € Spin(1,10) <« Q@O .= y@cqyP — _qb)a@),
° V="aV € Spin(1,10) , V='av = 1Q@Or 4
° = du; = —2u;90 + Ui,
° dvy® = —vg QO + 1Qiyl v — 1a iy vie, .
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On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).
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Spinor moving frame

On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).
@ Egs. of motlon for p? and uz (or for Vg %)

E- =Bz =0 e
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Spinor moving frame

On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).
@ Egs. of motlon for p? and uz (or for Vg %)

- = Bz =0 Ea._
B = B —o} e EB=

@ = the M0-brane worldline W' is a light-like,
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Spinor moving frame

On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).
@ Egs. of motlon for p? and uz (or for Vg %)

E‘_E"”a—O} o B

Bi=Eu)=0 Efua .

I\J\—L

@ = the M0-brane worldline W' is a light-like, as it should be for a
massless (11D super)particle.
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Spinor moving frame

On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).

@ Egs. of motlon for p? and uz (or for Vg %)

E‘_E"”a—O} o B

Bi=Eu)=0 Efua .

I\J\—L

@ = the M0-brane worldline W' is a light-like, as it should be for a
massless (11D super)particle.

e Furthermore, £2 := 1 E#u~2 suggests to consider £# = d7Ef as an
einbein on W' (induced by the embedding).
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Spinor moving frame

On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).
@ Egs. of motlon for p? and uz (or for Vg %)

E‘_E"”a—O} o B

Bi=Eu)=0 Efua .

I\J\—L

@ = the M0-brane worldline W' is a light-like, as it should be for a
massless (11D super)particle.

e Furthermore, £2 := 1 E#u~2 suggests to consider £# = d7Ef as an
einbein on W' (induced by the embedding).

@ lts gravitino—like companion is E+9 = E~v9.




MO in spinor moving frame formulation
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Spinor moving frame

On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).

@ Egs. of motlon for p? and uz (or for Vg %)

E- =Bz =0 .
Bl = B2yl _o} &

E*ug .

I\J\—L

@ = the M0-brane worldline W' is a light-like, as it should be for a
massless (11D super)particle.

e Furthermore, £2 := 1 E#u~2 suggests to consider £# = d7Ef as an
einbein on W' (induced by the embedding).

@ lts gravitino—like companion is E+9 = E~v9.

@ The other covariant projection, E-9 = E“v; 9 = 0, due to the fermionic
equation of the MO, so that, on the mass shell E~ := E*9v;“.




MO in spinor moving frame formulation
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Spinor moving frame

On MO0 equations as obtained from spinor moving frame action, and worldline geometry

@ Using moving frame we can split, in a Lorentz covariant manner,
Eb — EPUP = (E=,E# E') (carrying SO(1,1) and SO(D-2) ‘indices’).
@ Egs. of motlon for p? and uz (or for Vg %)

E- = Efuz _0} o B

Bi=Eu)=0 Efua .

I\J\—L

@ = the M0-brane worldline W' is a light-like, as it should be for a
massless (11D super)particle.

e Furthermore, £2 := 1 E#u~2 suggests to consider £# = d7Ef as an
einbein on W' (induced by the embedding).

@ lts gravitino—like companion is E+9 = E~v9.

@ The other covariant projection, E-9 = E“v; 9 = 0, due to the fermionic
equation of the MO, so that, on the mass shell E~ := E*9v;“.

e (E#,E9)is a composed supergravity multiplet: under the irreducible
K—symmetry, §,X% = —ifr35,.0, 6,.0% = "9y ©

6.E™ = De™(7) , 8. E* = —2iEt9cH9




mMO action and its susy

Outline

Q Multiple M0O-brane action and its local worldline supersymmetry
@ Multiple MO-brane action
@ SUSY of the multiple MO-brane action
@ M? =0 as a BPS equation.
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mMO action

@ We separate Z"(r) describing the center of energy motion of N nearly
coincident M0O-branes and the fields describing the relative motion,
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mMO action

@ We separate Z"(r) describing the center of energy motion of N nearly
coincident M0O-branes and the fields describing the relative motion,

@ hermitian traceless NxN matrices: bosonic X'(7) and fermionic Wq(7).

e X'(r) =X, := X/ is SO(9) vector with SO(1, 1) weight w=2.

@ Vy(71) =Vuig =V, 4is SO(9) spinor (g =1, ..., 16) with w= 3.
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mMO action

@ We separate Z"(r) describing the center of energy motion of N nearly
coincident M0O-branes and the fields describing the relative motion,

@ hermitian traceless NxN matrices: bosonic X'(7) and fermionic Wq(7).

e X'(r) =X, := X/ is SO(9) vector with SO(1, 1) weight w=2.

@ Vy(71) =Vuig =V, 4is SO(9) spinor (g =1, ..., 16) with w= 3.

@ We propose to describe the system of N nearly coincident MO—branes by

S = / o E= 4 / (o")° (tr (~P'DX + 4iwq DV ) + E#H) +
wi
4 [ Bt (4" )oP + SRl )
e P' .= P, are 9 bosonic matrix auxiliary fields,
1 il i i
Hoi= Hpen(X,PV) = 5itr (PP) FVX) - 2tr (X Wy w) ,

V= Vs (X) = fatr [X’ X/] = +6—4tr HX X’”
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mMO action

@ We separate Z"(r) describing the center of energy motion of N nearly
coincident M0O-branes and the fields describing the relative motion,

hermitian traceless NxN matrices: bosonic X'(7) and fermionic Wq(7).
X'(r) = XL, .= X', is SO(9) vector with SO(1, 1) weight w=2.

Vo(T) = Vi yq := Vi g is SO(9) spinor (g =1, ..., 16) with w= 3.

We propose to describe the system of N nearly coincident MO—branes by

o
o
o
o
S = / o E= 4 / (o")° (tr (~P'DX + 4iwq DV ) + E#H) +
wi
4 [ Bt (4" )oP + SRl )
e P' .= P, are 9 bosonic matrix auxiliary fields,
1 il i i
Hoi= Hpen(X,PV) = 5itr (PP) FVX) - 2tr (X Wy w) ,

V= Vs (X) = fatr [X’ X/] = +6—4tr HX X’”

induced 1d SG

e as for a single M0: E= = E?u,, | E# = E?u,, ET9 = df>vi9
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mMO action

@ We propose to describe the system of N nearly coincident MO—branes by

_ # E= #)3 _PpX! 3 E#
Smmo = /W1p E +/W1(p ) (tr (—P'DX' + 4iwgDwq) + E#2) +
+ [P (4P + S| K1) |
wi 2

Moo= i (PP) - Lo [X X)) 20 (X wqv)
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mMO action

@ We propose to describe the system of N nearly coincident MO—branes by
S0 = / ot E= 4 / (o*)? (tr (~P'DX' + 4iwgDg) + E#3) +
w1 wr

+/ (o#)® E*atr <4i('yi\ll)qPi+ 1(w"f‘v)q[X’}X"O :
w1 2

_ 1 iTi 1 i xi? i gy
H = Etr<PIP’)fatr[X,X] 2tr(wa),
DX' = doX' +200X 4 oiX + A X1,
1
DV, = dvg+300w, - Zﬂvygpwp +[A, vq] .
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@ A = drA,(7) is the SU(N) connection - independent variable
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@ We propose to describe the system of N nearly coincident MO—branes by
S0 = / ot E= 4 / (o*)? (tr (~P'DX' + 4iwgDg) + E#3) +
w1 wr

+/ (o#)® E*atr (4/(7’W)qIP’+ 1(w"f‘ll)q[X’}X"O :
w1 2

1 i 1 i i1 i i
H = Etr<PIP’)fatr[X,X] 72”(wa),
DX' = doX' +200X 4 oiX + A X1,
1
DV, = dvg+300w, - Zﬂvygpwp +[A, vq] .

@ A = drA,(7) is the SU(N) connection - independent variable

@ 0O = grQ® — 1u=2duf and QI = drQl = uadul, are the composed
(induced) SO(1, 1) and SO(9) connections on W:
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@ We propose to describe the system of N nearly coincident MO—branes by
S0 = / ot E= 4 / (o*)? (tr (~P'DX' + 4iwgDg) + E#3) +
w1 wr

+/ (o#)® E*atr (4/(7’W)qIP’+ 1(w"f‘ll)q[X’}X"O :
w1 2

1 i 1 i i1 i i
H = Etr<PIP’)fatr[X,X] 72”(wa),
DX' = doX' +200X 4 oiX + A X1,
1
DV, = dvg+300w, - Zﬂvygpwp +[A, vq] .

@ A = drA,(7) is the SU(N) connection - independent variable

@ 0O = grQ® — 1u=2duf and QI = drQl = uadul, are the composed
(induced) SO(1, 1) and SO(9) connections on W:

@ as in the case of single MO—brane: £= = E4uj,

E# = Edu,, B+ = ddovi? ]

1t induced 1d SG
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mMO SUSY

Somo = / * E= +/ (p —P'DX’ + 4iV,DV, ) + E#H) 4=
+ [ Y E <4i(v’w)qﬂ’>’+%(v”w)q[xtxf]) |
wi

H o= %tr (P’P’)—atr [ Xf] 21 (X' wy/v)
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mMO SUSY

Somo = / o E= +/ (r") P'DX’+4:quw ) +E#H) +
+ [ e (4/(%%@" + 30 X)
H = —tr(IP’IP’)—Gjtr[X’ Xf] —2tr(X’\ll'y’\IJ)

@ is invariant under the 16 parametric local worldline SUSY:

5 X1 = dicty'v, 5P = [(t4w), X,
0Wqg = %(€+7i)qpi - %(J’YU)GI[X",XII] )
5.A = —E#e+q\|lq a4 (E+’Yi€+)Xi )
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mMO SUSY

Somo = (/ o E= +:/ (r") PDX“+4NQDW)—+E#H)+
+ [ e (4/(%%@" + 30 X)
H = AU(PP)—ngk’X]—2W<XW¢W)

@ is invariant under the 16 parametric local worldline SUSY:

5 X1 = dicty'v, 5P = [(t4w), X,
1ot pl oty 5
0Wqg = §(€+’Yl)qpl - ﬁ(6+7”)q[xl,xj] J
5.A = —E#e+q\|lq a4 (E+’Yi€+)Xi )
087 = B0+ 3(o* Pt (i(e WP — (WX, X)/8)
50% = Ur)vg”,

#=0=4d.u;
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mMO SUSY
X = dictyw, 4. "—[(ew’f'w) X7,
SV = ()P - 16(6 7l X1
sA = —E*t 4 (ETHeNX,
557 = —ifris.0+3(p" )zua#tr (/(eW’w)P"—(EWI\U)[X",XI’]/s),
80% = v,




mMO action and its susy
0®00

mMO SUSY
5X = dictyw, 8P = [(eT4v),X],
1
6cVq = *(6 gl — 16(6 YeX, X7,
sA = —E*t 4 (ETHeNX,
557 = —ifris.0+3(p" )zua#tr (/(eW’w)P"—(EWI\U)[X",XI’]/s),
80% = v,

e E# = Euf and E*9 = E~v}9 transforms as SUGRA supermultiplet,

5. E* = _2jE*T9H , 5. E*9 = De+q(7') ,




mMO action and its susy
0®00

mMO SUSY
5X = dietyw ef—ué%w)X]
SV = ()P - 16(6 7l X1
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e E# = F2uf and E*9 = E~v}9 transforms as SUGRA supermultiplet,
8.E* = —2iEt9ctT | 6.ET = Det(7)

@ The local SUSY acts on center of energy variables by a deformation of
the irreducible xk-symm of the massless superparticle:

8.8 = —i0r%,.0,  0.0° =)y, Sup” =0=10.l5 .
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@ Reason: Smuo = Swmo + Sige Where Swo = [, p* E is the MO action.
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@ The local SUSY acts on center of energy variables by a deformation of
the irreducible xk-symm of the massless superparticle:

8:%% = —ilr%,.0, 6.0 = ()vg ™,  Sup” =0=3d.u5 .
@ actually only 6.%2 = §,.%% + u?* L= is deformed with
oL = i.E= )2 = 3(p*)2ut tr (/(ew’\u)P" — ("W)X, XI] /8)
while §.0° = §,.0% = " 9(7)v; * and 6.p™ = 0 = d.uz
@ Reason: Smuo = Swmo + Sige Where Swo = [, p* E is the MO action.
@ However, now o7, uf, vy and Q© = u=du*, Q7 = (udu)” are present
alsoin  Siuo = [y (o*) (tr (~P'DX’ + 4iwgDUg) + E# 1) +
+41 [ (0% Bt (71W)qP' — §(y/W)q[X', XT)
@ = the center of energy motion of mMO is generically not lightlike.

@ ltis characterized by an effective mass constructed from relative motion
variables, M* = M?(X', P, w,).
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@ To see that the generic center of energy motion of mMO is not lightlike
and is characterized by M? = M?(X', ', w,), let us calculate
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0 = | M*:=pips(r) = 4(p*)* H(X, P, W) |
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—ai [ (P B ((W)P — (P)alX X)8)

@ To see that the generic center of energy motion of mMO is not lightlike
and is characterized by M? = M?(X', ', w,), let us calculate

8EmMO
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aa Xa( ) = p" Uy +(p )uaH(X>]P7wq)'

Pa(T) =

° = M2 = papa(T) = 4(p#)4 H(Xi7pi7wq) P M2 Z 0

@ M? is constant.
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On the center of energy motion
— # E= #13 pX! 3 E#
sm,v,o_/ ot E +/ () (tr (~P'DX' + 4iwqDWq) + E#3) —
w1 w1

—ai [V Etr ()P~ (1)l X))

@ To see that the generic center of energy motion of mMO is not lightlike
and is characterized by M? = M?(X', ', w,), let us calculate

8EmMO
90,%3(1)

pa(T) = =p'uz + (0" U H(X, P, W) .

° = M2 = papa(T) = 4(p#)4 H(Xi7pi7wq) P M2 Z 0

@ M? is constant. Indeed, in the purely bosonic limit

%%X:%WXWL P =D,X  (D=E*Dy).
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On the center of energy motion

Smito = /W1 ot BE= + /W1 () (tr (~P'DX' + 4iwqDWq) + E#3) —
—ai [ (P B ((W)P — (P)alX X)8)

@ To see that the generic center of energy motion of mMO is not lightlike
and is characterized by M? = M?(X', ', w,), let us calculate

8EmMO

pa(T) = 50 Xa( ) = p*us + (p#)3[12?&7-[(X",]P’f7 V).

° = M2 = papa(T) = 4(p#)4 H(Xi7pi7wq) P M2 Z 0

@ M? is constant. Indeed, in the purely bosonic limit
DuDyX' = %[[X’,X’]X’] , P=D,X (D=E*D,).

@ = DH = 0; furthermore Dp” := dp* —2p"Q® = 0= QO = gﬁ%;
= 0= (p")*DH = d(p")*H) = d(M?). Thus M? = const.
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@ Important! = Our result does not imply the existence of a new exotic
supersymmetric solution of the 11D supergravity.
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M? = 0 as a BPS equation. Vanishing effective mass of all susy bosonic solutions

All supersymmetric bosonic solutions of the mMO egs have M? = 0.
Indeed, setting V4 = 0 we find the following Killing spinor equation

€PKpg 1= (¢"7)gP’ — 8(6 YoX, X =0.

e lts consistency condition e*Pir((Ky/)pg®) + & (Ky¥)og[X/, X*]) = 0
=c"H =0 = e"IM? = 0.
@ Hence (one of) the mMO0 BPS equation(s) is

M=0 & Huo=gir(PP) - L [xx] =0

@ Important! = Our result does not imply the existence of a new exotic
supersymmetric solution of the 11D supergravity. SUSY solution
describing our mMO is similar to a single MO (M-wave) solution.

@ Furthermore, the explicit form of H « M? indicates that all SUSY
bosonic solutions of mMO0 egs. have P’ = 0 and [X’, X’] =0,

@ i.e. that their relative motion sector is in its ground state.
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2010]: accounting for 'backreaction’ of the relative motion on the center
of energy motion (M? := p?pa(7) = 4(p™)* H(X',IP', Wy) ) and vice
versa.
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@ Difference with equation obtained from superembedding approach [IB

2010]: accounting for 'backreaction’ of the relative motion on the center
of energy motion (M? := p?pa(7) = 4(p™)* H(X',IP', Wy) ) and vice
versa.

: 1 o o . Al 1 A, = ]
D;D;X' = ﬁ[[X',X/]X’] — 2~V + 4iD4(Ef~'W) + ﬁ(E;y’f)q[wq,xf .

Dim reduction on S' should be related to (the moving frame
reformulation of) the mDO action from [D. Sorokin 2003]. There the
center of energy mass is defined by an arbitrary function

Miop = Miop((p# 2P, p# X, (p#)?/2W), while in our case

M120D:p0_p1 —-~-—P9:P10+4(P#) H.
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@ Difference with equation obtained from superembedding approach [IB
2010]: accounting for 'backreaction’ of the relative motion on the center
of energy motion (M? := p?pa(7) = 4(p™)* H(X',IP', Wy) ) and vice
versa.

] 1 T e o . AL 1~ ]
D;D;X' = ﬁ[[X',X/]X’] — 2~V + 4iD4(Ef~'W) + ﬁ(E;y’f)q[wq,xf .

@ Dim reduction on S' should be related to (the moving frame
reformulation of) the mDO action from [D. Sorokin 2003]. There the
center of energy mass is defined by an arbitrary function
Miop = Miop((p# 2P, p# X, (p#)?/2W), while in our case

Miop = p§ — pi — ... — p§ = pho + 4(p™ )M .

@ Some arbitrariness still remains in the choose of the form of the
momentum pjo.

@ Should we use an exotic dimensional reduction defined with the use of
the relative motion variables? pio = f(IP', X', w)?
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Directions for future developments

@ Detailed study of equations of motion and their solutions.

@ To lift our functional to a generalized action and study the resulting
superembedding approach equations accounting for backreaction.

@ Generalization to curved background. Equations obtained in the frame of
superembedding approach suggest to add
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Directions for future developments

@ Detailed study of equations of motion and their solutions.

@ To lift our functional to a generalized action and study the resulting
superembedding approach equations accounting for backreaction.

@ Generalization to curved background. Equations obtained in the frame of
superembedding approach suggest to add

Aloesg % / Ba( )3 Faikyy (X’[XﬂX"] +4N,7i/kw> n
4 il

/ E*(p*) R (X X’) v2i [ EAp*) T % (X"wq) :
wi
with ,:_al/k Fade( )ubu’ Ud,
Ral—/ Rabcd(z) Ubuc Ufj,
T4 = T 2)uhv 7.
@ Search for generalizations for the case of mM2. Although this is not

promising to be easy in the light of recent results in [Gran, Greitz, Howe
& Nilsson, 2012], neither it looks hopeless.
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Further comments

A1. Comment on coupling to SUGRA
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@ i.e. to study a model involving something like
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@ Although our spinor moving frame variables seems to be useful in writing
such expressions to deal with them is quite a difficult problem (see [Dorn
96, Duglas 97, Y. Lozano, Janssen 2000-2010])

@ For nearly coincident branes one can use the series decomposition in X
and V4. = sum of polynomials in X' and v, multiplied by T, R, F, DT,
DR, DF, ..., D...DT, ..., depending on Z"(r) = (X*(7)6(r)) only.

@ The straightforward search for curved superspace generalization of Spumo
by adding & [,,1 E3(p*)® F¥1r (X’[Xj,Xk]) + ... (see above) and
checking 1d /' = 16 susy corresponds to the search for such a
decomposition power by power in X' and W,

@ with a hope that probably this generically infinite series can be
consistently (susy pres.) truncated to a polynomial in X' and V.
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X' =X'(¢™, y") (1 =1, ..., 8) and fermionic W,q = Waq(€, y)- are
functions on W3 x M®.

e The tris replaced by [ d°y, e.g. tr(P'DX') — [ d®yP'DX’.

@ The local SDiff3 invariance is provided by the presence of gauge field
s' = deMs)(€, y) obeying &'s' = 0 which implies s’ = ¢’ A with
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@ where E2 = d¢? (as far as W® = R®) and the Hamiltonian reads
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@ where E2 = d¢? (as far as W® = R®) and the Hamiltonian reads
= S PUPL 4 L (UKo XU XN Y + LK KIo s (1 W )s
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BWaq = — 7 (77 VB — (79 [X/, X/, XK.
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@ where ZV = Z"”(g) are coordinate functions of the center of energy,
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e and EPP = E2(Z)v£P is the induced gravitino (counterpart of £+9 of
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@ Its presence should allow to make all the action invariant under the local
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@ Itis tempting to try the M2-brane action in its spinor moving frame
formulation Sc.o.e.(Z) = Swe = [ HeacE? A EP NE® + Cs
e This is invariant under the k—symmetry with §.Z" = %9y, 2EM(2), ...
@ But to maintain the supersymmetry of Sz (2) + Shes+ x E°P seems
to be |mp033|ble
be LaBLG = De® A §(...) + § iE%a7'W A QLA QYXY + .. with
Qf = uddu®'.

@ Probably the deep reason beyond this is that Sy is not conformally
invariant, while Si2 is a CFT.

@ Could Sc,. (Z2) be some tensionless limit of Sy, (null-supermembrane)?
@ This is under investigation now.
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@ The central problem is: what is Sc.o..(2)?

@ Itis tempting to try the M2-brane action in its spinor moving frame
formulation Sc.o.e.(Z) = Swe = [ HeacE? A EP NE® + Cs

e This is invariant under the k—symmetry with §.Z" = %9y, 2EM(2), ...

@ But to maintain the supersymmetry of Sz (2) + Shes+ x E°P seems
to be |mp033|ble
o LaBLG = De® A §(...) + § iE%a7'W A QLA QYXY + .. with
Qf = uddu®'.

@ Probably the deep reason beyond this is that Sy is not conformally
invariant, while Si2 is a CFT.

@ Could Sc,. (Z2) be some tensionless limit of Sy, (null-supermembrane)?

@ This is under investigation now.

@ The problem is that, although some xk—symmetric null-supermembrane
actions are known, their k—symmetry is of a different type then SUSY of
the BLG model.
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