Action for the eleven dimensional multiple M-wave system

Igor A. Bandos

\diamond Department of Theoretical Physics, University of the Basque Country, Bilbao, Spain,
${ }^{\circ}$ IKERBASQUE, the Basque Foundation for Science, Bilbao, Spain

INFN-MINECO Workshop, Naples, November 12-14, 2012

Based on: I.B., arXiv:1207.7300 [hep-th] and on paper in preparation with Carlos Meliveo.

November 14, 2012
(9) Introduction

- M-branes and D-brane
- M0-brane
(2) M0-brane action in spinor moving frame formulation
- Moving frame action for a single M0-brane
- Moving frame and spinor moving frame

3 Multiple M0-brane action and its local worldline supersymmetry

- Multiple M0-brane action
- SUSY of the multiple MO-brane action
- $M^{2}=0$ as a BPS equation.

4 Discussion and outlook

- Discussion
- Outlook
- Two comments

Outline

(9) Introduction

- M-branes and D-brane
- M0-brane
(2) MO-brane action in spinor moving frame formulation
- Moving frame action for a single M0-brane
- Moving frame and spinor moving frame
(3) Multiple M0-brane action and its local worldline supersymmetry
- Multiple M0-brane action
- SUSY of the multiple MO-brane action
- $M^{2}=0$ as a BPS equation.

4 Discussion and outlook

- Discussion
- Outlook
- Two comments

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $\mathrm{D}=10$ produces the action of the D 0 -brane = 10D type IIA massive superparticle.

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $\mathrm{D}=10$ produces the action of the D 0 -brane = 10D type IIA massive superparticle.
- M0 is the natural toy model to study the problems of higher M-branes.

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $D=10$ produces the action of the D 0 -brane = 10D type IIA massive superparticle.
- M0 is the natural toy model to study the problems of higher M-branes.
- One of such is the effective action for multiple Mp-brane (mMp) systems

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $\mathrm{D}=10$ produces the action of the D 0 -brane = 10D type IIA massive superparticle.
- M0 is the natural toy model to study the problems of higher M-branes.
- One of such is the effective action for multiple Mp-brane (mMp) systems
- The dim. reduction of (the hypothetical) $\mathrm{mM} p^{\prime}$ action should produce mDp (multiple Dp-brane) action

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $\mathrm{D}=10$ produces the action of the D 0 -brane = 10D type IIA massive superparticle.
- M0 is the natural toy model to study the problems of higher M-branes.
- One of such is the effective action for multiple Mp-brane (mMp) systems
- The dim. reduction of (the hypothetical) mMp^{\prime} action should produce mDp (multiple Dp-brane) action
- which is believed to be written in terms of $(9-p)$ Hermitian matrices of scalar fields, $\tilde{\mathbb{X}}^{i}$,

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $D=10$ produces the action of the D 0 -brane = 10D type IIA massive superparticle.
- M0 is the natural toy model to study the problems of higher M-branes.
- One of such is the effective action for multiple Mp-brane (mMp) systems
- The dim. reduction of (the hypothetical) mMp^{\prime} action should produce mDp (multiple Dp-brane) action
- which is believed to be written in terms of $(9-p)$ Hermitian matrices of scalar fields, $\tilde{\mathbb{X}}^{i}$, the diagonal elements of which describe the positions of different Dp-branes

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $D=10$ produces the action of the D 0 -brane = 10D type IIA massive superparticle.
- M0 is the natural toy model to study the problems of higher M-branes.
- One of such is the effective action for multiple Mp-brane (mMp) systems
- The dim. reduction of (the hypothetical) mMp^{\prime} action should produce mDp (multiple Dp-brane) action
- which is believed to be written in terms of $(9-p)$ Hermitian matrices of scalar fields, $\tilde{\mathbb{X}}^{i}$, the diagonal elements of which describe the positions of different Dp-branes while the off-diagonal elements account for the strings stretched between different Dp-branes.

M-branes and D-branes and mDp

- The set of 11D supersymmetric extended objects, M-branes includes:
- M2-branes also known as supermembrane [BST 1987], M5-brane (M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]
- and also M0-brane or M-wave [Bergshoeff \& Townsend 1996]
- Dim reduction of $S_{M 0}$ to $D=10$ produces the action of the D0-brane = 10D type IIA massive superparticle.
- M0 is the natural toy model to study the problems of higher M-branes.
- One of such is the effective action for multiple Mp-brane (mMp) systems
- The dim. reduction of (the hypothetical) $\mathrm{mM} p^{\prime}$ action should produce mDp (multiple Dp-brane) action
- which is believed to be written in terms of $(9-p)$ Hermitian matrices of scalar fields, $\tilde{\mathbb{X}}^{i}$, the diagonal elements of which describe the positions of different Dp-branes while the off-diagonal elements account for the strings stretched between different Dp-branes.
- SYM description was the basis for the search for a more complete nonlinear description of mDp system: [Myers 1999] (purely bosonic), [Sorokin 03], [Howe, Linstrom, Wulff 2005-07] (boundary fermion SSP)....
mM5, mM2 and mM0
- For the case of mM5 even the question on what should be a counterpart of the very low energy SYM description of $\mathrm{mD} p$ is still obscure.

mM5, mM2 and mM0

- For the case of mM5 even the question on what should be a counterpart of the very low energy SYM description of $\mathrm{mD} p$ is still obscure.
- For the case of very low energy mM2 system such a problem was unsolved many years,

mM5, mM2 and mM0

- For the case of mM5 even the question on what should be a counterpart of the very low energy SYM description of mDp is still obscure.
- For the case of very low energy mM2 system such a problem was unsolved many years, but recently two models were proposed by BLG [Bagger, Lambert 2007 and Gustavsson 2007] and by ABJM [Aharony, Bergman, Jafferis and Maldacena 2008].

mM5, mM2 and mM0

- For the case of mM5 even the question on what should be a counterpart of the very low energy SYM description of mDp is still obscure.
- For the case of very low energy mM2 system such a problem was unsolved many years, but recently two models were proposed by BLG [Bagger, Lambert 2007 and Gustavsson 2007] and by ABJM [Aharony, Bergman, Jafferis and Maldacena 2008].
- mM0: A purely bosonic candidate for mM0 action was constructed in [Janssen and Lozano 2002] (as 11D generalization of the Myers's mD0).

mM5, mM2 and mM0

- For the case of mM5 even the question on what should be a counterpart of the very low energy SYM description of mDp is still obscure.
- For the case of very low energy mM2 system such a problem was unsolved many years, but recently two models were proposed by BLG [Bagger, Lambert 2007 and Gustavsson 2007] and by ABJM [Aharony, Bergman, Jafferis and Maldacena 2008].
- mM0: A purely bosonic candidate for mM0 action was constructed in [Janssen and Lozano 2002] (as 11D generalization of the Myers's mD0).
- Supersymmetric and Lorentz covariant equations of motion for mM0-system were obtained in [IB 2009] in the frame of superembedding approach [BPSTV 95, HS 96,...].

mM5, mM2 and mM0

- For the case of mM5 even the question on what should be a counterpart of the very low energy SYM description of mDp is still obscure.
- For the case of very low energy mM2 system such a problem was unsolved many years, but recently two models were proposed by BLG [Bagger, Lambert 2007 and Gustavsson 2007] and by ABJM [Aharony, Bergman, Jafferis and Maldacena 2008].
- mM0: A purely bosonic candidate for mM0 action was constructed in [Janssen and Lozano 2002] (as 11D generalization of the Myers's mD0).
- Supersymmetric and Lorentz covariant equations of motion for mM0-system were obtained in [IB 2009] in the frame of superembedding approach [BPSTV 95, HS 96,...].
- Their generalization for arbitrary 11D SUGRA background [IB2010] describe the M(atrix) theory of BFSS [Banks, Fischler, Shenker and Susskind 1996] in the 11D SUGRA background.

mM5, mM2 and mM0

- For the case of mM5 even the question on what should be a counterpart of the very low energy SYM description of mDp is still obscure.
- For the case of very low energy mM2 system such a problem was unsolved many years, but recently two models were proposed by BLG [Bagger, Lambert 2007 and Gustavsson 2007] and by ABJM [Aharony, Bergman, Jafferis and Maldacena 2008].
- mM0: A purely bosonic candidate for mM0 action was constructed in [Janssen and Lozano 2002] (as 11D generalization of the Myers's mD0).
- Supersymmetric and Lorentz covariant equations of motion for mM0-system were obtained in [IB 2009] in the frame of superembedding approach [BPSTV 95, HS 96,...].
- Their generalization for arbitrary 11D SUGRA background [IB2010] describe the M(atrix) theory of BFSS [Banks, Fischler, Shenker and Susskind 1996] in the 11D SUGRA background.
- The general eqs [IB 2010] were specialized for the case of 11D pp-wave superspace [IB 2011] and shown to reproduce (in some limit) the eqs of the BMN Matrix model [Berenstein, Maldacena and Nastase 2002].

mM5, mM2 and mM0

mM5, mM2 and mM0

- This derivation of BMN confirms that general mM0 equations [IB 2010] give curved superspace generalization of the M (atrix) model

mM5, mM2 and mM0

- This derivation of BMN confirms that general mM0 equations [IB 2010] give curved superspace generalization of the M (atrix) model
- but also have shown that the superembedding approach based equations are very difficult to apply.

mM5, mM2 and mM0

- This derivation of BMN confirms that general mM0 equations [IB 2010] give curved superspace generalization of the M (atrix) model
- but also have shown that the superembedding approach based equations are very difficult to apply.
- Hence, for applications it is desirable to find an action which reproduces the mM0 eqs of [IB 2010] or their generalizations (which is what is actually happens).

mM5, mM2 and mM0

- This derivation of BMN confirms that general mM0 equations [IB 2010] give curved superspace generalization of the M (atrix) model
- but also have shown that the superembedding approach based equations are very difficult to apply.
- Hence, for applications it is desirable to find an action which reproduces the mM0 eqs of [IB 2010] or their generalizations (which is what is actually happens).
- The aim of this talk is to present such an action for mM0 in flat target superspace.

M0 action. Brink-Schwarz form

M0 action. Brink-Schwarz form

- A single M0-brane = M-wave is just 11D massless superparticle

M0 action. Brink-Schwarz form

- A single M0-brane = M-wave is just 11D massless superparticle
- \Rightarrow it can be described by the 11D version of the Brink-Schwarz action

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

M0 action. Brink-Schwarz form

- A single M0-brane = M-wave is just 11D massless superparticle
- \Rightarrow it can be described by the 11D version of the Brink-Schwarz action

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- where $a=0,1, \ldots, 10, e(\tau)$ is the Lagrange multiplier (for $p_{a} p^{a}=0$)

M0 action. Brink-Schwarz form

- A single M0-brane = M-wave is just 11D massless superparticle
- \Rightarrow it can be described by the 11D version of the Brink-Schwarz action

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- where $a=0,1, \ldots, 10, e(\tau)$ is the Lagrange multiplier (for $p_{a} p^{a}=0$)
- $\hat{E}^{a}=E^{a}(\hat{Z})=d \hat{Z}^{M}(\tau) E_{M}^{a}(\hat{Z})$ is the pull-back of $E^{a}(Z)=d Z^{M} E_{M}^{a}(Z)$

M0 action. Brink-Schwarz form

- A single M0-brane = M-wave is just 11D massless superparticle
- \Rightarrow it can be described by the 11D version of the Brink-Schwarz action

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- where $a=0,1, \ldots, 10, e(\tau)$ is the Lagrange multiplier (for $p_{a} p^{a}=0$)
- $\hat{E}^{a}=E^{a}(\hat{Z})=d \hat{Z}^{M}(\tau) E_{M}^{a}(\hat{Z})$ is the pull-back of $E^{a}(Z)=d Z^{M} E_{M}^{a}(Z)$
- to the worldline W^{1}.

$$
W^{1} \subset \Sigma^{(11 \mid 32)}: \quad Z^{M}=\hat{Z}^{M}(\xi)=\left(\hat{x}^{\mu}(\xi), \hat{\theta}^{\breve{\alpha}}(\xi)\right)
$$

M0 action. Brink-Schwarz form

- A single M0-brane = M-wave is just 11D massless superparticle
- \Rightarrow it can be described by the 11D version of the Brink-Schwarz action

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- where $a=0,1, \ldots, 10, e(\tau)$ is the Lagrange multiplier (for $p_{a} p^{a}=0$)
- $\hat{E}^{a}=E^{a}(\hat{Z})=d \hat{Z}^{M}(\tau) E_{M}^{a}(\hat{Z})$ is the pull-back of $E^{a}(Z)=d Z^{M} E_{M}^{a}(Z)$
- to the worldline W^{1}.

$$
W^{1} \subset \Sigma^{(11 \mid 32)}: \quad Z^{M}=\hat{Z}^{M}(\xi)=\left(\hat{x}^{\mu}(\xi), \hat{\theta}^{\breve{\alpha}}(\xi)\right)
$$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,

M0 action. Brink-Schwarz form

- A single M0-brane = M-wave is just 11D massless superparticle
- \Rightarrow it can be described by the 11D version of the Brink-Schwarz action

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- where $a=0,1, \ldots, 10, e(\tau)$ is the Lagrange multiplier (for $p_{a} p^{a}=0$)
- $\hat{E}^{a}=E^{a}(\hat{Z})=d \hat{Z}^{M}(\tau) E_{M}^{a}(\hat{Z})$ is the pull-back of $E^{a}(Z)=d Z^{M} E_{M}^{a}(Z)$
- to the worldline W^{1}.

$$
W^{1} \subset \Sigma^{(11 \mid 32)}: \quad Z^{M}=\hat{Z}^{M}(\xi)=\left(\hat{x}^{\mu}(\xi), \hat{\theta}^{\breve{\alpha}}(\xi)\right)
$$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,
- and $\hat{E}^{a}=d \tau \hat{E}_{\tau}^{a}, \quad \hat{E}_{\tau}^{a}=\hat{\Pi}_{\tau}^{a}=\partial_{\tau} \hat{X}^{a}(\tau)-i \partial_{\tau} \hat{\theta} \Gamma^{a} \hat{\theta}(\tau)$.

M0 action. Brink-Schwarz form

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,
- and $\hat{E}^{a}=d \tau \hat{E}_{\tau}^{a}, \quad \hat{E}_{\tau}^{a}=\hat{\Pi}_{\tau}^{a}=\partial_{\tau} \hat{X}^{a}(\tau)-i \partial_{\tau} \hat{\theta} \Gamma^{a} \hat{\theta}(\tau)$.
κ-symmetry

M0 action. Brink-Schwarz form

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,
- and $\hat{E}^{a}=d \tau \hat{E}_{\tau}^{a}, \quad \hat{E}_{\tau}^{a}=\hat{\Pi}_{\tau}^{a}=\partial_{\tau} \hat{X}^{a}(\tau)-i \partial_{\tau} \hat{\theta} \Gamma^{a} \hat{\theta}(\tau)$.

κ-symmetry

- The action is invariant under the local fermionic κ-symmetry [de Azcárraga \& Lukierski 1982, Siegel 83]

$$
\delta_{\kappa} \hat{X}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=p_{a} \tilde{\Gamma}^{a \alpha \beta} \kappa_{\beta}(\tau) \quad \delta_{\kappa} e=4 i \kappa_{\beta} \partial_{\tau} \hat{\theta}^{\beta}
$$

M0 action. Brink-Schwarz form

$$
S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)
$$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,
- and $\hat{E}^{a}=d \tau \hat{E}_{\tau}^{a}, \quad \hat{E}_{\tau}^{a}=\hat{\Pi}_{\tau}^{a}=\partial_{\tau} \hat{X}^{a}(\tau)-i \partial_{\tau} \hat{\theta} \Gamma^{a} \hat{\theta}(\tau)$.

κ-symmetry

- The action is invariant under the local fermionic κ-symmetry [de Azcárraga \& Lukierski 1982, Siegel 83]

$$
\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=p_{a} \tilde{\Gamma}^{a \alpha \beta} \kappa_{\beta}(\tau), \quad \delta_{\kappa} e=4 i \kappa_{\beta} \partial_{\tau} \hat{\theta}^{\beta}
$$

- This reflects the SUSY preserved by the ground state $\left(\exists \kappa \Rightarrow \mid \emptyset>\right.$ is $\left.\frac{1}{2} \mathrm{BPS}\right)$

M0 action. Brink-Schwarz form

$S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,
- and $\hat{E}^{a}=d \tau \hat{E}_{\tau}^{a}, \quad \hat{E}_{\tau}^{a}=\hat{\Pi}_{\tau}^{a}=\partial_{\tau} \hat{X}^{a}(\tau)-i \partial_{\tau} \hat{\theta} \Gamma^{a} \hat{\theta}(\tau)$.

κ-symmetry

- The action is invariant under the local fermionic κ-symmetry [de Azcárraga \& Lukierski 1982, Siegel 83]

$$
\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=p_{a} \tilde{\Gamma}^{a \alpha \beta} \kappa_{\beta}(\tau), \quad \delta_{\kappa} e=4 i \kappa_{\beta} \partial_{\tau} \hat{\theta}^{\beta}
$$

- This reflects the SUSY preserved by the ground state ($\exists \kappa \Rightarrow \mid \emptyset>$ is $\frac{1}{2} \mathrm{BPS}$)
- On the other hand the κ-symmetry can be identified with worldline SUSY [Sorokin, Tkach, Volkov 1988]

M0 action. Brink-Schwarz form

$S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,
- and $\hat{E}^{a}=d \tau \hat{E}_{\tau}^{a}, \quad \hat{E}_{\tau}^{a}=\hat{\Pi}_{\tau}^{a}=\partial_{\tau} \hat{X}^{a}(\tau)-i \partial_{\tau} \hat{\theta} \Gamma^{a} \hat{\theta}(\tau)$.

κ-symmetry

- The action is invariant under the local fermionic κ-symmetry [de Azcárraga \& Lukierski 1982, Siegel 83]

$$
\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=p_{a} \tilde{\Gamma}^{a \alpha \beta} \kappa_{\beta}(\tau), \quad \delta_{\kappa} e=4 i \kappa_{\beta} \partial_{\tau} \hat{\theta}^{\beta}
$$

- This reflects the SUSY preserved by the ground state ($\exists \kappa \Rightarrow \mid \emptyset>$ is $\frac{1}{2} \mathrm{BPS}$)
- On the other hand the κ-symmetry can be identified with worldline SUSY [Sorokin, Tkach, Volkov 1988]
- which is not evident as far as the κ-symm. of the BS action is ∞-reducible (as $\left.p^{2} \approx 0, \kappa_{\alpha} \sim \kappa_{\alpha}+p_{b} \Gamma_{\alpha \beta}^{b} \kappa^{(1) \beta}, \kappa^{(1) \beta} \sim \kappa^{(1) \beta}+p_{c} \tilde{\Gamma}^{c \beta \gamma} \kappa_{\gamma}^{(2)}, \ldots\right)$.

M0 action. Brink-Schwarz form

$S_{B S}=\int_{W^{1}}\left(p_{a} \hat{E}^{a}-\frac{e}{2} p_{a} p^{a} d \tau\right)$

- In flat target superspace $E^{a}=\Pi^{a}=d x^{a}-i d \theta \Gamma^{a} \theta, \quad E^{\alpha}=d \theta^{\alpha}$,
- and $\hat{E}^{a}=d \tau \hat{E}_{\tau}^{a}, \quad \hat{E}_{\tau}^{a}=\hat{\Pi}_{\tau}^{a}=\partial_{\tau} \hat{X}^{a}(\tau)-i \partial_{\tau} \hat{\theta} \Gamma^{a} \hat{\theta}(\tau)$.

κ-symmetry

- The action is invariant under the local fermionic κ-symmetry [de Azcárraga \& Lukierski 1982, Siegel 83]

$$
\delta_{\kappa} \hat{X}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=p_{a} \tilde{\Gamma}^{a \alpha \beta} \kappa_{\beta}(\tau), \quad \delta_{\kappa} e=4 i \kappa_{\beta} \partial_{\tau} \hat{\theta}^{\beta}
$$

- This reflects the SUSY preserved by the ground state ($\exists \kappa \Rightarrow \mid \emptyset>$ is $\frac{1}{2} \mathrm{BPS}$)
- On the other hand the κ-symmetry can be identified with worldline SUSY [Sorokin, Tkach, Volkov 1988]
- which is not evident as far as the κ-symm. of the BS action is ∞-reducible (as $\left.p^{2} \approx 0, \kappa_{\alpha} \sim \kappa_{\alpha}+p_{b} \Gamma_{\alpha \beta}^{b} \kappa^{(1) \beta}, \kappa^{(1) \beta} \sim \kappa^{(1) \beta}+p_{c} \tilde{\Gamma}^{c \beta \gamma} \kappa_{\gamma}^{(2)}, \ldots\right)$.
- κ symmetry appears in its irreducible form in the so-called spinor moving frame formulation of superparticle [IB 1990, IB+AN 1996, IB 2007]
(9) Introduction
- M-branes and D-brane
- Mo-brane
(2) MO-brane action in spinor moving frame formulation
- Moving frame action for a single M0-brane
- Moving frame and spinor moving frame
(3) Multiple M0-brane action and its local worldline supersymmetry
- Multiple M0-brane action
- SUSY of the multiple MO-brane action
- $M^{2}=0$ as a BPS equation.

4 Discussion and outlook

- Discussion
- Outlook
- Two comments

Moving frame action and its twistor-like nature

- The spinor moving frame action of M0-brane reads

$$
\begin{aligned}
S_{M O} & =\int_{W^{1}} \rho^{\#} \hat{E}^{=}=\int_{W^{1}} \rho^{\#} u_{a}^{=} E^{a}(\hat{Z}) \\
& =\frac{1}{16} \int_{W^{1}} \rho^{\#}\left(v_{q}^{-} \Gamma_{a} v_{q}^{-}\right) \hat{E}^{a}
\end{aligned}
$$

where $\rho^{\#}(\tau)$ is a Lagrange multiplier and $u_{a}^{\overline{=}}$ is light-like $u^{=a} u_{\bar{a}}^{=}=0$.

Moving frame action and its twistor-like nature

- The spinor moving frame action of M0-brane reads

$$
\begin{aligned}
S_{M 0} & =\int_{W^{1}} \rho^{\#} \hat{E}^{=}=\int_{W^{1}} \rho^{\#} u_{a}^{=} E^{a}(\hat{Z}) \\
& =\frac{1}{16} \int_{W^{1}} \rho^{\#}\left(v_{q}^{-} \Gamma_{a} v_{q}^{-}\right) \hat{E}^{a}
\end{aligned}
$$

where $\rho^{\#}(\tau)$ is a Lagrange multiplier and $u_{a}^{\overline{=}}$ is light-like $u^{=a} u_{\bar{a}}^{=}=0$.

- This can be considered as a kind of square of any of the 16 spinors $v_{q}^{-\alpha}$

Moving frame action and its twistor-like nature

- The spinor moving frame action of M0-brane reads

$$
\begin{aligned}
S_{M 0} & =\int_{W^{1}} \rho^{\#} \hat{E}^{=}=\int_{W^{1}} \rho^{\#} u_{a}^{=} E^{a}(\hat{Z}) \\
& =\frac{1}{16} \int_{W^{1}} \rho^{\#}\left(v_{q}^{-} \Gamma_{a} v_{q}^{-}\right) \hat{E}^{a},
\end{aligned}
$$

where $\rho^{\#}(\tau)$ is a Lagrange multiplier and $u_{a}^{\overline{=}}$ is light-like $u^{=a} u_{\bar{a}}^{=}=0$.

- This can be considered as a kind of square of any of the 16 spinors $v_{q}^{-\alpha}$
- provided these are constrained by

$$
\left.v_{q}^{-\alpha}\left(\Gamma^{a}\right)_{\alpha \beta} v_{p}^{-\beta}=\delta_{q p} u_{a}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=} \tilde{\Gamma}^{a \alpha \beta}\right\} \quad\left(\Rightarrow \quad u^{=a} u_{a}^{=}=0\right)
$$

Moving frame action and its twistor-like nature

- The spinor moving frame action of M0-brane reads

$$
\begin{aligned}
S_{M 0} & =\int_{W^{1}} \rho^{\#} \hat{E}^{=}=\int_{W^{1}} \rho^{\#} u_{a}^{=} E^{a}(\hat{Z}) \\
& =\frac{1}{16} \int_{W^{1}} \rho^{\#}\left(v_{q}^{-} \Gamma_{a} v_{q}^{-}\right) \hat{E}^{a},
\end{aligned}
$$

where $\rho^{\#}(\tau)$ is a Lagrange multiplier and $u_{a}^{\overline{=}}$ is light-like $u^{=a} u_{\bar{a}}^{=}=0$.

- This can be considered as a kind of square of any of the 16 spinors $v_{q}^{-\alpha}$
- provided these are constrained by

$$
\left.v_{q}^{-\alpha}\left(\Gamma^{a}\right)_{\alpha \beta} v_{p}^{-\beta}=\delta_{q p} u_{a}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=} \tilde{\Gamma}^{a \alpha \beta}\right\} \quad\left(\Rightarrow \quad u^{=a} u_{a}^{=}=0\right)
$$

- With the use of these constrained spinors, the κ-symmetry of the spinor moving frame action can be written in the following irreducible form

$$
\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}
$$

Moving frame action and its twistor-like nature

- The spinor moving frame action of M0-brane reads

$$
\begin{aligned}
S_{M 0} & =\int_{W^{1}} \rho^{\#} \hat{E}^{=}=\int_{W^{1}} \rho^{\#} u_{a}^{=} E^{a}(\hat{Z}) \\
& =\frac{1}{16} \int_{W^{1}} \rho^{\#}\left(v_{q}^{-} \Gamma_{a} v_{q}^{-}\right) \hat{E}^{a},
\end{aligned}
$$

where $\rho^{\#}(\tau)$ is a Lagrange multiplier and $u_{a}^{=}$is light-like $u^{=a} u_{a}^{=}=0$.

- This can be considered as a kind of square of any of the 16 spinors $v_{q}^{-\alpha}$
- provided these are constrained by

$$
\left.v_{q}^{-\alpha}\left(\Gamma^{a}\right)_{\alpha \beta} v_{p}^{-\beta}=\delta_{q p} u_{a}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=} \tilde{\Gamma}^{a} \alpha \beta\right\} \quad\left(\Rightarrow \quad u^{=a} u_{a}^{=}=0\right)
$$

- With the use of these constrained spinors, the κ-symmetry of the spinor moving frame action can be written in the following irreducible form

$$
\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}
$$

- These can be obtained from the ∞-reducible κ symm of $S_{B S}$, $\delta_{\kappa} \hat{\theta}^{\alpha}=p_{a} \tilde{\Gamma}^{a \alpha \beta} \kappa_{\beta}(\tau)$, by substituting for p_{a} the solution $p_{a}=\rho^{\#} u_{a}^{=}$of the constraint $p_{a} p^{a}=0$. Then $\epsilon^{+q}=2 \rho^{\#} v_{q}^{-\alpha} \kappa_{\alpha}$.

Moving frame action and its twistor-like nature

- The spinor moving frame action of M0-brane reads

$$
\begin{aligned}
S_{M 0} & =\int_{W^{1}} \rho^{\#} \hat{E}^{-=}=\int_{W^{1}} \rho^{\#} u_{a}^{=} E^{a}(\hat{Z}) \\
& =\frac{1}{16} \int_{W^{1}} \rho^{\#}\left(v_{q}^{-} \Gamma_{a} v_{q}^{-}\right) \hat{E}^{a},
\end{aligned}
$$

where $\rho^{\#}(\tau)$ is a Lagrange multiplier and $u_{a}^{=}$is light-like $u^{=a} u_{a}^{=}=0$.

- This can be considered as a kind of square of any of the 16 spinors $v_{q}^{-\alpha}$
- provided these are constrained by

$$
\left.v_{q}^{-\alpha}\left(\Gamma^{a}\right)_{\alpha \beta} v_{p}^{-\beta}=\delta_{q p} u_{\bar{a}}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=} \tilde{\Gamma}^{a \alpha \beta}\right\} \quad\left(\Rightarrow \quad u^{=a} u_{a}^{=}=0\right)
$$

- With the use of these constrained spinors, the κ-symmetry of the spinor moving frame action can be written in the following irreducible form

$$
\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=} .
$$

- These can be obtained from the ∞-reducible κ symm of $S_{B S}$, $\delta_{\kappa} \hat{\theta}^{\alpha}=p_{a} \tilde{\Gamma}^{a \alpha \beta} \kappa_{\beta}(\tau)$, by substituting for p_{a} the solution $p_{a}=\rho^{\#} u_{a}^{=}$of the constraint $p_{a} p^{a}=0$. Then $\epsilon^{+q}=2 \rho^{\#} v_{q}^{-\alpha} \kappa_{\alpha}$.
- However, one might still find the origin of our $v_{q}^{-\alpha}$ a bit mysterious.

Moving frame and spinor moving frame

Moving frame and spinor moving frame

- To clarify the nature of $v_{q}^{-\alpha}$, it is useful to consider the null-vector $u_{a}^{=}$as an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\bar{b}}^{\bar{b}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{\bar{b}}^{\bar{b}}}{2}\right) \in S O(1,10)
$$

Moving frame and spinor moving frame

- To clarify the nature of $v_{q}^{-\alpha}$, it is useful to consider the null-vector $u_{a}^{=}$as an element of the moving frame matrix,

$$
\begin{array}{r}
U_{b}^{(a)}=\left(\frac{u_{b}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\bar{b}}}}{2}\right) \in S O(1,10) \\
u_{a}^{=} u^{a=}=0, \quad \begin{array}{ll}
u_{a}^{=} u^{a \#}=2, & u_{a}^{=} u^{a i}=0 \\
u_{a}^{\#} u^{a \#}=0, & u_{a}^{\#} u^{a i}=0 \\
u_{a}^{i} u^{a j}=-\delta^{i j}
\end{array}
\end{array}
$$

Moving frame and spinor moving frame

- To clarify the nature of $v_{q}^{-\alpha}$, it is useful to consider the null-vector $u_{a}^{=}$as an element of the moving frame matrix,

$$
\begin{array}{r}
U_{b}^{(a)}=\left(\frac{u_{b}^{\overline{=}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{=}}{2}\right) \in S O(1,10)
\end{array} \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of $\operatorname{Spin}(1,10)$ valued spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

Moving frame and spinor moving frame

- To clarify the nature of $v_{q}^{-\alpha}$, it is useful to consider the null-vector $u_{a}^{=}$as an element of the moving frame matrix,

$$
\begin{array}{r}
U_{b}^{(a)}=\left(\frac{u_{b}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{-}}}{2}\right) \in S O(1,10) \\
u_{a}^{=} u^{a=}=0, \quad \begin{array}{l}
u_{a}^{=} u^{a \#}=2, \quad u_{a}^{=} u^{a i}=0 \\
u_{a}^{\#} u^{a \#}=0, \\
u_{a}^{\#} u^{a i}=0 \\
u_{a}^{i} u^{a j}=-\delta^{i j}
\end{array}
\end{array}
$$

- $v_{q}^{-\alpha}$ is 8×16 block of $\operatorname{Spin}(1,10)$ valued spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- This is double covering of the moving frame matrix:

$$
\begin{aligned}
& V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C . \\
& \bullet \Rightarrow v_{q}^{-} \Gamma^{a} V_{p}^{-}=\delta_{q p} u_{a}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=}
\end{aligned}
$$

Moving frame and spinor moving frame

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{b}^{\bar{b}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\bar{\rightharpoonup}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{v_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
\begin{aligned}
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V & =\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C . \\
\bullet \Rightarrow & v_{q}^{-} \Gamma^{a} v_{p}^{-}=\delta_{q p} u_{a}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=},
\end{aligned}
$$

Moving frame and spinor moving frame

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\bar{b}}^{\bar{b}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\bar{b}}}{2}\right) \in S O(1,10)
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{v_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
\begin{aligned}
& V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C . \\
\bullet \Rightarrow & v_{q}^{-} \Gamma^{a} v_{p}^{-}=\delta_{q p} u_{a}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=} \\
0 \Rightarrow & v_{q}^{+} \Gamma_{a} v_{p}^{+}=u_{a}^{\#} \delta_{q p}, \quad 2 v_{q}^{+\alpha} v_{q}^{+\beta}=\tilde{\Gamma}^{a \alpha \beta} u_{a}^{\#} \\
\bullet \Rightarrow & v_{q}^{-} \Gamma_{a} v_{p}^{+}=-u_{a}^{i} \gamma_{q p}^{i}, \quad 2 v_{q}^{-(\alpha} v_{q}^{+\beta)}=-\tilde{\Gamma}^{a \alpha \beta} u_{a}^{i} .
\end{aligned}
$$

Moving frame and spinor moving frame

- $u_{a}^{=}\left(u_{a}^{=} u^{a}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\bar{b}}^{\bar{b}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\bar{b}}}{2}\right) \in S O(1,10)
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{v_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
\begin{aligned}
& V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C . \\
\bullet \Rightarrow & v_{q}^{-} \Gamma^{a} v_{p}^{-}=\delta_{q p} u_{a}^{=}, \quad 2 v_{q}^{-\alpha} v_{q}^{-\beta}=u_{a}^{=}, \\
0 & v_{q}^{+} \Gamma_{a} v_{p}^{+}=u_{a}^{\#} \delta_{q p}, \quad 2 v_{q}^{+\alpha} v_{q}^{+\beta}=\tilde{\Gamma}^{a \alpha \beta} u_{a}^{\#} \\
0 & \Rightarrow v_{q}^{-} \Gamma_{a} v_{p}^{+}=-u_{a}^{i} \gamma_{q p}^{i}, \quad 2 v_{q}^{-(\alpha} v_{q}^{+\beta)}=-\tilde{\Gamma}^{a \alpha \beta} u_{a}^{i} . \\
0 & \Rightarrow \text { The inverse } V_{\alpha}^{(\beta)}=\left(v_{\alpha q}{ }^{+}, v_{\alpha q}^{-}\right) \in \operatorname{Spin}(1,10) \text { is constructed from } \\
& \text { elements of } V \text { by } v_{\alpha}^{\mp}= \pm i C_{\alpha \beta} v_{q}^{\mp \beta} .
\end{aligned}
$$

Moving frame and spinor moving frame. Goldstone nature

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{b}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\bar{b}}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

Moving frame and spinor moving frame. Goldstone nature

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{b}^{\overline{\bar{b}}+u_{b}^{\#}}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\bar{b}}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

- The splitting is manifestly invariant under $\mathrm{SO}(1, \mathrm{D}-1) \times \mathrm{SO}(1,1) \otimes \mathrm{SO}(\mathrm{D}-2)$.

Moving frame and spinor moving frame. Goldstone nature

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\bar{b}}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\bar{b}}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{V_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

- The splitting is manifestly invariant under $\mathrm{SO}(1, \mathrm{D}-1) \times \mathrm{SO}(1,1) \otimes \mathrm{SO}(\mathrm{D}-2)$.
- \Rightarrow Moving frame and spinor moving frame variables can be considered as homogeneous coordinates of $S O(1, D-1) /[S O(1,1) \otimes S O(D-2)]$

Moving frame and spinor moving frame. Goldstone nature

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\overline{\bar{b}}}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\overline{ }}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

- The splitting is manifestly invariant under $\mathrm{SO}(1, \mathrm{D}-1) \times \mathrm{SO}(1,1) \otimes \mathrm{SO}(\mathrm{D}-2)$.
- \Rightarrow Moving frame and spinor moving frame variables can be considered as homogeneous coordinates of $S O(1, D-1) /[S O(1,1) \otimes S O(D-2)]$
- These Lorentz harmonics or Goldstone fields were used in superstring formulation of [IB \& Zheltikhin, 1992] (see also [Gomis, Kamimura, West 2006]).
- For the case of superparticle the coset is $\frac{S O(1, D-1)}{\left[S O(1,1) \times S O(D-2) \times K_{D-2}\right]}$ [Galperin, Howe, Stelle, 92, Galperin Delduc, Sokatchev 92, IB \& Nurmagambetov 96]

Moving frame and spinor moving frame. Derivatives and Variations

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\overline{\bar{b}}}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\bar{b}}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{\top} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

Moving frame and spinor moving frame. Derivatives and Variations

- $u_{a}^{=}\left(u_{a}^{=} u^{a=}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\overline{\bar{b}}}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\bar{b}}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{V_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

- Although our variables are highly constrained, due to their transparent group-theoretical structure it is quite easy differentiate and to vary them:

Moving frame and spinor moving frame. Derivatives and Variations

- $u_{a}^{=}\left(u_{a}^{=} u^{a}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{b}^{\bar{b}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\bar{\rightharpoonup}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{V_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

- Although our variables are highly constrained, due to their transparent group-theoretical structure it is quite easy differentiate and to vary them:
- \Rightarrow

Moving frame and spinor moving frame. Derivatives and Variations

- $u_{a}^{=}\left(u_{a}^{=} u^{a}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{b}^{\bar{b}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\bar{\rightharpoonup}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{V_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

- Although our variables are highly constrained, due to their transparent group-theoretical structure it is quite easy differentiate and to vary them:
$0 \Rightarrow\left(U^{-1} d U\right) \in \operatorname{Spin}(1,10) \Leftrightarrow \Omega^{(a)(b)}:=U^{(a) c} d U_{c}^{(b)}=-\Omega^{(b)(a)}$,
- $\quad V^{-1} d V \in \operatorname{Spin}(1,10), \quad V^{-1} d V=\frac{1}{4} \Omega^{(a)(b)} \Gamma_{(a)(b)}$

Moving frame and spinor moving frame. Derivatives and Variations

- $u_{a}^{=}\left(u_{a}^{=} u^{a}=0\right)$ is an element of the moving frame matrix,

$$
U_{b}^{(a)}=\left(\frac{u_{\overline{\bar{b}}}^{\overline{-}}+u_{b}^{\#}}{2}, u_{b}^{i}, \frac{u_{b}^{\#}-u_{b}^{\overline{\bar{b}}}}{2}\right) \in S O(1,10) \quad \Leftrightarrow
$$

- $v_{q}^{-\alpha}$ is 8×16 block of spinor moving frame matrix

$$
V_{(\beta)}^{\alpha}=\binom{v_{q}^{+\alpha}}{V_{q}^{-\alpha}} \in \operatorname{Spin}(1,10)
$$

- which is double covering of the moving frame matrix:

$$
V \Gamma_{b} V^{T}=U_{b}^{(a)} \Gamma_{(a)}, \quad V^{T} \tilde{\Gamma}^{(a)} V=\tilde{\Gamma}^{b} u_{b}^{(a)}, \quad V C V^{T}=C
$$

- Although our variables are highly constrained, due to their transparent group-theoretical structure it is quite easy differentiate and to vary them:
$0 \Rightarrow\left(U^{-1} d U\right) \in \operatorname{Spin}(1,10) \Leftrightarrow \Omega^{(a)(b)}:=U^{(a) c} d U_{c}^{(b)}=-\Omega^{(b)(a)}$,
- $\quad V^{-1} d V \in \operatorname{Spin}(1,10), \quad V^{-1} d V=\frac{1}{4} \Omega^{(a)(b)} \Gamma_{(a)(b)}$
- $\Rightarrow d u_{a}^{=}=-2 u_{a}^{\overline{=}} \Omega^{(0)}+u_{a}^{i} \Omega^{=i}$,
\bullet

$$
d v_{q}^{-\alpha}=-v_{q}^{-\alpha} \Omega^{(0)}+\frac{1}{4} \Omega^{i j} \gamma_{q p}^{i j} v_{p}^{-\alpha}-\frac{1}{2} \Omega^{=i} \gamma_{q p}^{i} v_{p}^{+\alpha}, \ldots
$$

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{=}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying $\mathrm{SO}(1,1)$ and $\mathrm{SO}(\mathrm{D}-2)$ 'indices').

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{=}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying $\mathrm{SO}(1,1)$ and $\mathrm{SO}(\mathrm{D}-2)$ 'indices').
- Eqs. of motion for $\rho^{\#}$ and $u_{a}^{=}$(or for $v_{q}^{-\alpha}$)

$$
\left.\begin{array}{r}
\hat{E}_{\hat{E}^{i}}^{=}:=\hat{E}^{a} u_{a}^{=}=0 \\
\hat{E}^{a} u_{a}^{i}=0
\end{array}\right\} \quad \Leftrightarrow \quad \hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u_{a}^{=}
$$

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{=}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying $\mathrm{SO}(1,1)$ and $\mathrm{SO}(\mathrm{D}-2)$ 'indices').
- Eqs. of motion for $\rho^{\#}$ and $u_{a}^{=}$(or for $v_{q}^{-\alpha}$)

$$
\left.\begin{array}{r}
\hat{E}_{\hat{E}^{i}}^{=}:=\hat{E}^{a} u_{a}^{=}=0 \\
\hat{E}^{a} u_{a}^{i}=0
\end{array}\right\} \quad \Leftrightarrow \quad \hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u_{a}^{=}
$$

- \Rightarrow the M0-brane worldline W^{1} is a light-like,

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{=}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying SO(1,1) and SO(D-2) 'indices').
- Eqs. of motion for $\rho^{\#}$ and $u_{a}^{=}$(or for $v_{q}^{-\alpha}$)

$$
\left.\begin{array}{r}
\hat{E}_{\hat{E}^{i}}^{=}:=\hat{E}^{a} u_{a}^{=}=0 \\
\hat{E}^{a} u_{a}^{i}=0
\end{array}\right\} \quad \Leftrightarrow \quad \hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u_{a}^{=}
$$

- \Rightarrow the M0-brane worldline W^{1} is a light-like, as it should be for a massless (11D super)particle.

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{=}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying $\mathrm{SO}(1,1)$ and $\mathrm{SO}(\mathrm{D}-2)$ 'indices').
- Eqs. of motion for $\rho^{\#}$ and $u_{a}^{=}$(or for $v_{q}^{-\alpha}$)

$$
\left.\begin{array}{r}
\hat{E}^{=}:=\hat{E}^{a} u_{a}^{=}=0 \\
\hat{E}^{i}:=\hat{E}^{a} u_{a}^{i}=0
\end{array}\right\} \quad \Leftrightarrow \quad \hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u_{a}^{=}
$$

- \Rightarrow the M0-brane worldline W^{1} is a light-like, as it should be for a massless (11D super)particle.
- Furthermore, $\hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u^{=a}$ suggests to consider $\hat{E}^{\#}=d \tau \hat{E}_{\tau}^{\#}$ as an einbein on W^{1} (induced by the embedding).

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{=}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying $\mathrm{SO}(1,1)$ and $\mathrm{SO}(\mathrm{D}-2)$ 'indices').
- Eqs. of motion for $\rho^{\#}$ and $u_{a}^{=}$(or for $v_{q}^{-\alpha}$)

$$
\left.\begin{array}{r}
\hat{E}_{\hat{E}^{i}}^{=}:=\hat{E}^{a} u_{a}^{=}=0 \\
\hat{E}^{a} u_{a}^{i}=0
\end{array}\right\} \quad \Leftrightarrow \quad \hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u_{a}^{=}
$$

- \Rightarrow the M0-brane worldline W^{1} is a light-like, as it should be for a massless (11D super)particle.
- Furthermore, $\hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u^{=a}$ suggests to consider $\hat{E}^{\#}=d \tau \hat{E}_{\tau}^{\#}$ as an einbein on W^{1} (induced by the embedding).
- Its gravitino-like companion is $\hat{E}^{+q}=\hat{E}^{\alpha} v_{\alpha}^{+q}$.

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{=}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying SO(1,1) and SO(D-2) 'indices').
- Eqs. of motion for $\rho^{\#}$ and $u_{a}^{=}$(or for $v_{q}^{-\alpha}$)

$$
\left.\begin{array}{r}
\hat{E}_{\hat{E}^{i}}^{=}:=\hat{E}^{a} u_{a}^{=}=0 \\
\hat{E}^{a} u_{a}^{i}=0
\end{array}\right\} \quad \Leftrightarrow \quad \hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u_{a}^{=}
$$

- \Rightarrow the M0-brane worldline W^{1} is a light-like, as it should be for a massless (11D super)particle.
- Furthermore, $\hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u^{=a}$ suggests to consider $\hat{E}^{\#}=d \tau \hat{E}_{\tau}^{\#}$ as an einbein on W^{1} (induced by the embedding).
- Its gravitino-like companion is $\hat{E}^{+q}=\hat{E}^{\alpha} v_{\alpha}^{+q}$.
- The other covariant projection, $\hat{E}^{-q}=\hat{E}^{\alpha} v_{\alpha}^{-q}=0$, due to the fermionic equation of the M0, so that, on the mass shell $\hat{E}^{\alpha}:=\hat{E}^{+q} v_{q}^{-\alpha}$.

On M0 equations as obtained from spinor moving frame action, and worldline geometry

- Using moving frame we can split, in a Lorentz covariant manner, $\hat{E}^{b} \mapsto \hat{E}^{b} U_{b}^{(a)}=\left(\hat{E}^{-}, \hat{E}^{\#}, \hat{E}^{i}\right)$ (carrying $\mathrm{SO}(1,1)$ and $\mathrm{SO}(\mathrm{D}-2)$ 'indices').
- Eqs. of motion for $\rho^{\#}$ and $u_{a}^{=}$(or for $v_{a}^{-\alpha}$)

$$
\left.\begin{array}{r}
\hat{E}^{=}:=\hat{E}^{a} u_{\bar{a}}^{=}=0 \\
\hat{E}^{i}:=\hat{E}^{a} u_{a}^{\prime}=0
\end{array}\right\} \quad \Leftrightarrow \quad \hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u_{a}^{=} .
$$

- \Rightarrow the M0-brane worldline W^{1} is a light-like, as it should be for a massless (11D super)particle.
- Furthermore, $\hat{E}^{a}:=\frac{1}{2} \hat{E}^{\#} u^{=a}$ suggests to consider $\hat{E}^{\#}=d \tau \hat{E}_{\tau}^{\#}$ as an einbein on W^{1} (induced by the embedding).
- Its gravitino-like companion is $\hat{E}^{+q}=\hat{E}^{\alpha} v_{\alpha}^{+q}$.
- The other covariant projection, $\hat{E}^{-q}=\hat{E}^{\alpha} V_{\alpha}^{-q}=0$, due to the fermionic equation of the M0, so that, on the mass shell $\hat{E}^{\alpha}:=\hat{E}^{+q} v_{q}^{-\alpha}$.
- ($\left.\hat{E}_{\tau}^{\#}, \hat{E}_{\tau}^{+q}\right)$ is a composed supergravity multiplet: under the irreducible κ-symmetry, $\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q} v_{q}^{-\alpha}$

$$
\delta_{\kappa} \hat{E}^{+q}=D \epsilon^{+q}(\tau), \quad \delta_{\kappa} \hat{E}^{\#}=-2 i \hat{E}^{+q} \epsilon^{+q}
$$

Introduction

- M-branes and D-brane
- Mo-brane
(2) M0-brane action in spinor moving frame formulation
- Moving frame action for a single M0-brane
- Moving frame and spinor moving frame
(3) Multiple M0-brane action and its local worldline supersymmetry
- Multiple M0-brane action
- SUSY of the multiple MO-brane action
- $M^{2}=0$ as a BPS equation.Discussion and outlook
- Discussion
- Outlook
- Two comments
mM0 action
mM0 action
- We separate $\hat{Z}^{M}(\tau)$ describing the center of energy motion of N nearly coincident MO-branes and the fields describing the relative motion,
mM0 action
- We separate $\hat{Z}^{M}(\tau)$ describing the center of energy motion of N nearly coincident MO-branes and the fields describing the relative motion,
- hermitian traceless $\mathrm{N} \times \mathrm{N}$ matrices: bosonic $\mathbb{X}^{i}(\tau)$ and fermionic $\Psi_{q}(\tau)$.

mM0 action

- We separate $\hat{Z}^{M}(\tau)$ describing the center of energy motion of N nearly coincident MO-branes and the fields describing the relative motion,
- hermitian traceless $\mathrm{N} \times \mathrm{N}$ matrices: bosonic $\mathbb{X}^{i}(\tau)$ and fermionic $\Psi_{q}(\tau)$.
- $\mathbb{X}^{i}(\tau)=\mathbb{X}_{\#}^{i}:=\mathbb{X}_{++}^{i}$ is $S O(9)$ vector with $S O(1,1)$ weight $\mathrm{w}=2$.

mM0 action

- We separate $\hat{Z}^{M}(\tau)$ describing the center of energy motion of N nearly coincident MO-branes and the fields describing the relative motion,
- hermitian traceless $\mathrm{N} \times \mathrm{N}$ matrices: bosonic $\mathbb{X}^{i}(\tau)$ and fermionic $\Psi_{q}(\tau)$.
- $\mathbb{X}^{i}(\tau)=\mathbb{X}_{\#}^{i}:=\mathbb{X}_{++}^{i}$ is $S O(9)$ vector with $S O(1,1)$ weight $\mathrm{w}=2$.
- $\Psi_{q}(\tau)=\Psi_{\#+q}:=\Psi_{+++q}$ is $S O(9)$ spinor $(q=1, \ldots, 16)$ with $w=3$.

mM 0 action

- We separate $\hat{Z}^{M}(\tau)$ describing the center of energy motion of N nearly coincident M0-branes and the fields describing the relative motion,
- hermitian traceless $\mathrm{N} \times \mathrm{N}$ matrices: bosonic $\mathbb{X}^{i}(\tau)$ and fermionic $\Psi_{q}(\tau)$.
- $\mathbb{X}^{i}(\tau)=\mathbb{X}_{\#}^{i}:=\mathbb{X}_{++}^{i}$ is $S O(9)$ vector with $S O(1,1)$ weight $\mathrm{w}=2$.
- $\Psi_{q}(\tau)=\Psi_{\#+q}:=\Psi_{+++q}$ is $S O(9)$ spinor $(q=1, \ldots, 16)$ with $\mathrm{w}=3$.
- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
S_{m M 0}= & \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
& +\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+a} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)
\end{aligned}
$$

mM0 action

- We separate $\hat{Z}^{M}(\tau)$ describing the center of energy motion of N nearly coincident M0-branes and the fields describing the relative motion,
- hermitian traceless $\mathrm{N} \times \mathrm{N}$ matrices: bosonic $\mathbb{X}^{i}(\tau)$ and fermionic $\Psi_{q}(\tau)$.
- $\mathbb{X}^{i}(\tau)=\mathbb{X}_{\#}^{i}:=\mathbb{X}_{++}^{i}$ is $S O(9)$ vector with $S O(1,1)$ weight $\mathrm{w}=2$.
- $\Psi_{q}(\tau)=\Psi_{\#+q}:=\Psi_{+++q}$ is $S O(9)$ spinor $(q=1, \ldots, 16)$ with $\mathrm{w}=3$.
- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
S_{m M 0}= & \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
& +\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+a} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)
\end{aligned}
$$

- $\mathbb{P}^{i}:=\mathbb{P}_{\# \#}^{i}$ are 9 bosonic matrix auxiliary fields,

$$
\begin{aligned}
\mathcal{H}:= & \mathcal{H}_{\# \# \# \#}(\mathbb{X}, \mathbb{P}, \Psi)=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)+\mathcal{V}(\mathbb{X})-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right) \\
& \mathcal{V}:=\mathcal{V}_{\# \# \# \#}(\mathbb{X})=-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2} \equiv+\frac{1}{64} \operatorname{tr}\left|\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right|^{2}
\end{aligned}
$$

mM0 action

- We separate $\hat{Z}^{M}(\tau)$ describing the center of energy motion of N nearly coincident M0-branes and the fields describing the relative motion,
- hermitian traceless $\mathrm{N} \times \mathrm{N}$ matrices: bosonic $\mathbb{X}^{i}(\tau)$ and fermionic $\Psi_{q}(\tau)$.
- $\mathbb{X}^{i}(\tau)=\mathbb{X}_{\#}^{i}:=\mathbb{X}_{++}^{i}$ is $S O(9)$ vector with $S O(1,1)$ weight $w=2$.
- $\Psi_{q}(\tau)=\Psi_{\#+q}:=\Psi_{+++q}$ is $S O(9)$ spinor $(q=1, \ldots, 16)$ with $w=3$.
- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
S_{m M 0}= & \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
& +\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+a} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)
\end{aligned}
$$

- $\mathbb{P}^{i}:=\mathbb{P}_{\# \#}^{i}$ are 9 bosonic matrix auxiliary fields,

$$
\begin{aligned}
\mathcal{H}:= & \mathcal{H}_{\# \# \# \#}(\mathbb{X}, \mathbb{P}, \Psi)=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)+\mathcal{V}(\mathbb{X})-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right) \\
& \mathcal{V}:=\mathcal{V}_{\# \# \# \#}(\mathbb{X})=-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2} \equiv+\frac{1}{64} \operatorname{tr}\left|\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right|^{2}
\end{aligned}
$$

- as for a single MO: $\hat{E}^{=}=\hat{E}^{a} u_{a}, \hat{E}^{\#}=\hat{E}^{a} u_{a}, \hat{E}^{+q}=d \hat{\theta}^{\alpha} v_{\alpha}^{+q}$ induced $1 d S G$
mM0 action
- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
& S_{m M 0}= \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
&+\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q^{\prime}} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
& \mathcal{H}:=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right)
\end{aligned}
$$

mM0 action

- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
& S_{m M 0}= \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
&+\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
& \mathcal{H}:=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right) \\
& D \mathbb{X}^{i}:=d \mathbb{X}^{i}+2 \Omega^{(0)} \mathbb{X}^{i}+\Omega^{i j} \mathbb{X}^{j}+\left[\mathbb{A}, \mathbb{X}^{i}\right] \\
& D \Psi_{q}:=d \Psi_{q}+3 \Omega^{(0)} \Psi_{q}-\frac{1}{4} \Omega^{i j} \gamma_{q p}^{i j} \Psi_{p}+\left[\mathbb{A}, \Psi_{q}\right]
\end{aligned}
$$

mM0 action

- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
& S_{m M 0}= \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
&+\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
& \mathcal{H}:=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right) \\
& D \mathbb{X}^{i}:=d \mathbb{X}^{i}+2 \Omega^{(0)} \mathbb{X}^{i}+\Omega^{i j} \mathbb{X}^{j}+\left[\mathbb{A}, \mathbb{X}^{i}\right] \\
& D \Psi_{q}:=d \Psi_{q}+3 \Omega^{(0)} \Psi_{q}-\frac{1}{4} \Omega^{i j} \gamma_{q p}^{i j} \Psi_{p}+\left[\mathbb{A}, \Psi_{q}\right]
\end{aligned}
$$

- $\mathbb{A}=d \tau \mathbb{A}_{\tau}(\tau)$ is the $S U(N)$ connection - independent variable

mM0 action

- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
& S_{m M 0}= \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
&+\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
& \mathcal{H}:=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right) \\
& D \mathbb{X}^{i}:=d \mathbb{X}^{i}+2 \Omega^{(0)} \mathbb{X}^{i}+\Omega^{i j} \mathbb{X}^{j}+\left[\mathbb{A}, \mathbb{X}^{i}\right] \\
& D \Psi_{q}:=d \Psi_{q}+3 \Omega^{(0)} \Psi_{q}-\frac{1}{4} \Omega^{i j} \gamma_{q p}^{i j} \Psi_{p}+\left[\mathbb{A}, \Psi_{q}\right]
\end{aligned}
$$

- $\mathbb{A}=d \tau \mathbb{A}_{\tau}(\tau)$ is the $S U(N)$ connection - independent variable
- $\Omega^{(0)}=d \tau \Omega_{\tau}^{(0)}=\frac{1}{4} u^{=a} d u_{a}^{\#}$ and $\Omega^{i j}=d \tau \Omega_{\tau}^{i j}=u^{i a} d u_{a}^{j}$ are the composed (induced) $S O(1,1)$ and $S O(9)$ connections on W^{1} :

mM0 action

- We propose to describe the system of N nearly coincident M0-branes by

$$
\begin{aligned}
& S_{m M 0}= \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
&+\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
& \mathcal{H}:= \frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right) \\
& D \mathbb{X}^{i}:=d \mathbb{X}^{i}+2 \Omega^{(0)} \mathbb{X}^{i}+\Omega^{i j} \mathbb{X}^{j}+\left[\mathbb{A}, \mathbb{X}^{i}\right] \\
& D \Psi_{q}:=d \Psi_{q}+3 \Omega^{(0)} \Psi_{q}-\frac{1}{4} \Omega^{i j} \gamma_{q p}^{i j} \Psi_{p}+\left[\mathbb{A}, \Psi_{q}\right]
\end{aligned}
$$

- $\mathbb{A}=d \tau \mathbb{A}_{\tau}(\tau)$ is the $S U(N)$ connection - independent variable
- $\Omega^{(0)}=d \tau \Omega_{\tau}^{(0)}=\frac{1}{4} u^{=a} d u_{a}^{\#}$ and $\Omega^{i j}=d \tau \Omega_{\tau}^{i j}=u^{i a} d u_{a}^{j}$ are the composed (induced) $S O(1,1)$ and $S O(9)$ connections on W^{1} :
- as in the case of single M0-brane: $\hat{E}^{=}=\hat{E}^{a} u_{a}, \underbrace{\hat{E}^{\#}=\hat{E}^{a} u_{a}, \hat{E}^{+q}=d \hat{\theta}^{\alpha} v_{\alpha}^{+q}}_{\text {介induced 1d SG }}$.

Supersymmetry of the mM0 action

$$
\begin{aligned}
S_{m M 0}= & \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
& +\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
\mathcal{H}= & \frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right)
\end{aligned}
$$

Supersymmetry of the mM 0 action

$$
\begin{aligned}
S_{m M 0}= & \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
& +\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
\mathcal{H}= & \frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right)
\end{aligned}
$$

- is invariant under the 16 parametric local worldline SUSY:

$$
\begin{aligned}
\delta_{\epsilon} \mathbb{X}^{i} & =4 i \epsilon^{+} \gamma^{i} \Psi, \quad \delta_{\epsilon} \mathbb{P}^{i}=\left[\left(\epsilon^{+} \gamma^{i j} \Psi\right), \mathbb{X}^{j}\right] \\
\delta_{\epsilon} \Psi_{q} & =\frac{1}{2}\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{16}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \\
\delta_{\epsilon} A & =-\hat{E}^{\#} \epsilon^{+q} \Psi_{q}+\left(\hat{E}^{+} \gamma^{i} \epsilon^{+}\right) \mathbb{X}^{i}
\end{aligned}
$$

Supersymmetry of the mM0 action

$$
\begin{aligned}
S_{m M 0}= & \int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+ \\
& +\int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(4 i\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}+\frac{1}{2}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right) \\
\mathcal{H}= & \frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}-2 \operatorname{tr}\left(\mathbb{X}^{i} \Psi \gamma^{i} \Psi\right)
\end{aligned}
$$

- is invariant under the 16 parametric local worldline SUSY:

$$
\begin{aligned}
\delta_{\epsilon} \mathbb{X}^{i}= & 4 i \epsilon^{+} \gamma^{i} \Psi, \quad \delta_{\epsilon} \mathbb{P}^{i}=\left[\left(\epsilon^{+} \gamma^{i j} \Psi\right), \mathbb{X}^{j}\right] \\
\delta_{\epsilon} \Psi_{q}= & \frac{1}{2}\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{16}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \\
\delta_{\epsilon} A= & -\hat{E}^{\#} \epsilon^{+q} \Psi_{q}+\left(\hat{E}^{+} \gamma^{i} \epsilon^{+}\right) \mathbb{X}^{i}, \\
\delta_{\epsilon} \hat{X}^{a}= & -i \hat{\theta} \Gamma^{a} \delta_{\epsilon} \hat{\theta}+3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right) \\
\delta_{\epsilon} \hat{\theta}^{\alpha}= & \epsilon^{+q}(\tau) v_{q}^{-\alpha} \\
& \delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}
\end{aligned}
$$

Supersymmetry of the mM0 action

$$
\begin{aligned}
\delta_{\epsilon} \mathbb{X}^{i}= & 4 i \epsilon^{+} \gamma^{i} \Psi, \quad \delta_{\epsilon} \mathbb{P}^{i}=\left[\left(\epsilon^{+} \gamma^{i j} \Psi\right), \mathbb{X}^{j}\right] \\
\delta_{\epsilon} \Psi_{q}= & \frac{1}{2}\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{16}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \\
\delta_{\epsilon} \mathcal{A}= & -\hat{E}^{\#} \epsilon^{+q} \Psi_{q}+\left(\hat{E}^{+} \gamma^{i} \epsilon^{+}\right) \mathbb{X}^{i}, \\
\delta_{\epsilon} \hat{X}^{a}= & -i \hat{\theta} \Gamma^{a} \delta_{\epsilon} \hat{\theta}+3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right), \\
\delta_{\epsilon} \hat{\theta}^{\alpha}= & \epsilon^{+q}(\tau) v_{q}^{-\alpha}, \\
& \delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}
\end{aligned}
$$

Supersymmetry of the mM0 action

$$
\begin{aligned}
\delta_{\epsilon} \mathbb{X}^{i}= & 4 i \epsilon^{+} \gamma^{i} \Psi, \quad \delta_{\epsilon} \mathbb{P}^{i}=\left[\left(\epsilon^{+} \gamma^{i j} \Psi\right), \mathbb{X}^{j}\right] \\
\delta_{\epsilon} \Psi_{q}= & \frac{1}{2}\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{16}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \\
\delta_{\epsilon} \mathcal{A}= & -\hat{E}^{\#} \epsilon^{+q} \Psi_{q}+\left(\hat{E}^{+} \gamma^{i} \epsilon^{+}\right) \mathbb{X}^{i}, \\
\delta_{\epsilon} \hat{X}^{a}= & -i \hat{\theta} \Gamma^{a} \delta_{\epsilon} \hat{\theta}+3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right), \\
\delta_{\epsilon} \hat{\theta}^{\alpha}= & \epsilon^{+q}(\tau) v_{q}^{-\alpha}, \\
& \delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}
\end{aligned}
$$

- $\hat{E}^{\#}=\hat{E}^{a} u_{a}^{\#}$ and $\hat{E}^{+q}=\hat{E}^{\alpha} v_{\alpha}^{+q}$ transforms as SUGRA supermultiplet,

$$
\delta_{\epsilon} \hat{E}^{\#}=-2 i \hat{E}^{+q} \epsilon^{+q}, \quad \delta_{\epsilon} \hat{E}^{+q}=D \epsilon^{+q}(\tau)
$$

Supersymmetry of the mM0 action

$$
\begin{aligned}
\delta_{\epsilon} \mathbb{X}^{i}= & 4 i \epsilon^{+} \gamma^{i} \Psi, \quad \delta_{\epsilon} \mathbb{P}^{i}=\left[\left(\epsilon^{+} \gamma^{i j} \Psi\right), \mathbb{X}^{j}\right] \\
\delta_{\epsilon} \Psi_{q}= & \frac{1}{2}\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{16}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \\
\delta_{\epsilon} A= & -\hat{E}^{\#} \epsilon^{+q} \Psi_{q}+\left(\hat{E}^{+} \gamma^{i} \epsilon^{+}\right) \mathbb{X}^{i}, \\
\delta_{\epsilon} \hat{X}^{a}= & -i \hat{\theta} \Gamma^{a} \delta_{\epsilon} \hat{\theta}+3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right), \\
\delta_{\epsilon} \hat{\theta}^{\alpha}= & \epsilon^{+q}(\tau) v_{q}^{-\alpha} \\
& \delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}
\end{aligned}
$$

- $\hat{E}^{\#}=\hat{E}^{a} u_{a}^{\#}$ and $\hat{E}^{+q}=\hat{E}^{\alpha} v_{\alpha}^{+q}$ transforms as SUGRA supermultiplet,

$$
\delta_{\epsilon} \hat{E}^{\#}=-2 i \hat{E}^{+q} \epsilon^{+q}, \quad \delta_{\epsilon} \hat{E}^{+q}=D \epsilon^{+q}(\tau)
$$

- The local SUSY acts on center of energy variables by a deformation of the irreducible κ-symm of the massless superparticle:

$$
\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}
$$

mM0 susy and M0 к-symmetry

- The local SUSY acts on center of energy variables by a deformation of the irreducible κ-symm of the massless superparticle:
$\delta_{\kappa} \hat{X}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}$.

mM0 susy and M0 κ-symmetry

- The local SUSY acts on center of energy variables by a deformation of the irreducible κ-symm of the massless superparticle:
$\delta_{\kappa} \hat{X}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}$.
- actually only $\delta_{\epsilon} \hat{X}^{a}=\delta_{\kappa} \hat{X}^{a}+u^{a \#} \delta L^{=}$is deformed with $\delta L^{=}:=i_{\epsilon} \hat{E}^{=} / 2=3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)$ while $\delta_{\epsilon} \hat{\theta}^{\alpha}=\delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}$ and $\delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}$

mM0 susy and M0 κ-symmetry

- The local SUSY acts on center of energy variables by a deformation of the irreducible κ-symm of the massless superparticle:
$\delta_{\kappa} \hat{X}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}$.
- actually only $\delta_{\epsilon} \hat{X}^{a}=\delta_{\kappa} \hat{X}^{a}+u^{a \#} \delta L^{=}$is deformed with $\delta L^{=}:=i_{\epsilon} \hat{E}^{=} / 2=3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)$
while $\delta_{\epsilon} \hat{\theta}^{\alpha}=\delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}$ and $\delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}$
- Reason: $S_{m M 0}=S_{M 0}+S_{m M 0}^{r e l}$ where $S_{M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}$is the M0 action.

mM0 susy and M0 κ-symmetry

- The local SUSY acts on center of energy variables by a deformation of the irreducible κ-symm of the massless superparticle:
$\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}$.
- actually only $\delta_{\epsilon} \hat{X}^{a}=\delta_{\kappa} \hat{X}^{a}+u^{\text {a\# }} \delta L^{=}$is deformed with $\delta L^{=}:=i_{\epsilon} \hat{E}^{=} / 2=3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)$
while $\delta_{\epsilon} \hat{\theta}^{\alpha}=\delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}$ and $\delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}$
- Reason: $S_{m M 0}=S_{M 0}+S_{m M 0}^{r e l}$ where $S_{M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}$is the M0 action.
- However, now $\rho^{\#}, u_{a}^{\#}, v_{q}^{+\alpha}$ and $\Omega^{(0)}=u^{=} d u^{\#}, \Omega^{i j}=(u d u)^{i j}$ are present also in $\quad S_{m M 0}^{r e l}=\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+$ $+4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)$

mM0 susy and M0 κ-symmetry

- The local SUSY acts on center of energy variables by a deformation of the irreducible κ-symm of the massless superparticle:
$\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}$.
- actually only $\delta_{\epsilon} \hat{X}^{a}=\delta_{\kappa} \hat{X}^{a}+u^{a \#} \delta L^{=}$is deformed with
$\delta L^{=}:=i_{\epsilon} \hat{E}^{=} / 2=3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)$
while $\delta_{\epsilon} \hat{\theta}^{\alpha}=\delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}$ and $\delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}$
- Reason: $S_{m M 0}=S_{M 0}+S_{m M 0}^{r e l}$ where $S_{M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}$is the M0 action.
- However, now $\rho^{\#}, u_{a}^{\#}, v_{q}^{+\alpha}$ and $\Omega^{(0)}=u^{=} d u^{\#}, \Omega^{i j}=(u d u)^{i j}$ are present also in $\quad S_{m M 0}^{r e l}=\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+$ $+4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)$
- \Rightarrow the center of energy motion of mM 0 is generically not lightlike.

mM0 susy and M0 κ-symmetry

- The local SUSY acts on center of energy variables by a deformation of the irreducible κ-symm of the massless superparticle:
$\delta_{\kappa} \hat{x}^{a}=-i \hat{\theta} \Gamma^{a} \delta_{\kappa} \hat{\theta}, \quad \delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}, \quad \delta_{\kappa} \rho^{\#}=0=\delta_{\kappa} u_{a}^{=}$.
- actually only $\delta_{\epsilon} \hat{X}^{a}=\delta_{\kappa} \hat{X}^{a}+u^{\text {a\# }} \delta L^{=}$is deformed with
$\delta L^{=}:=i_{\epsilon} \hat{E}^{=} / 2=3\left(\rho^{\#}\right)^{2} u^{a \#} \operatorname{tr}\left(i\left(\epsilon^{+} \gamma^{i} \Psi\right) \mathbb{P}^{i}-\left(\epsilon^{+} \gamma^{i j} \Psi\right)\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)$
while $\delta_{\epsilon} \hat{\theta}^{\alpha}=\delta_{\kappa} \hat{\theta}^{\alpha}=\epsilon^{+q}(\tau) v_{q}^{-\alpha}$ and $\delta_{\epsilon} \rho^{\#}=0=\delta_{\epsilon} u_{a}^{=}$
- Reason: $S_{m M 0}=S_{M 0}+S_{m M 0}^{r e l}$ where $S_{M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}$is the M0 action.
- However, now $\rho^{\#}, u_{a}^{\#}, v_{q}^{+\alpha}$ and $\Omega^{(0)}=u^{=} d u^{\#}, \Omega^{i j}=(u d u)^{i j}$ are present also in $\quad S_{m M O}^{r e l}=\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)+$ $+4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]\right)$
- \Rightarrow the center of energy motion of mM0 is generically not lightlike.
- It is characterized by an effective mass constructed from relative motion variables, $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$.

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mMO is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$,

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mMO is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}
$$

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mMO is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)
$$

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mM0 is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)
$$

$\Rightarrow \quad M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$.

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mM0 is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
\begin{aligned}
& p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . \\
& \text { - } \Rightarrow M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . M^{2} \geq 0
\end{aligned}
$$

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mM0 is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)
$$

- $\Rightarrow M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . M^{2} \geq 0$
- M^{2} is constant.

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mM0 is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
\begin{aligned}
& p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . \\
\bullet \Rightarrow & M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . M^{2} \geq 0
\end{aligned}
$$

- M^{2} is constant. Indeed, in the purely bosonic limit

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right], \quad \mathbb{P}^{i}=D_{\#} \mathbb{X}^{i} \quad\left(D=\hat{E}^{\#} D_{\#}\right)
$$

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mMO is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
\begin{aligned}
& p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . \\
\bullet \Rightarrow & M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . M^{2} \geq 0
\end{aligned}
$$

- M^{2} is constant. Indeed, in the purely bosonic limit

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right], \quad \mathbb{P}^{i}=D_{\#} \mathbb{X}^{i} \quad\left(D=\hat{E}^{\#} D_{\#}\right)
$$

- $\Rightarrow D \mathcal{H}=0$;

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mMO is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
\begin{aligned}
& p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . \\
0 \Rightarrow & M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . M^{2} \geq 0
\end{aligned}
$$

- M^{2} is constant. Indeed, in the purely bosonic limit

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right], \quad \mathbb{P}^{i}=D_{\#} \mathbb{X}^{i} \quad\left(D=\hat{E}^{\#} D_{\#}\right)
$$

- $\Rightarrow D \mathcal{H}=0$; furthermore $D \rho^{\#}:=d \rho^{\#}-2 \rho^{\#} \Omega^{(0)}=0$

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+a} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mM0 is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
\begin{aligned}
& p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . \\
\bullet \Rightarrow & M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . M^{2} \geq 0
\end{aligned}
$$

- M^{2} is constant. Indeed, in the purely bosonic limit

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right], \quad \mathbb{P}^{i}=D_{\#} \mathbb{X}^{i} \quad\left(D=\hat{E}^{\#} D_{\#}\right)
$$

- $\Rightarrow D \mathcal{H}=0$; furthermore $D \rho^{\#}:=d \rho^{\#}-2 \rho^{\#} \Omega^{(0)}=0 \Rightarrow \Omega^{(0)}=\frac{d \rho^{\#}}{2 \rho^{\#}}$;

On the center of energy motion

$$
\begin{aligned}
& S_{m M 0}=\int_{W^{1}} \rho^{\#} \hat{E}^{=}+\int_{W^{1}}\left(\rho^{\#}\right)^{3}\left(\operatorname{tr}\left(-\mathbb{P}^{i} D \mathbb{X}^{i}+4 i \Psi_{q} D \Psi_{q}\right)+\hat{E}^{\#} \mathcal{H}\right)- \\
& -4 i \int_{W^{1}}\left(\rho^{\#}\right)^{3} \hat{E}^{+q} \operatorname{tr}\left(\left(\gamma^{i} \Psi\right)_{q} \mathbb{P}^{i}-\left(\gamma^{i j} \Psi\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] / 8\right)=: \int d \tau \mathcal{L}_{m M 0}
\end{aligned}
$$

- To see that the generic center of energy motion of mM0 is not lightlike and is characterized by $M^{2}=M^{2}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)$, let us calculate

$$
\begin{aligned}
& p_{a}(\tau)=\frac{\partial \mathcal{L}_{m M 0}}{\partial \partial_{\tau} \hat{X}^{a}(\tau)}=\rho^{\#} u_{a}^{=}+\left(\rho^{\#}\right)^{3} u_{a}^{\#} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . \\
\bullet \Rightarrow & M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right) . M^{2} \geq 0
\end{aligned}
$$

- M^{2} is constant. Indeed, in the purely bosonic limit

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right], \quad \mathbb{P}^{i}=D_{\#} \mathbb{X}^{i} \quad\left(D=\hat{E}^{\#} D_{\#}\right)
$$

- $\Rightarrow D \mathcal{H}=0$; furthermore $D \rho^{\#}:=d \rho^{\#}-2 \rho^{\#} \Omega^{(0)}=0 \Rightarrow \Omega^{(0)}=\frac{d \rho^{\#}}{2 \rho^{\#}}$;
$\left.\Rightarrow 0=\left(\rho^{\#}\right)^{4} D \mathcal{H}=d\left(\rho^{\#}\right)^{4} \mathcal{H}\right)=d\left(M^{2}\right)$. Thus $M^{2}=$ const.
$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions
- All supersymmetric bosonic solutions of the mM0 eqs have $M^{2}=0$.
$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions
- All supersymmetric bosonic solutions of the mM 0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions

- All supersymmetric bosonic solutions of the mM 0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

- Its consistency condition $\left.\epsilon^{+p} \operatorname{tr}\left(\left(\mathbb{K} \gamma^{j}\right)_{p q} \mathbb{P}^{j}\right)+\frac{i}{8}\left(\mathbb{K} \gamma^{i j k}\right)_{p q}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)=0$
$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions
- All supersymmetric bosonic solutions of the mM 0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

- Its consistency condition $\left.\epsilon^{+p} \operatorname{tr}\left(\left(\mathbb{K} \gamma^{j}\right)_{p q} \mathbb{P}^{j}\right)+\frac{i}{8}\left(\mathbb{K} \gamma^{i j k}\right)_{p q}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)=0$ $\Rightarrow \epsilon^{+q} \mathcal{H}=0 \quad \Rightarrow \epsilon^{+q} M^{2}=0$.
$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions
- All supersymmetric bosonic solutions of the mM0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

- Its consistency condition $\left.\epsilon^{+p} \operatorname{tr}\left(\left(\mathbb{K} \gamma^{j}\right)_{p q} \mathbb{P}^{j}\right)+\frac{i}{8}\left(\mathbb{K} \gamma^{i j k}\right)_{p q}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)=0$

$$
\Rightarrow \epsilon^{+q} \mathcal{H}=0 \quad \Rightarrow \epsilon^{+q} M^{2}=0
$$

- Hence (one of) the mM0 BPS equation(s) is

$$
M^{2}=\left.0 \quad \Leftrightarrow \quad \mathcal{H}\right|_{\Psi=0}=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}=0
$$

$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions

- All supersymmetric bosonic solutions of the mM0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

- Its consistency condition $\left.\epsilon^{+p} \operatorname{tr}\left(\left(\mathbb{K} \gamma^{j}\right)_{p q} \mathbb{P}^{j}\right)+\frac{i}{8}\left(\mathbb{K} \gamma^{i j k}\right)_{p q}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)=0$

$$
\Rightarrow \epsilon^{+q} \mathcal{H}=0 \quad \Rightarrow \epsilon^{+q} M^{2}=0
$$

- Hence (one of) the mM0 BPS equation(s) is

$$
M^{2}=\left.0 \quad \Leftrightarrow \quad \mathcal{H}\right|_{\Psi=0}=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}=0
$$

- Important! \Rightarrow Our result does not imply the existence of a new exotic supersymmetric solution of the 11D supergravity.
$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions
- All supersymmetric bosonic solutions of the mM0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

- Its consistency condition $\left.\epsilon^{+p} \operatorname{tr}\left(\left(\mathbb{K} \gamma^{j}\right)_{p q} \mathbb{P}^{j}\right)+\frac{i}{8}\left(\mathbb{K} \gamma^{i j k}\right)_{p q}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)=0$

$$
\Rightarrow \epsilon^{+q} \mathcal{H}=0 \quad \Rightarrow \epsilon^{+q} M^{2}=0
$$

- Hence (one of) the mM0 BPS equation(s) is

$$
M^{2}=\left.0 \quad \Leftrightarrow \quad \mathcal{H}\right|_{\Psi=0}=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}=0
$$

- Important! \Rightarrow Our result does not imply the existence of a new exotic supersymmetric solution of the 11D supergravity. SUSY solution describing our mM0 is similar to a single M0 (M-wave) solution.
$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions
- All supersymmetric bosonic solutions of the mM0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

- Its consistency condition $\left.\epsilon^{+p} \operatorname{tr}\left(\left(\mathbb{K} \gamma^{j}\right)_{p q} \mathbb{P}^{j j}\right)+\frac{i}{8}\left(\mathbb{K} \gamma^{i j k}\right)_{p q}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)=0$

$$
\Rightarrow \epsilon^{+q} \mathcal{H}=0 \quad \Rightarrow \epsilon^{+q} M^{2}=0
$$

- Hence (one of) the mM0 BPS equation(s) is

$$
M^{2}=\left.0 \quad \Leftrightarrow \quad \mathcal{H}\right|_{\Psi=0}=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}=0
$$

- Important! \Rightarrow Our result does not imply the existence of a new exotic supersymmetric solution of the 11D supergravity. SUSY solution describing our mM0 is similar to a single M0 (M-wave) solution.
- Furthermore, the explicit form of $\mathcal{H} \propto M^{2}$ indicates that all SUSY bosonic solutions of mMO eqs. have $\mathbb{P}^{i}=0$ and $\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0$,
$M^{2}=0$ as a BPS equation. Vanishing effective mass of all susy bosonic solutions
- All supersymmetric bosonic solutions of the mM0 eqs have $M^{2}=0$.
- Indeed, setting $\Psi_{q}=0$ we find the following Killing spinor equation

$$
\epsilon^{+p} \mathbb{K}_{p q}:=\left(\epsilon^{+} \gamma^{i}\right)_{q} \mathbb{P}^{i}-\frac{i}{8}\left(\epsilon^{+} \gamma^{i j}\right)_{q}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0
$$

- Its consistency condition $\left.\epsilon^{+p} \operatorname{tr}\left(\left(\mathbb{K} \gamma^{j}\right)_{p q} \mathbb{P}^{j j}\right)+\frac{i}{8}\left(\mathbb{K} \gamma^{i j k}\right)_{p q}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)=0$

$$
\Rightarrow \epsilon^{+q} \mathcal{H}=0 \quad \Rightarrow \epsilon^{+q} M^{2}=0
$$

- Hence (one of) the mM0 BPS equation(s) is

$$
M^{2}=\left.0 \quad \Leftrightarrow \quad \mathcal{H}\right|_{\Psi=0}=\frac{1}{2} \operatorname{tr}\left(\mathbb{P}^{i} \mathbb{P}^{i}\right)-\frac{1}{64} \operatorname{tr}\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]^{2}=0
$$

- Important! \Rightarrow Our result does not imply the existence of a new exotic supersymmetric solution of the 11D supergravity. SUSY solution describing our mM0 is similar to a single M0 (M-wave) solution.
- Furthermore, the explicit form of $\mathcal{H} \propto M^{2}$ indicates that all SUSY bosonic solutions of mMO eqs. have $\mathbb{P}^{i}=0$ and $\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right]=0$,
- i.e. that their relative motion sector is in its ground state.
- M-branes and D-brane
- Mo-brane
(2) M0-brane action in spinor moving frame formulation
- Moving frame action for a single M0-brane
- Moving frame and spinor moving frame

3 Multiple M0-brane action and its local worldline supersymmetry

- Multiple M0-brane action
- SUSY of the multiple MO-brane action
- $M^{2}=0$ as a BPS equation.

4 Discussion and outlook

- Discussion
- Outlook
- Two comments

Discussion

Discussion

- Difference with equation obtained from superembedding approach [IB 2010]: accounting for 'backreaction' of the relative motion on the center of energy motion $\left(M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)\right)$ and vice versa.

Discussion

- Difference with equation obtained from superembedding approach [IB 2010]: accounting for 'backreaction' of the relative motion on the center of energy motion $\left(M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)\right)$ and vice versa.

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right]-2 i \Psi \gamma^{i} \Psi+4 i D_{\#}\left(\hat{E}_{\#}^{+} \gamma^{i} \Psi\right)+\frac{1}{16}\left(\hat{E}_{\#}^{+} \gamma^{i j}\right)_{q}\left[\Psi_{q}, \mathbb{X}^{j}\right]
$$

Discussion

- Difference with equation obtained from superembedding approach [IB 2010]: accounting for 'backreaction' of the relative motion on the center of energy motion $\left(M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)\right)$ and vice versa.

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right]-2 i \Psi \gamma^{i} \Psi+4 i D_{\#}\left(\hat{E}_{\#}^{+} \gamma^{i} \Psi\right)+\frac{1}{16}\left(\hat{E}_{\#}^{+} \gamma^{i j}\right)_{q}\left[\Psi_{q}, \mathbb{X}^{j}\right]
$$

- Dim reduction on \mathbb{S}^{1} should be related to (the moving frame reformulation of) the mD0 action from [D. Sorokin 2003]. There the center of energy mass is defined by an arbitrary function $M_{10 D}=M_{10 D}\left(\left(\rho^{\#}\right)^{2} \mathbb{P}^{i}, \rho^{\#} \mathbb{X}^{i},\left(\rho^{\#}\right)^{3 / 2} \Psi\right)$, while in our case

$$
M_{10 D}^{2}=p_{0}^{2}-p_{1}^{2}-\ldots-p_{9}^{2}=p_{10}^{2}+4\left(\rho^{\#}\right)^{4} \mathcal{H}
$$

Discussion

- Difference with equation obtained from superembedding approach [IB 2010]: accounting for 'backreaction' of the relative motion on the center of energy motion $\left(M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)\right)$ and vice versa.

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right]-2 i \Psi \gamma^{i} \Psi+4 i D_{\#}\left(\hat{E}_{\#}^{+} \gamma^{i} \Psi\right)+\frac{1}{16}\left(\hat{E}_{\#}^{+} \gamma^{i j}\right)_{q}\left[\Psi_{q}, \mathbb{X}^{j}\right]
$$

- Dim reduction on \mathbb{S}^{1} should be related to (the moving frame reformulation of) the mD0 action from [D. Sorokin 2003]. There the center of energy mass is defined by an arbitrary function $M_{10 D}=M_{10 D}\left(\left(\rho^{\#}\right)^{2} \mathbb{P}^{i}, \rho^{\#} \mathbb{X}^{i},\left(\rho^{\#}\right)^{3 / 2} \Psi\right)$, while in our case

$$
M_{10 D}^{2}=p_{0}^{2}-p_{1}^{2}-\ldots-p_{9}^{2}=p_{10}^{2}+4\left(\rho^{\#}\right)^{4} \mathcal{H}
$$

- Some arbitrariness still remains in the choose of the form of the momentum p_{10}.

Discussion

- Difference with equation obtained from superembedding approach [IB 2010]: accounting for 'backreaction' of the relative motion on the center of energy motion $\left(M^{2}:=p^{a} p_{a}(\tau)=4\left(\rho^{\#}\right)^{4} \mathcal{H}\left(\mathbb{X}^{i}, \mathbb{P}^{i}, \Psi_{q}\right)\right)$ and vice versa.

$$
D_{\#} D_{\#} \mathbb{X}^{i}=\frac{1}{16}\left[\left[\mathbb{X}^{i}, \mathbb{X}^{j}\right] \mathbb{X}^{i}\right]-2 i \Psi \gamma^{i} \Psi+4 i D_{\#}\left(\hat{E}_{\#}^{+} \gamma^{i} \Psi\right)+\frac{1}{16}\left(\hat{E}_{\#}^{+} \gamma^{i j}\right)_{q}\left[\Psi_{q}, \mathbb{X}^{j}\right]
$$

- Dim reduction on \mathbb{S}^{1} should be related to (the moving frame reformulation of) the mD0 action from [D. Sorokin 2003]. There the center of energy mass is defined by an arbitrary function $M_{10 D}=M_{10 D}\left(\left(\rho^{\#}\right)^{2} \mathbb{P}^{i}, \rho^{\#} \mathbb{X}^{i},\left(\rho^{\#}\right)^{3 / 2} \Psi\right)$, while in our case

$$
M_{10 D}^{2}=p_{0}^{2}-p_{1}^{2}-\ldots-p_{9}^{2}=p_{10}^{2}+4\left(\rho^{\#}\right)^{4} \mathcal{H}
$$

- Some arbitrariness still remains in the choose of the form of the momentum p_{10}.
- Should we use an exotic dimensional reduction defined with the use of the relative motion variables? $p_{10}=f\left(\mathbb{P}^{i}, \mathbb{X}^{i}, \Psi\right)$?

Directions for future developments

Directions for future developments

- Detailed study of equations of motion and their solutions.

Directions for future developments

- Detailed study of equations of motion and their solutions.
- To lift our functional to a generalized action and study the resulting superembedding approach equations accounting for backreaction.

Directions for future developments

- Detailed study of equations of motion and their solutions.
- To lift our functional to a generalized action and study the resulting superembedding approach equations accounting for backreaction.
- Generalization to curved background.

Directions for future developments

- Detailed study of equations of motion and their solutions.
- To lift our functional to a generalized action and study the resulting superembedding approach equations accounting for backreaction.
- Generalization to curved background. Equations obtained in the frame of superembedding approach suggest to add

$$
\begin{array}{r}
\Delta^{f l u x e s} S_{m M 0}=\frac{1}{4!} \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{F}^{a i j k} \operatorname{tr}\left(\mathbb{X}^{i}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]+4 i \Psi \gamma^{i j k} \Psi\right)+ \\
+\frac{1}{8} \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{R}^{a i=j} \operatorname{tr}\left(\mathbb{X}^{i} \mathbb{X}^{j}\right)+2 i \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{T}^{a i-q} \operatorname{tr}\left(\mathbb{X}^{i} \Psi_{q}\right) \\
\text { with } \hat{F}^{a i j k}=F^{a b c d}(\hat{Z}) u_{b}^{i} u_{c}^{j} u_{d}^{k} \\
\hat{R}^{a i=j}=R^{a b c d}(\hat{Z}) u_{b}^{i} u_{c}^{=} u_{d}^{j} \\
\hat{T}^{a i-q}=T^{a b \alpha}(\hat{Z}) u_{b}^{i} v_{\alpha}^{-q}
\end{array}
$$

Directions for future developments

- Detailed study of equations of motion and their solutions.
- To lift our functional to a generalized action and study the resulting superembedding approach equations accounting for backreaction.
- Generalization to curved background. Equations obtained in the frame of superembedding approach suggest to add

$$
\begin{array}{r}
\Delta^{\text {fluxes }} S_{m M 0}=\frac{1}{4!} \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{F}^{a i j k} \operatorname{tr}\left(\mathbb{X}^{i}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]+4 i \Psi \gamma^{i j k} \Psi\right)+ \\
+\frac{1}{8} \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{R}^{a i=j} \operatorname{tr}\left(\mathbb{X}^{i} \mathbb{X}^{j}\right)+2 i \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{T}^{a i-q} \operatorname{tr}\left(\mathbb{X}^{i} \Psi_{q}\right) \\
\text { with } \hat{F}^{a i j k}=F^{a b c d}(\hat{Z}) u_{b}^{i} u_{c}^{j} u_{d}^{k} \\
\hat{R}^{a i=j}=R^{a b c d}(\hat{Z}) u_{b}^{i} u_{c}^{=} u_{d}^{j} \\
\hat{T}^{a i-q}=T^{a b \alpha}(\hat{Z}) u_{b}^{i} v_{\alpha}^{-q}
\end{array}
$$

- Search for generalizations for the case of mM2. Although this is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.

A1. Comment on coupling to SUGRA

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like

$$
E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\tilde{\alpha}}^{N}(\hat{Z}+\ldots)\right)
$$

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like $E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\tilde{\alpha}}^{N}(\hat{Z}+\ldots)\right)$.
- Although our spinor moving frame variables seems to be useful in writing such expressions

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like $E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\tilde{\alpha}}^{N}(\hat{Z}+\ldots)\right)$.
- Although our spinor moving frame variables seems to be useful in writing such expressions to deal with them is quite a difficult problem (see [Dorn 96, Duglas 97, Y. Lozano, Janssen 2000-2010])

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like $E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\tilde{\alpha}}^{N}(\hat{Z}+\ldots)\right)$.
- Although our spinor moving frame variables seems to be useful in writing such expressions to deal with them is quite a difficult problem (see [Dorn 96, Duglas 97, Y. Lozano, Janssen 2000-2010])
- For nearly coincident branes one can use the series decomposition in \mathbb{X}^{i} and Ψ_{q}.

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like

$$
E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\tilde{\alpha}}^{N}(\hat{Z}+\ldots)\right)
$$

- Although our spinor moving frame variables seems to be useful in writing such expressions to deal with them is quite a difficult problem (see [Dorn 96, Duglas 97, Y. Lozano, Janssen 2000-2010])
- For nearly coincident branes one can use the series decomposition in \mathbb{X}^{i} and $\Psi_{q .} \Rightarrow$ sum of polynomials in \mathbb{X}^{i} and Ψ_{q} multiplied by $T, R, F, D T$, $D R, D F, \ldots, D \ldots D T, \ldots$, depending on $\hat{Z}^{M}(\tau)=\left(\hat{x}^{\mu}(\tau) \hat{\theta}^{\alpha}(\tau)\right)$ only.

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like

$$
E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\check{\alpha}}^{N}(\hat{Z}+\ldots)\right)
$$

- Although our spinor moving frame variables seems to be useful in writing such expressions to deal with them is quite a difficult problem (see [Dorn 96, Duglas 97, Y. Lozano, Janssen 2000-2010])
- For nearly coincident branes one can use the series decomposition in \mathbb{X}^{i} and $\Psi_{q .} \Rightarrow$ sum of polynomials in \mathbb{X}^{i} and Ψ_{q} multiplied by $T, R, F, D T$, $D R, D F, \ldots, D \ldots D T, \ldots$, depending on $\hat{Z}^{M}(\tau)=\left(\hat{x}^{\mu}(\tau) \hat{\theta}^{\alpha}(\tau)\right)$ only.
- The straightforward search for curved superspace generalization of $S_{m M 0}$ by adding $\frac{1}{4!} \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{F}^{\text {aijk }} \operatorname{tr}\left(\mathbb{X}^{i}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)+\ldots$ (see above) and checking $1 \mathrm{~d} \mathcal{N}=16$ susy corresponds to the search for such a decomposition power by power in \mathbb{X}^{i} and Ψ_{q}

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like

$$
E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\check{\alpha}}^{N}(\hat{Z}+\ldots)\right)
$$

- Although our spinor moving frame variables seems to be useful in writing such expressions to deal with them is quite a difficult problem (see [Dorn 96, Duglas 97, Y. Lozano, Janssen 2000-2010])
- For nearly coincident branes one can use the series decomposition in \mathbb{X}^{i} and $\Psi_{q .} \Rightarrow$ sum of polynomials in \mathbb{X}^{i} and Ψ_{q} multiplied by $T, R, F, D T$, $D R, D F, \ldots, D \ldots D T, \ldots$, depending on $\hat{Z}^{M}(\tau)=\left(\hat{x}^{\mu}(\tau) \hat{\theta}^{\alpha}(\tau)\right)$ only.
- The straightforward search for curved superspace generalization of $S_{m M 0}$ by adding $\frac{1}{4!} \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{F}^{\text {aijk }} \operatorname{tr}\left(\mathbb{X}^{i}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)+\ldots$ (see above) and checking $1 \mathrm{~d} \mathcal{N}=16$ susy corresponds to the search for such a decomposition power by power in \mathbb{X}^{i} and Ψ_{q}
- with a hope that probably this generically infinite series can be consistently (susy pres.) truncated to a polynomial in \mathbb{X}^{i} and Ψ_{q}.

A1. Comment on coupling to SUGRA

- The analogy with the bosonic mDp actions of [Myers 99] suggests to expect the background superfields to depend on matrix coordinates
- i.e. to study a model involving something like

$$
E_{M}^{a}\left(\hat{Z}^{N}+\tilde{\mathbb{X}}^{i} u^{i a} E_{a}^{N}(\hat{Z}+\ldots)+\tilde{\Psi}_{q} v_{q}^{+\check{\alpha}} E_{\check{\alpha}}^{N}(\hat{Z}+\ldots)\right)
$$

- Although our spinor moving frame variables seems to be useful in writing such expressions to deal with them is quite a difficult problem (see [Dorn 96, Duglas 97, Y. Lozano, Janssen 2000-2010])
- For nearly coincident branes one can use the series decomposition in \mathbb{X}^{i} and $\Psi_{q .} \Rightarrow$ sum of polynomials in \mathbb{X}^{i} and Ψ_{q} multiplied by $T, R, F, D T$, $D R, D F, \ldots, D \ldots D T, \ldots$, depending on $\hat{Z}^{M}(\tau)=\left(\hat{x}^{\mu}(\tau) \hat{\theta}^{\alpha}(\tau)\right)$ only.
- The straightforward search for curved superspace generalization of $S_{m M 0}$ by adding $\frac{1}{4!} \int_{W^{1}} \hat{E}^{a}\left(\rho^{\#}\right)^{3} \hat{F}^{\text {aijk }} \operatorname{tr}\left(\mathbb{X}^{i}\left[\mathbb{X}^{j}, \mathbb{X}^{k}\right]\right)+\ldots$ (see above) and checking $1 \mathrm{~d} \mathcal{N}=16$ susy corresponds to the search for such a decomposition power by power in \mathbb{X}^{i} and Ψ_{q}
- with a hope that probably this generically infinite series can be consistently (susy pres.) truncated to a polynomial in \mathbb{X}^{i} and Ψ_{q}.
- or, if not, can help to obtain a weak field approx. in \mathbb{X}^{i} and Ψ_{q} (stopping the decomposition by hand at some power ≥ 4).

A2. Comments on generalization to the case of mM2-I

- Although the search for generalizations for the case of mM 2 is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.

A2. Comments on generalization to the case of mM2-I

- Although the search for generalizations for the case of mM 2 is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.
- The very low energy description of the condensate of the M2 branes is believed to be provided by the SDiff3 invariant NB BLG model (BLG for Bagger, Lambert and Gustavsson; NB for Nambu brackets).

A2. Comments on generalization to the case of mM2-I

- Although the search for generalizations for the case of mM 2 is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.
- The very low energy description of the condensate of the M2 branes is believed to be provided by the SDiff3 invariant NB BLG model (BLG for Bagger, Lambert and Gustavsson; NB for Nambu brackets).
- in which the 3-algebra structure is given by Nambu brackets (NB) of the function on a compact manifold M^{3} (topologically trivial S^{3}): $\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}_{N B}:=\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}$.

A2. Comments on generalization to the case of mM2-I

- Although the search for generalizations for the case of mM 2 is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.
- The very low energy description of the condensate of the M 2 branes is believed to be provided by the SDiff3 invariant NB BLG model (BLG for Bagger, Lambert and Gustavsson; NB for Nambu brackets).
- in which the 3-algebra structure is given by Nambu brackets (NB) of the function on a compact manifold M^{3} (topologically trivial S^{3}): $\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}_{N B}:=\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}$.
- the counterparts of the supermembrane Goldstone fields- bosonic $\mathbb{X}^{\prime}=\mathbb{X}^{\prime}\left(\xi^{m}, y^{i}\right)(I=1, \ldots, 8)$ and fermionic $\Psi_{\alpha q}=\Psi_{\alpha q}(\xi, y)$ - are functions on $W^{3} \times M^{3}$.

A2. Comments on generalization to the case of mM2-I

- Although the search for generalizations for the case of mM 2 is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.
- The very low energy description of the condensate of the M2 branes is believed to be provided by the SDiff3 invariant NB BLG model (BLG for Bagger, Lambert and Gustavsson; NB for Nambu brackets).
- in which the 3-algebra structure is given by Nambu brackets (NB) of the function on a compact manifold M^{3} (topologically trivial S^{3}): $\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}_{N B}:=\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}$.
- the counterparts of the supermembrane Goldstone fields- bosonic $\mathbb{X}^{\prime}=\mathbb{X}^{\prime}\left(\xi^{m}, y^{i}\right)(I=1, \ldots, 8)$ and fermionic $\Psi_{\alpha q}=\Psi_{\alpha q}(\xi, y)$ - are functions on $W^{3} \times M^{3}$.
- The tr is replaced by $\int d^{3} y$, e.g. $\operatorname{tr}\left(\mathbb{P}^{\prime} D \mathbb{X}^{\prime}\right) \mapsto \int d^{3} y \mathbb{P}^{\prime} D \mathbb{X}^{\prime}$.

A2. Comments on generalization to the case of mM2-I

- Although the search for generalizations for the case of mM 2 is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.
- The very low energy description of the condensate of the M2 branes is believed to be provided by the SDiff3 invariant NB BLG model (BLG for Bagger, Lambert and Gustavsson; NB for Nambu brackets).
- in which the 3-algebra structure is given by Nambu brackets (NB) of the function on a compact manifold M^{3} (topologically trivial S^{3}): $\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}_{N B}:=\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}$.
- the counterparts of the supermembrane Goldstone fields- bosonic $\mathbb{X}^{\prime}=\mathbb{X}^{\prime}\left(\xi^{m}, y^{i}\right)(I=1, \ldots, 8)$ and fermionic $\Psi_{\alpha q}=\Psi_{\alpha q}(\xi, y)$ - are functions on $W^{3} \times M^{3}$.
- The tr is replaced by $\int d^{3} y$, e.g. $\operatorname{tr}\left(\mathbb{P}^{\prime} D \mathbb{X}^{\prime}\right) \mapsto \int d^{3} y \mathbb{P}^{\prime} D \mathbb{X}^{\prime}$.
- The local SDiff3 invariance is provided by the presence of gauge field $s^{i}=d \xi^{m} s_{m}^{i}(\xi, y)$ obeying $\partial_{i}^{y} s^{i}=0$ which implies $s^{i}=\epsilon^{i j k} A_{k}$ with unconstrained gauge prepotential $A_{i}(\xi, y)$.

A2. Comments on generalization to the case of mM2-I

- Although the search for generalizations for the case of mM 2 is not promising to be easy in the light of recent results in [Gran, Greitz, Howe \& Nilsson, 2012], neither it looks hopeless.
- The very low energy description of the condensate of the M2 branes is believed to be provided by the SDiff3 invariant NB BLG model (BLG for Bagger, Lambert and Gustavsson; NB for Nambu brackets).
- in which the 3-algebra structure is given by Nambu brackets (NB) of the function on a compact manifold M^{3} (topologically trivial S^{3}): $\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}_{N B}:=\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}$.
- the counterparts of the supermembrane Goldstone fields- bosonic $\mathbb{X}^{\prime}=\mathbb{X}^{\prime}\left(\xi^{m}, y^{i}\right)(I=1, \ldots, 8)$ and fermionic $\Psi_{\alpha q}=\Psi_{\alpha q}(\xi, y)$ - are functions on $W^{3} \times M^{3}$.
- The tr is replaced by $\int d^{3} y$, e.g. $\operatorname{tr}\left(\mathbb{P}^{\prime} D \mathbb{X}^{\prime}\right) \mapsto \int d^{3} y \mathbb{P}^{\prime} D \mathbb{X}^{\prime}$.
- The local SDiff3 invariance is provided by the presence of gauge field $s^{i}=d \xi^{m} s_{m}^{i}(\xi, y)$ obeying $\partial_{i}^{y} s^{i}=0$ which implies $s^{i}=\epsilon^{i j k} A_{k}$ with unconstrained gauge prepotential $A_{i}(\xi, y)$.
- These enter covariant derivatives and the Chern-Simons term present in the BLG action, $\mathcal{L}_{C S}=\frac{1}{2} \int d^{3} y\left(d s^{i} \wedge A_{i}-\frac{1}{3} \epsilon_{i j k} s^{i} \wedge s^{j} \wedge s^{k}\right)$

A2. Comments on generalization to the case of mM2-II

- The first order action of the NB BLG model on flat W^{3}

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

A2. Comments on generalization to the case of mM2-II

- The first order action of the NB BLG model on flat W^{3}

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- where $\hat{E}^{a}=d \xi^{a}\left(\right.$ as far as $\left.W^{3}=R^{3}\right)$ and the Hamiltonian reads

$$
\mathcal{H}=\frac{1}{3!} \mathbb{P}^{a l} \mathbb{P}_{a}^{\prime}+\frac{1}{48}\left(\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}\right)^{2}+\frac{i}{6} \epsilon^{i k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \Psi_{q}^{\alpha}\left(\gamma^{\prime J} \Psi_{\alpha}\right)_{q},
$$

A2. Comments on generalization to the case of mM2-II

- The first order action of the NB BLG model on flat W^{3}

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- where $\hat{E}^{a}=d \xi^{a}$ (as far as $W^{3}=R^{3}$) and the Hamiltonian reads

$$
\mathcal{H}=\frac{1}{3!} \mathbb{P}^{a /} \mathbb{P}_{a}^{\prime}+\frac{1}{48}\left(\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}\right)^{2}+\frac{i}{6} \epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \Psi_{q}^{\alpha}\left(\gamma^{\prime J} \Psi_{\alpha}\right)_{q}
$$

- is invariant under rigid $\mathcal{N}=8$ supersymmetry

$$
\begin{array}{r}
\delta \mathbb{X}^{\prime}=i \varepsilon^{\alpha} \tilde{\gamma}^{\prime} \Psi_{\alpha}, \quad \delta A_{a i}=i \varepsilon \gamma_{a} \tilde{\gamma}^{\prime} \Psi \partial_{i}^{y} \mathbb{X}^{\prime}, \\
\delta \mathbb{P}^{a l}=i \epsilon^{a b c} \varepsilon \gamma_{b} \tilde{\gamma}^{\prime} D_{c} \Psi+\frac{i}{4} \varepsilon \tilde{\gamma}^{a} \tilde{\gamma}^{I J K}\left\{\Psi, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}, \\
\delta \Psi_{\alpha q}=-\frac{1}{4}\left(\varepsilon \gamma_{a} \tilde{\gamma}^{\prime}\right) \mathbb{P}^{a l}-\frac{1}{16}\left(\varepsilon \tilde{\gamma}^{I J K}\right)\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\} .
\end{array}
$$

A2. Comments on generalization to the case of mM2-II

- The first order action of the NB BLG model on flat W^{3}

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- where $\hat{E}^{a}=d \xi^{a}$ (as far as $W^{3}=R^{3}$) and the Hamiltonian reads

$$
\mathcal{H}=\frac{1}{3!} \mathbb{P}^{a /} \mathbb{P}_{a}^{\prime}+\frac{1}{48}\left(\epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \mathbb{X}^{K}\right)^{2}+\frac{i}{6} \epsilon^{i j k} \partial_{i}^{y} \mathbb{X}^{\prime} \partial_{j}^{y} \mathbb{X}^{J} \partial_{k}^{y} \Psi_{q}^{\alpha}\left(\gamma^{\prime J} \Psi_{\alpha}\right)_{q}
$$

- is invariant under rigid $\mathcal{N}=8$ supersymmetry

$$
\begin{array}{r}
\delta \mathbb{X}^{\prime}=i \varepsilon^{\alpha} \tilde{\gamma}^{\prime} \Psi_{\alpha}, \quad \delta A_{a i}=i \varepsilon \gamma_{a} \tilde{\gamma}^{\prime} \Psi \partial_{i}^{y} \mathbb{X}^{\prime}, \\
\delta \mathbb{P}^{a l}=i \epsilon^{a b c} \varepsilon \gamma_{b} \tilde{\gamma}^{\prime} D_{c} \Psi+\frac{i}{4} \varepsilon \tilde{\gamma}^{a} \tilde{\gamma}^{I J K}\left\{\Psi, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}, \\
\delta \Psi_{\alpha q}=-\frac{1}{4}\left(\varepsilon \gamma_{a} \tilde{\gamma}^{\prime}\right) \mathbb{P}^{a l}-\frac{1}{16}\left(\varepsilon \tilde{\gamma}^{I J K}\right)\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\} .
\end{array}
$$

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{\underline{a}}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto E^{\alpha}(\hat{Z}) v_{\underline{\alpha}}^{\beta D}$.

A2. Comments on generalization to the case of mM2-I

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{b}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$,

A2. Comments on generalization to the case of mM2-I

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{b}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$,
- where $\hat{Z}^{M}=\hat{Z}^{M}(\xi)$ are coordinate functions of the center of energy,

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

A2. Comments on generalization to the case of mM2-I

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{b}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$,
- where $\hat{Z}^{M}=\hat{Z}^{M}(\xi)$ are coordinate functions of the center of energy,

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- $S_{\text {c.o.e. }}(\hat{Z})$ is a functional involving the center of energy coordinate functions and spinor moving frame variables only

A2. Comments on generalization to the case of mM2-I

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{b}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$,
- where $\hat{Z}^{M}=\hat{Z}^{M}(\xi)$ are coordinate functions of the center of energy,

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- $S_{\text {c.o.e. }}(\hat{Z})$ is a functional involving the center of energy coordinate functions and spinor moving frame variables only
- and $\hat{E}^{\beta p}=E^{\alpha}(\hat{Z}) v_{\underline{\alpha}}^{\beta p}$ is the induced gravitino (counterpart of \hat{E}^{+q} of $\mathrm{mMO}) . \hat{E}^{a}$ and \hat{E}^{+q} belong to a composed 3d $\mathcal{N}=8$ SUGRA multiplet.

A2. Comments on generalization to the case of mM2-I

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{b}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$,
- where $\hat{Z}^{M}=\hat{Z}^{M}(\xi)$ are coordinate functions of the center of energy,

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- $S_{\text {c.o.e. }}(\hat{Z})$ is a functional involving the center of energy coordinate functions and spinor moving frame variables only
- and $\hat{E}^{\beta p}=E^{\underline{\alpha}}(\hat{Z}) v_{\underline{\alpha}}^{\beta p}$ is the induced gravitino (counterpart of \hat{E}^{+q} of $\mathrm{mMO}) . \hat{E}^{a}$ and \hat{E}^{+q} belong to a composed $3 \mathrm{~d} \mathcal{N}=8$ SUGRA multiplet.
- Its presence should allow to make all the action invariant under the local $\mathrm{N}=8$ SUSY, which acts on the BLG variables by (a modification of?)

$$
\delta \mathbb{X}^{\prime}=i \varepsilon^{\alpha} \tilde{\gamma}^{\prime} \Psi_{\alpha}, \quad \delta \Psi_{\alpha q}=-\frac{1}{4}\left(\varepsilon \gamma_{a} \tilde{\gamma}^{\prime}\right) \mathbb{P}^{a l}-\frac{1}{16}\left(\varepsilon \tilde{\gamma}^{I J K}\right)\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}, \ldots
$$

A2. Comments on generalization to the case of mM2-I

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{b}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$,
- where $\hat{Z}^{M}=\hat{Z}^{M}(\xi)$ are coordinate functions of the center of energy,

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- $S_{\text {c.o.e. }}(\hat{Z})$ is a functional involving the center of energy coordinate functions and spinor moving frame variables only
- and $\hat{E}^{\beta p}=E^{\alpha}(\hat{Z}) v_{\underline{\alpha}}^{\beta p}$ is the induced gravitino (counterpart of \hat{E}^{+q} of $\mathrm{mMO}) . \hat{E}^{a}$ and \hat{E}^{+q} belong to a composed $3 \mathrm{~d} \mathcal{N}=8$ SUGRA multiplet.
- Its presence should allow to make all the action invariant under the local $\mathrm{N}=8$ SUSY, which acts on the BLG variables by (a modification of?) $\delta \mathbb{X}^{\prime}=i \varepsilon^{\alpha} \tilde{\gamma}^{\prime} \Psi_{\alpha}, \quad \delta \Psi_{\alpha q}=-\frac{1}{4}\left(\varepsilon \gamma_{a} \tilde{\gamma}^{\prime}\right) \mathbb{P}^{a l}-\frac{1}{16}\left(\varepsilon \tilde{\gamma}^{I J K}\right)\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}, \ldots$
- and on the center of energy variables by (a modification of the) κ-symmetry of the effective center of energy brane action $S_{\text {c.o.e. }}(\hat{Z})$, $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} \boldsymbol{v}_{\beta \dot{q}} \dot{\alpha}_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$

A2. Comments on generalization to the case of mM2-I

- An mM2 generalization of our mM0 action can be searched for by taking $\hat{E}^{a}=d \hat{Z}^{M} E_{M}^{\underline{b}}(\hat{Z}) u_{\underline{b}}{ }^{a}(\xi)$ and $S_{B L G}^{N B} \mapsto S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$,
- where $\hat{Z}^{M}=\hat{Z}^{M}(\xi)$ are coordinate functions of the center of energy,

$$
S_{B L G}^{N B}=\frac{1}{2} \int \epsilon_{a b c} \hat{E}^{b} \wedge \hat{E}^{c} \wedge \int d^{3} y\left(\mathbb{P}^{a l} D \mathbb{X}^{\prime}+2 i \Psi_{q} \tilde{\gamma}^{a} \Psi_{q}-\hat{E}^{a} \mathcal{H}\right)+\int \mathcal{L}_{C S}
$$

- $S_{\text {c.o.e. }}(\hat{Z})$ is a functional involving the center of energy coordinate functions and spinor moving frame variables only
- and $\hat{E}^{\beta p}=E^{\underline{\alpha}}(\hat{Z}) v_{\underline{\alpha}}^{\beta p}$ is the induced gravitino (counterpart of \hat{E}^{+q} of $\mathrm{mMO}) . \hat{E}^{a}$ and \hat{E}^{+q} belong to a composed $3 \mathrm{~d} \mathcal{N}=8$ SUGRA multiplet.
- Its presence should allow to make all the action invariant under the local $\mathrm{N}=8$ SUSY, which acts on the BLG variables by (a modification of?) $\delta \mathbb{X}^{\prime}=i \varepsilon^{\alpha} \tilde{\gamma}^{\prime} \Psi_{\alpha}, \quad \delta \Psi_{\alpha q}=-\frac{1}{4}\left(\varepsilon \gamma_{a} \tilde{\gamma}^{\prime}\right) \mathbb{P}^{a l}-\frac{1}{16}\left(\varepsilon \tilde{\gamma}^{I J K}\right)\left\{\mathbb{X}^{\prime}, \mathbb{X}^{J}, \mathbb{X}^{K}\right\}, \ldots$
- and on the center of energy variables by (a modification of the) κ-symmetry of the effective center of energy brane action $S_{\text {c.o.e. }}(\hat{Z})$, $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} \boldsymbol{v}_{\beta \dot{q}} \dot{\underline{\alpha}}_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$
- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?

A2. Comments on generalization to the case of mM 2 - III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?

A2. Comments on generalization to the case of mM2- III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?
- It is tempting to try the M2-brane action in its spinor moving frame formulation $S_{\text {c.o.e. }}(\hat{Z})=S_{M 2}=\int \frac{1}{3!} \epsilon_{a b c} \hat{E}^{a} \wedge \hat{E}^{b} \wedge \hat{E}^{c}+C_{3}$

A2. Comments on generalization to the case of mM2- III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?
- It is tempting to try the M2-brane action in its spinor moving frame formulation $S_{\text {c.o.e. }}(\hat{Z})=S_{M 2}=\int \frac{1}{3!} \epsilon_{a b c} \hat{E}^{a} \wedge \hat{E}^{b} \wedge \hat{E}^{c}+C_{3}$
- This is invariant under the κ-symmetry with $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} v_{\beta \dot{q}}{ }^{\underline{\alpha}} E_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$

A2. Comments on generalization to the case of mM2- III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?
- It is tempting to try the M2-brane action in its spinor moving frame formulation $S_{\text {c.o.e. }}(\hat{Z})=S_{M 2}=\int \frac{1}{3!} \epsilon_{a b c} \hat{E}^{a} \wedge \hat{E}^{b} \wedge \hat{E}^{c}+C_{3}$
- This is invariant under the κ-symmetry with $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} v_{\beta \dot{q}}{ }^{\underline{\alpha}} E_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$
- But to maintain the supersymmetry of $S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$ seems to be impossible:
$\delta_{\varepsilon} \mathcal{L}_{3}{ }_{B L G}^{N B}=D \varepsilon^{\alpha \dot{q}} \wedge \oint(\ldots)+\oint i \hat{E}^{a} \varepsilon \gamma_{a} \tilde{\gamma}^{\prime} \Psi \wedge \Omega_{b}^{\prime} \wedge \Omega^{b J} \mathbb{X}^{J}+\ldots$ with $\Omega_{b}^{l}=u_{\underline{c}}^{b} d u^{\underline{c} i}$.

A2. Comments on generalization to the case of mM2-III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?
- It is tempting to try the M2-brane action in its spinor moving frame formulation $S_{\text {c.o.e. }}(\hat{Z})=S_{M 2}=\int \frac{1}{3!} \epsilon_{a b c} \hat{E}^{a} \wedge \hat{E}^{b} \wedge \hat{E}^{c}+C_{3}$
- This is invariant under the κ-symmetry with $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} v_{\beta \dot{q}}{ }^{\underline{\alpha}} E_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$
- But to maintain the supersymmetry of $S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$ seems to be impossible:
$\delta_{\varepsilon} \mathcal{L}_{3}{ }_{3 B L G}^{N B}=D \varepsilon^{\alpha \dot{q}} \wedge \oint(\ldots)+\oint i \hat{E}^{a} \varepsilon \gamma_{a} \tilde{\gamma}^{\prime} \Psi \wedge \Omega_{b}^{\prime} \wedge \Omega^{b J} \mathbb{X}^{J}+\ldots$ with $\Omega_{b}^{\prime}=u_{c}^{b} d u^{c^{i}}$.
- Probably the deep reason beyond this is that $S_{M 2}$ is not conformally invariant, while $S_{B L G}^{N B}$ is a CFT.

A2. Comments on generalization to the case of mM2- III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?
- It is tempting to try the M2-brane action in its spinor moving frame formulation $S_{\text {c.o.e. }}(\hat{Z})=S_{M 2}=\int \frac{1}{3!} \epsilon_{a b c} \hat{E}^{a} \wedge \hat{E}^{b} \wedge \hat{E}^{c}+C_{3}$
- This is invariant under the κ-symmetry with $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} v_{\beta \dot{q}}{ }^{\underline{\alpha}} E_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$
- But to maintain the supersymmetry of $S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$ seems to be impossible:
$\delta_{\varepsilon} \mathcal{L}_{3}{ }_{B L G}^{N B}=D \varepsilon^{\alpha \dot{\alpha}} \wedge \oint(\ldots)+\oint i \hat{E}^{a} \varepsilon \gamma_{a} \tilde{\gamma}^{\prime} \Psi \wedge \Omega_{b}^{\prime} \wedge \Omega^{b J} \mathbb{X}^{J}+\ldots$ with $\Omega_{b}^{\prime}=u_{\underline{c}}^{b} d u^{c i}$.
- Probably the deep reason beyond this is that $S_{M 2}$ is not conformally invariant, while $S_{B L G}^{N B}$ is a CFT.
- Could $S_{\text {c.o.e. }}(\hat{Z})$ be some tensionless limit of $S_{M 2}$ (null-supermembrane)?

A2. Comments on generalization to the case of mM2- III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?
- It is tempting to try the M2-brane action in its spinor moving frame formulation $S_{\text {c.o.e. }}(\hat{Z})=S_{M 2}=\int \frac{1}{3!} \epsilon_{a b c} \hat{E}^{a} \wedge \hat{E}^{b} \wedge \hat{E}^{c}+C_{3}$
- This is invariant under the κ-symmetry with $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} v_{\beta \dot{q}}{ }^{\underline{\alpha}} E_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$
- But to maintain the supersymmetry of $S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$ seems to be impossible:
$\delta_{\varepsilon} \mathcal{L}_{3}{ }_{B L G}^{N B}=D \varepsilon^{\alpha \dot{\alpha}} \wedge \oint(\ldots)+\oint i \hat{E}^{a} \varepsilon \gamma_{a} \tilde{\gamma}^{\prime} \Psi \wedge \Omega_{b}^{\prime} \wedge \Omega^{b J} \mathbb{X}^{J}+\ldots$ with $\Omega_{b}^{\prime}=u_{\underline{c}}^{b} d u^{c i}$.
- Probably the deep reason beyond this is that $S_{M 2}$ is not conformally invariant, while $S_{B L G}^{N B}$ is a CFT.
- Could $S_{\text {c.o.e. }}(\hat{Z})$ be some tensionless limit of $S_{M 2}$ (null-supermembrane)?
- This is under investigation now.

A2. Comments on generalization to the case of mM2- III

- The central problem is: what is $S_{\text {c.o.e. }}(\hat{Z})$?
- It is tempting to try the M2-brane action in its spinor moving frame formulation $S_{\text {c.o.e. }}(\hat{Z})=S_{M 2}=\int \frac{1}{3!} \epsilon_{a b c} \hat{E}^{a} \wedge \hat{E}^{b} \wedge \hat{E}^{c}+C_{3}$
- This is invariant under the κ-symmetry with $\delta_{\epsilon} \hat{Z}^{M}=\epsilon^{\beta \dot{q}} v_{\beta \dot{q}}{ }^{\underline{\alpha}} E_{\underline{\alpha}}^{M}(\hat{Z}), \ldots$
- But to maintain the supersymmetry of $S_{\text {c.o.e. }}(\hat{Z})+S_{B L G}^{N B}+\propto \hat{E}^{\beta p}$ seems to be impossible:
$\delta_{\varepsilon} \mathcal{L}_{\mathcal{L}_{B L G}}{ }^{N B}=D \varepsilon^{\alpha \dot{q}} \wedge \oint(\ldots)+\oint i \hat{E}^{a} \varepsilon \gamma_{a} \tilde{\gamma}^{\prime} \Psi \wedge \Omega_{b}^{\prime} \wedge \Omega^{b J} \mathbb{X}^{J}+\ldots$ with $\Omega_{b}^{\prime}=u_{\underline{c}}^{b} d u^{c i}$.
- Probably the deep reason beyond this is that $S_{M 2}$ is not conformally invariant, while $S_{B L G}^{N B}$ is a CFT.
- Could $S_{\text {c.o.e. }}(\hat{Z})$ be some tensionless limit of $S_{M 2}$ (null-supermembrane)?
- This is under investigation now.
- The problem is that, although some κ-symmetric null-supermembrane actions are known, their κ-symmetry is of a different type then SUSY of the BLG model.

Thanks!
THANK YOU FOR YOUR ATTENTION!

