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M-branes and D-branes

M-branes and D-branes and mDp

The set of 11D supersymmetric extended objects, M-branes includes:

M2–branes also known as supermembrane [BST 1987], M5-brane
(M-theory super-5-brane) [HS 1996, BLNPST 1997, APS 1997]

and also M0-brane or M-wave [Bergshoeff & Townsend 1996]

Dim reduction of SM0 to D=10 produces the action of the D0-brane =
10D type IIA massive superparticle.

M0 is the natural toy model to study the problems of higher M-branes.

One of such is the effective action for multiple Mp-brane (mMp) systems

The dim. reduction of (the hypothetical) mMp′ action should produce
mDp (multiple Dp–brane) action

which is believed to be written in terms of (9− p) Hermitian matrices of
scalar fields, X̃i , the diagonal elements of which describe the positions
of different Dp-branes while the off–diagonal elements account for the
strings stretched between different Dp-branes.

SYM description was the basis for the search for a more complete
nonlinear description of mDp system: [Myers 1999] (purely bosonic),
[Sorokin 03], [Howe, Linstrom, Wulff 2005-07] (boundary fermion SSP)....
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M-branes and D-branes

mM5, mM2 and mM0

For the case of mM5 even the question on what should be a counterpart
of the very low energy SYM description of mDp is still obscure.

For the case of very low energy mM2 system such a problem was
unsolved many years, but recently two models were proposed by BLG
[Bagger, Lambert 2007 and Gustavsson 2007] and by ABJM [Aharony,
Bergman, Jafferis and Maldacena 2008].

mM0: A purely bosonic candidate for mM0 action was constructed in
[Janssen and Lozano 2002] (as 11D generalization of the Myers’s mD0).

Supersymmetric and Lorentz covariant equations of motion for
mM0-system were obtained in [IB 2009] in the frame of superembedding
approach [BPSTV 95, HS 96,...].

Their generalization for arbitrary 11D SUGRA background [IB2010]
describe the M(atrix) theory of BFSS [Banks, Fischler, Shenker and
Susskind 1996] in the 11D SUGRA background.

The general eqs [IB 2010] were specialized for the case of 11D pp-wave
superspace [IB 2011] and shown to reproduce (in some limit) the eqs of
the BMN Matrix model [Berenstein, Maldacena and Nastase 2002].
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M0-brane

mM5, mM2 and mM0

This derivation of BMN confirms that general mM0 equations [IB 2010]
give curved superspace generalization of the M(atrix) model

but also have shown that the superembedding approach based
equations are very difficult to apply.

Hence, for applications it is desirable to find an action which reproduces
the mM0 eqs of [IB 2010] or their generalizations (which is what is
actually happens).

The aim of this talk is to present such an action for mM0 in flat target
superspace.
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M0-brane

M0 action. Brink–Schwarz form

A single M0–brane = M-wave is just 11D massless superparticle
⇒ it can be described by the 11D version of the Brink–Schwarz action

SBS =

∫
W 1

(
paÊa − e

2
papadτ

)
,

where a = 0, 1, ..., 10 , e(τ) is the Lagrange multiplier (for papa = 0)

Êa = Ea(Ẑ ) = dẐ M (τ)Ea
M (Ẑ ) is the pull–back of Ea(Z ) = dZ MEa

M (Z )

to the worldline W 1.

W 1 ⊂ Σ(11|32) : Z M = Ẑ M (ξ) = (x̂µ(ξ) , θ̂ᾰ(ξ)) .

In flat target superspace Ea = Πa = dxa − idθΓaθ , Eα = dθα,

and Êa = dτ Êa
τ , Êa

τ = Π̂a
τ = ∂τ x̂a(τ)− i∂τ θ̂Γaθ̂(τ).
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paÊa − e

2
papadτ

)
,

where a = 0, 1, ..., 10 , e(τ) is the Lagrange multiplier (for papa = 0)
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τ , Êa

τ = Π̂a
τ = ∂τ x̂a(τ)− i∂τ θ̂Γaθ̂(τ).

κ–symmetry

The action is invariant under the local fermionic κ–symmetry [de Azcárraga &
Lukierski 1982, Siegel 83]

δκx̂a = −i θ̂Γaδκθ̂ , δκθ̂α = paΓ̃aαβκβ(τ) , δκe = 4iκβ∂τ θ̂β .

This reflects the SUSY preserved by the ground state ( ∃κ⇒ |∅ > is 1
2 BPS)

On the other hand the κ–symmetry can be identified with worldline SUSY
[Sorokin, Tkach, Volkov 1988]

which is not evident as far as the κ-symm. of the BS action is∞–reducible (as
p2 ≈ 0, κα ∼ κα + pbΓb

αβκ
(1)β , κ(1)β ∼ κ(1)β + pc Γ̃cβγκ

(2)
γ , ...).

κ symmetry appears in its irreducible form in the so–called spinor moving frame
formulation of superparticle [IB 1990, IB+AN 1996, IB 2007]
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τ , Êa
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and Êa = dτ Êa
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Intro. M0 in spinor moving frame formulation mM0 action and its susy Discussion and outlook

Moving frame action

Moving frame action and its twistor-like nature

The spinor moving frame action of M0–brane reads

SM0 =

∫
W 1

ρ# Ê= =

∫
W 1

ρ# u=
a Ea(Ẑ )

=
1
16

∫
W 1

ρ# (v −q Γav −q ) Êa ,

where ρ#(τ) is a Lagrange multiplier and u=
a is light–like u=au=

a = 0.

This can be considered as a kind of square of any of the 16 spinors v−αq

provided these are constrained by

v−αq (Γa)αβv−βp = δqpu=
a , 2v−αq v−βq = u=

a Γ̃aαβ
}

(⇒ u=au=
a = 0 ) .

With the use of these constrained spinors, the κ–symmetry of the spinor moving
frame action can be written in the following irreducible form

δκx̂a = −i θ̂Γaδκθ̂ , δκθ̂
α = ε+q(τ)v−αq , δκρ

# = 0 = δκu=
a .

These can be obtained from the∞–reducible κ symm of SBS ,
δκθ̂α = paΓ̃aαβκβ(τ), by substituting for pa the solution pa = ρ#u=

a of the
constraint papa = 0. Then ε+q = 2ρ#v−αq κα.

However, one might still find the origin of our v−αq a bit mysterious.
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=
1
16

∫
W 1

ρ# (v −q Γav −q ) Êa ,
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=
1
16

∫
W 1

ρ# (v −q Γav −q ) Êa ,
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Spinor moving frame

Moving frame and spinor moving frame

To clarify the nature of v−αq , it is useful to consider the null–vector u=
a as

an element of the moving frame matrix,

U(a)
b =

(
u=

b + u#
b

2
, u i

b,
u#

b − u=
b

2

)
∈ SO(1, 10) ⇔

u=
a ua = = 0 , u =

a ua# = 2 , u=
a ua i = 0 ,

u#
a ua# = 0 , u #

a uai = 0 ,

u i
auaj = −δij .

v−αq is 8x16 block of Spin(1,10) valued spinor moving frame matrix

V α
(β) =

(
v+α

q
v−αq

)
∈ Spin(1, 10)

This is double covering of the moving frame matrix:

V ΓbV T = U(a)
b Γ(a) , V T Γ̃(a)V = Γ̃bu(a)

b , VCV T = C .

⇒ v−q Γav−p = δqpu=
a , 2v−αq v−βq = u=

a ,
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−) ∈ Spin(1, 10) is constructed from

elements of V by vα∓q = ±iCαβv∓βq .
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Moving frame and spinor moving frame. Goldstone nature
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b Γ(a) , V T Γ̃(a)V = Γ̃bu(a)

b , VCV T = C .

The splitting is manifestly invariant under SO(1,D-1)×SO(1,1)⊗SO(D-2).
⇒ Moving frame and spinor moving frame variables can be considered
as homogeneous coordinates of SO(1,D − 1)/[SO(1, 1)⊗ SO(D − 2)]

These Lorentz harmonics or Goldstone fields were used in superstring
formulation of [IB & Zheltikhin, 1992] (see also [Gomis, Kamimura, West 2006]).

For the case of superparticle the coset is SO(1,D−1)
[SO(1,1)×SO(D−2)⊂×KD−2]

[Galperin,
Howe, Stelle, 92, Galperin Delduc, Sokatchev 92, IB & Nurmagambetov 96]
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Spinor moving frame

Moving frame and spinor moving frame. Derivatives and Variations
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V ΓbV T = U(a)
b Γ(a) , V T Γ̃(a)V = Γ̃bu(a)

b , VCV T = C .

Although our variables are highly constrained, due to their transparent
group-theoretical structure it is quite easy differentiate and to vary them:

⇒ (U−1dU) ∈ Spin(1, 10) ⇔ Ω(a)(b) := U(a)cdU(b)
c = −Ω(b)(a),

V−1dV ∈ Spin(1, 10) , V−1dV = 1
4 Ω(a)(b)Γ(a)(b)

⇒ du=
a = −2u=

a Ω(0) + u i
aΩ=i ,

dv−αq = −v−αq Ω(0) + 1
4 Ωijγ ij

qpv−αp − 1
2 Ω=iγ i

qpv+α
p , ...
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Spinor moving frame

On M0 equations as obtained from spinor moving frame action, and worldline geometry

Using moving frame we can split, in a Lorentz covariant manner,
Êb 7→ ÊbU(a)

b = (Ê=, Ê#, Ê i ) (carrying SO(1,1) and SO(D-2) ’indices’).

Eqs. of motion for ρ# and u=
a (or for v−αq )

Ê= := Êau=
a = 0

Ê i := Êau i
a = 0

}
⇔ Êa :=

1
2

Ê#u=
a .

⇒ the M0–brane worldline W 1 is a light–like, as it should be for a
massless (11D super)particle.

Furthermore, Êa := 1
2 Ê#u=a suggests to consider Ê# = dτ Ê#

τ as an
einbein on W 1 (induced by the embedding).

Its gravitino–like companion is Ê+q = Êαv+q
α .

The other covariant projection, Ê−q = Êαv−q
α = 0, due to the fermionic

equation of the M0, so that, on the mass shell Êα := Ê+qv−αq .

(Ê#
τ , Ê +q

τ ) is a composed supergravity multiplet: under the irreducible
κ–symmetry, δκx̂a = −i θ̂Γaδκθ̂, δκθ̂α = ε+qv−αq

δκÊ+q = Dε+q(τ) , δκÊ# = −2i Ê+qε+q
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Eqs. of motion for ρ# and u=
a (or for v−αq )

Ê= := Êau=
a = 0

Ê i := Êau i
a = 0

}
⇔ Êa :=

1
2

Ê#u=
a .

⇒ the M0–brane worldline W 1 is a light–like, as it should be for a
massless (11D super)particle.

Furthermore, Êa := 1
2 Ê#u=a suggests to consider Ê# = dτ Ê#

τ as an
einbein on W 1 (induced by the embedding).

Its gravitino–like companion is Ê+q = Êαv+q
α .

The other covariant projection, Ê−q = Êαv−q
α = 0, due to the fermionic

equation of the M0, so that, on the mass shell Êα := Ê+qv−αq .

(Ê#
τ , Ê +q

τ ) is a composed supergravity multiplet: under the irreducible
κ–symmetry, δκx̂a = −i θ̂Γaδκθ̂, δκθ̂α = ε+qv−αq

δκÊ+q = Dε+q(τ) , δκÊ# = −2i Ê+qε+q
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Ê#u=
a .

⇒ the M0–brane worldline W 1 is a light–like,

as it should be for a
massless (11D super)particle.

Furthermore, Êa := 1
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(Ê#
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2 Ê#u=a suggests to consider Ê# = dτ Ê#
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α .

The other covariant projection, Ê−q = Êαv−q
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δκÊ+q = Dε+q(τ) , δκÊ# = −2i Ê+qε+q
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mM0 action

mM0 action

We separate Ẑ M (τ) describing the center of energy motion of N nearly
coincident M0-branes and the fields describing the relative motion,

hermitian traceless N×N matrices: bosonic Xi (τ) and fermionic Ψq(τ).

Xi (τ) = Xi
# := Xi

++ is SO(9) vector with SO(1, 1) weight w=2.
Ψq(τ) = Ψ# +q := Ψ++ +q is SO(9) spinor (q = 1, ..., 16) with w= 3.
We propose to describe the system of N nearly coincident M0–branes by

SmM0 =

∫
W 1
ρ# Ê= +

∫
W 1

(ρ#)3
(

tr
(
−PiDXi + 4iΨqDΨq

)
+ Ê#H

)
+

+

∫
W 1

(ρ#)3 Ê+q tr
(

4i(γ i Ψ)qPi +
1
2

(γ ij Ψ)q[Xi ,Xj ]

)
,

Pi := Pi
## are 9 bosonic matrix auxiliary fields,

H := H####(X,P,Ψ) =
1
2

tr
(
PiPi

)
+ V(X)− 2 tr

(
Xi Ψγ i Ψ

)
,

V := V####(X) = − 1
64

tr
[
Xi ,Xj

]2
≡ +

1
64

tr
∣∣∣[Xi ,Xj

]∣∣∣2 .
as for a single M0: Ê= = Êaua, Ê# = Êaua, Ê+q = d θ̂αv+q

α
induced 1d SG
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(ρ#)3 Ê+q tr
(

4i(γ i Ψ)qPi +
1
2

(γ ij Ψ)q[Xi ,Xj ]

)
,

Pi := Pi
## are 9 bosonic matrix auxiliary fields,

H := H####(X,P,Ψ) =
1
2

tr
(
PiPi

)
+ V(X)− 2 tr

(
Xi Ψγ i Ψ

)
,

V := V####(X) = − 1
64

tr
[
Xi ,Xj

]2
≡ +

1
64

tr
∣∣∣[Xi ,Xj

]∣∣∣2 .
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α
induced 1d SG



Intro. M0 in spinor moving frame formulation mM0 action and its susy Discussion and outlook

mM0 action

mM0 action
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ρ# Ê= +

∫
W 1

(ρ#)3
(

tr
(
−Pi DXi

+ 4iΨqDΨq

)
+ Ê#H
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tr
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PiPi
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64

tr
[
Xi
,Xj
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− 2 tr

(
Xi

Ψγ i Ψ
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,

DXi
:= dXi

+ 2Ω(0)Xi
+ ΩijXj

+ [A,Xi
] ,

DΨq := dΨq + 3Ω(0)Ψq −
1
4

Ωijγ
ij
qpΨp + [A,Ψq ] .

A = dτAτ (τ) is the SU(N) connection - independent variable

Ω(0) = dτΩ
(0)
τ = 1

4 u=adu#
a and Ωij = dτΩij

τ = uiaduj
a are the composed

(induced) SO(1, 1) and SO(9) connections on W 1:

as in the case of single M0–brane: Ê= = Êaua, Ê# = Êaua, Ê+q = d θ̂αv+q
α︸ ︷︷ ︸

⇑ induced 1d SG

.
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+ Ê#H

)
+

+

∫
W 1

(ρ#)3 Ê+q tr
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+ Ê#H

)
+

+

∫
W 1

(ρ#)3 Ê+q tr
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is invariant under the 16 parametric local worldline SUSY:

δεXi = 4iε+γ i Ψ , δεPi = [(ε+γ ij Ψ),Xj ] ,

δεΨq =
1
2

(ε+γ i )qPi − i
16

(ε+γ ij )q[Xi ,Xj ] ,

δεA = −Ê#ε+qΨq + (Ê+γ iε+)Xi ,

δεx̂a = −i θ̂Γaδεθ̂ + 3(ρ#)2ua#tr
(

i(ε+γ i Ψ)Pi − (ε+γ ij Ψ)[Xi ,Xj ]/8
)
,

δεθ̂
α = ε+q(τ)v−αq ,

δερ
# = 0 = δεu=

a
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Ê# = Êau#
a and Ê+q = Êαv+q

α transforms as SUGRA supermultiplet,

δεÊ# = −2i Ê+qε+q , δεÊ+q = Dε+q(τ) ,

The local SUSY acts on center of energy variables by a deformation of
the irreducible κ-symm of the massless superparticle:

δκx̂a = −i θ̂Γaδκθ̂ , δκθ̂
α = ε+q(τ)v−αq , δκρ

# = 0 = δκu=
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mM0 susy and M0 κ–symmetry

The local SUSY acts on center of energy variables by a deformation of
the irreducible κ-symm of the massless superparticle:

δκx̂a = −i θ̂Γaδκθ̂ , δκθ̂
α = ε+q(τ)v−αq , δκρ

# = 0 = δκu=
a .

actually only δεx̂a = δκx̂a + ua#δL= is deformed with

δL= := iεÊ=/2 = 3(ρ#)2ua#tr
(

i(ε+γ i Ψ)Pi − (ε+γ ij Ψ)[Xi ,Xj ]/8
)

while δεθ̂α = δκθ̂
α = ε+q(τ)v−αq and δερ# = 0 = δεu=

a

Reason: SmM0 = SM0 + Srel
mM0 where SM0 =

∫
W 1 ρ

# Ê= is the M0 action.

However, now ρ#, u#
a , v+α

q and Ω(0) = u=du#, Ωij = (udu)ij are present

also in Srel
mM0 =

∫
W 1 (ρ#)3

(
tr
(
−PiDXi + 4iΨqDΨq

)
+ Ê#H

)
+

+4i
∫

W 1 (ρ#)3 Ê+q tr
(

(γ i Ψ)qPi − i
8 (γ ij Ψ)q[Xi ,Xj ]

)
⇒ the center of energy motion of mM0 is generically not lightlike.

It is characterized by an effective mass constructed from relative motion
variables, M2 = M2(Xi ,Pi ,Ψq).
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On the center of energy motion

SmM0 =

∫
W 1

ρ# Ê= +

∫
W 1

(ρ#)3
(

tr
(
−Pi DXi

+ 4iΨqDΨq

)
+ Ê#H

)
−

−4i
∫

W 1
(ρ#)3 Ê+q tr

(
(γ i Ψ)qPi − (γ ij Ψ)q [Xi

,Xj
]/8
)

=:
∫

dτLmM0

To see that the generic center of energy motion of mM0 is not lightlike
and is characterized by M2 = M2(Xi ,Pi ,Ψq),

let us calculate

pa(τ) =
∂LmM0

∂∂τ x̂a(τ)
= ρ#u=

a + (ρ#)3u#
a H(Xi ,Pi ,Ψq) .

⇒ M2 := papa(τ) = 4(ρ#)4 H(Xi ,Pi ,Ψq) . M2 ≥ 0

M2 is constant. Indeed, in the purely bosonic limit

D#D#Xi =
1
16

[[Xi ,Xj ]Xi ] , Pi = D#Xi (D = Ê#D#) .

⇒ DH = 0; furthermore Dρ# := dρ# − 2ρ#Ω(0) = 0⇒ Ω(0) = dρ#

2ρ# ;
⇒ 0 = (ρ#)4DH = d(ρ#)4H) = d(M2). Thus M2 = const .
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ρ# Ê= +

∫
W 1

(ρ#)3
(

tr
(
−Pi DXi

+ 4iΨqDΨq

)
+ Ê#H
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Discussion

M2 = 0 as a BPS equation. Vanishing effective mass of all susy bosonic solutions

All supersymmetric bosonic solutions of the mM0 eqs have M2 = 0.

Indeed, setting Ψq = 0 we find the following Killing spinor equation

ε+pKpq := (ε+γ i )qPi − i
8

(ε+γ ij )q[Xi ,Xj ] = 0 .

Its consistency condition ε+ptr((Kγ j )pqPj ) + i
8 (Kγ ijk )pq[Xj ,Xk ]) = 0

⇒ ε+qH = 0 ⇒ ε+qM2 = 0.

Hence (one of) the mM0 BPS equation(s) is

M2 = 0 ⇔ H|Ψ=0 =
1
2

tr
(
PiPi

)
− 1

64
tr
[
Xi ,Xj

]2
= 0 .

Important! ⇒ Our result does not imply the existence of a new exotic
supersymmetric solution of the 11D supergravity. SUSY solution
describing our mM0 is similar to a single M0 (M-wave) solution.

Furthermore, the explicit form of H ∝ M2 indicates that all SUSY
bosonic solutions of mM0 eqs. have Pi = 0 and

[
Xi ,Xj

]
= 0,

i.e. that their relative motion sector is in its ground state.
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bosonic solutions of mM0 eqs. have Pi = 0 and

[
Xi ,Xj

]
= 0,

i.e. that their relative motion sector is in its ground state.
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Discussion

Discussion

Difference with equation obtained from superembedding approach [IB
2010]: accounting for ’backreaction’ of the relative motion on the center
of energy motion (M2 := papa(τ) = 4(ρ#)4 H(Xi ,Pi ,Ψq) ) and vice
versa.

D#D#Xi =
1

16
[[Xi ,Xj ]Xi ]− 2iΨγ i Ψ + 4iD#(Ê+

#γ
i Ψ) +

1
16

(Ê+
#γ

ij )q[Ψq ,Xj ] .

Dim reduction on S1 should be related to (the moving frame
reformulation of) the mD0 action from [D. Sorokin 2003]. There the
center of energy mass is defined by an arbitrary function
M10D = M10D((ρ#)2Pi , ρ#Xi , (ρ#)3/2Ψ), while in our case

M2
10D = p2

0 − p2
1 − ...− p2

9 = p2
10 + 4(ρ#)4H .

Some arbitrariness still remains in the choose of the form of the
momentum p10.

Should we use an exotic dimensional reduction defined with the use of
the relative motion variables? p10 = f (Pi ,Xi ,Ψ)?
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(Ê+
#γ

ij )q[Ψq ,Xj ] .

Dim reduction on S1 should be related to (the moving frame
reformulation of) the mD0 action from [D. Sorokin 2003]. There the
center of energy mass is defined by an arbitrary function
M10D = M10D((ρ#)2Pi , ρ#Xi , (ρ#)3/2Ψ), while in our case

M2
10D = p2

0 − p2
1 − ...− p2

9 = p2
10 + 4(ρ#)4H .

Some arbitrariness still remains in the choose of the form of the
momentum p10.

Should we use an exotic dimensional reduction defined with the use of
the relative motion variables? p10 = f (Pi ,Xi ,Ψ)?



Intro. M0 in spinor moving frame formulation mM0 action and its susy Discussion and outlook

Outlook

Directions for future developments

Detailed study of equations of motion and their solutions.

To lift our functional to a generalized action and study the resulting
superembedding approach equations accounting for backreaction.

Generalization to curved background. Equations obtained in the frame of
superembedding approach suggest to add

∆fluxesSmM0 =
1
4!

∫
W 1

Êa(ρ#)3 F̂ aijk tr
(
Xi [Xj ,Xk ] + 4iΨγ ijk Ψ

)
+

+
1
8

∫
W 1

Êa(ρ#)3 R̂a i=j tr
(
XiXj

)
+ 2i

∫
W 1

Êa(ρ#)3 T̂ a i−q tr
(
Xi Ψq

)
,

with F̂ aijk = F abcd (Ẑ )u i
bu j

cuk
d ,

R̂ai=j = Rabcd (Ẑ )u i
bu=

c u j
d ,

T̂ ai−q = T abα(Ẑ )u i
bv−q
α .

Search for generalizations for the case of mM2. Although this is not
promising to be easy in the light of recent results in [Gran, Greitz, Howe
& Nilsson, 2012], neither it looks hopeless.
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bu j

cuk
d ,

R̂ai=j = Rabcd (Ẑ )u i
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bv−q
α .

Search for generalizations for the case of mM2. Although this is not
promising to be easy in the light of recent results in [Gran, Greitz, Howe
& Nilsson, 2012], neither it looks hopeless.



Intro. M0 in spinor moving frame formulation mM0 action and its susy Discussion and outlook

Outlook

Directions for future developments

Detailed study of equations of motion and their solutions.

To lift our functional to a generalized action and study the resulting
superembedding approach equations accounting for backreaction.

Generalization to curved background. Equations obtained in the frame of
superembedding approach suggest to add

∆fluxesSmM0 =
1
4!

∫
W 1
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Further comments

A1. Comment on coupling to SUGRA

The analogy with the bosonic mDp actions of [Myers 99] suggests to
expect the background superfields to depend on matrix coordinates
i.e. to study a model involving something like
Ea

M

(
Ẑ N + X̃iu iaEN

a (Ẑ + ...) + Ψ̃qv+α̌
q EN

α̌ (Ẑ + ...)
)

.

Although our spinor moving frame variables seems to be useful in writing
such expressions to deal with them is quite a difficult problem (see [Dorn
96, Duglas 97, Y. Lozano, Janssen 2000-2010])

For nearly coincident branes one can use the series decomposition in Xi

and Ψq . ⇒ sum of polynomials in Xi and Ψq multiplied by T , R, F , DT ,
DR, DF , ..., D...DT , ..., depending on Ẑ M (τ) = (x̂µ(τ)θ̂α(τ)) only.
The straightforward search for curved superspace generalization of SmM0

by adding 1
4!

∫
W 1 Êa(ρ#)3 F̂ aijk tr

(
Xi [Xj ,Xk ]

)
+ ... (see above) and

checking 1d N = 16 susy corresponds to the search for such a
decomposition power by power in Xi and Ψq

with a hope that probably this generically infinite series can be
consistently (susy pres.) truncated to a polynomial in Xi and Ψq .

or, if not, can help to obtain a weak field approx. in Xi and Ψq (stopping
the decomposition by hand at some power ≥ 4).
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W 1 Êa(ρ#)3 F̂ aijk tr

(
Xi [Xj ,Xk ]

)
+ ... (see above) and

checking 1d N = 16 susy corresponds to the search for such a
decomposition power by power in Xi and Ψq

with a hope that probably this generically infinite series can be
consistently (susy pres.) truncated to a polynomial in Xi and Ψq .

or, if not, can help to obtain a weak field approx. in Xi and Ψq (stopping
the decomposition by hand at some power ≥ 4).



Intro. M0 in spinor moving frame formulation mM0 action and its susy Discussion and outlook

Further comments

A1. Comment on coupling to SUGRA

The analogy with the bosonic mDp actions of [Myers 99] suggests to
expect the background superfields to depend on matrix coordinates
i.e. to study a model involving something like
Ea

M

(
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a (Ẑ + ...) + Ψ̃qv+α̌
q EN
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Ẑ N + X̃iu iaEN
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a (Ẑ + ...) + Ψ̃qv+α̌
q EN
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W 1 Êa(ρ#)3 F̂ aijk tr

(
Xi [Xj ,Xk ]

)
+ ... (see above) and

checking 1d N = 16 susy corresponds to the search for such a
decomposition power by power in Xi and Ψq

with a hope that probably this generically infinite series can be
consistently (susy pres.) truncated to a polynomial in Xi and Ψq .

or, if not, can help to obtain a weak field approx. in Xi and Ψq (stopping
the decomposition by hand at some power ≥ 4).



Intro. M0 in spinor moving frame formulation mM0 action and its susy Discussion and outlook

Further comments

A1. Comment on coupling to SUGRA

The analogy with the bosonic mDp actions of [Myers 99] suggests to
expect the background superfields to depend on matrix coordinates
i.e. to study a model involving something like
Ea

M

(
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by adding 1
4!

∫
W 1 Êa(ρ#)3 F̂ aijk tr

(
Xi [Xj ,Xk ]

)
+ ... (see above) and

checking 1d N = 16 susy corresponds to the search for such a
decomposition power by power in Xi and Ψq

with a hope that probably this generically infinite series can be
consistently (susy pres.) truncated to a polynomial in Xi and Ψq .

or, if not, can help to obtain a weak field approx. in Xi and Ψq (stopping
the decomposition by hand at some power ≥ 4).
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Further comments

A2. Comments on generalization to the case of mM2- I

Although the search for generalizations for the case of mM2 is not
promising to be easy in the light of recent results in [Gran, Greitz, Howe
& Nilsson, 2012], neither it looks hopeless.

The very low energy description of the condensate of the M2 branes is
believed to be provided by the SDiff3 invariant NB BLG model (BLG for
Bagger, Lambert and Gustavsson; NB for Nambu brackets).
in which the 3-algebra structure is given by Nambu brackets (NB) of the
function on a compact manifold M3 (topologically trivial S3):
{XI ,XJ ,XK}NB := εijk∂y

i XI∂y
j XJ∂y

k XK .

the counterparts of the supermembrane Goldstone fields– bosonic
XI = XI(ξm, y i ) (I = 1, ..., 8) and fermionic Ψαq = Ψαq(ξ, y)– are
functions on W 3 ×M3.
The tr is replaced by

∫
d3y , e.g. tr(PIDXI) 7→

∫
d3yPIDXI .

The local SDiff3 invariance is provided by the presence of gauge field
si = dξmsi

m(ξ, y) obeying ∂y
i si = 0 which implies si = εijk Ak with

unconstrained gauge prepotential Ai (ξ, y).
These enter covariant derivatives and the Chern-Simons term present in
the BLG action, LCS = 1

2

∫
d3y(dsi ∧ Ai − 1

3 εijk si ∧ sj ∧ sk )
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Further comments

A2. Comments on generalization to the case of mM2- II

The first order action of the NB BLG model on flat W 3

SNB
BLG =

1
2

∫
εabcÊb ∧ Êc ∧

∫
d3y

(
PaIDXI + 2iΨq γ̃

aΨq − ÊaH
)

+

∫
LCS ,

where Êa = dξa (as far as W 3 = R3) and the Hamiltonian reads

H =
1
3!

PaIPI
a +

1
48

(εijk∂y
i XI∂y

j XJ∂y
k XK )2 +

i
6
εijk∂y

i XI∂y
j XJ∂y

k Ψα
q (γ IJ Ψα)q ,

is invariant under rigid N = 8 supersymmetry

δXI = iεαγ̃ IΨα , δAai = iεγaγ̃
IΨ∂y

i XI ,

δPaI = iεabcεγbγ̃
IDcΨ +

i
4
εγ̃aγ̃ IJK{Ψ,XJ ,XK} ,

δΨαq = −1
4

(εγaγ̃
I)PaI − 1

16
(εγ̃ IJK ){XI ,XJ ,XK} .

An mM2 generalization of our mM0 action can be searched for by taking
Êa = dẐ MEb

M (Ẑ )ub
a(ξ) and SNB

BLG 7→ Sc.o.e.(Ẑ ) + SNB
BLG+ ∝ Eα(Ẑ )vβp

α .
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α .
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Further comments

A2. Comments on generalization to the case of mM2- I

An mM2 generalization of our mM0 action can be searched for by taking
Êa = dẐ MEb

M (Ẑ )ub
a(ξ) and SNB

BLG 7→ Sc.o.e.(Ẑ ) + SNB
BLG+ ∝ Êβp,

where Ẑ M = Ẑ M (ξ) are coordinate functions of the center of energy,

SNB
BLG = 1

2

∫
εabcÊb ∧ Êc ∧

∫
d3y

(
PaIDXI + 2iΨq γ̃

aΨq − ÊaH
)

+
∫
LCS ,

Sc.o.e.(Ẑ ) is a functional involving the center of energy coordinate
functions and spinor moving frame variables only

and Êβp = Eα(Ẑ )vβp
α is the induced gravitino (counterpart of Ê+q of

mM0). Êa and Ê+q belong to a composed 3d N = 8 SUGRA multiplet.
Its presence should allow to make all the action invariant under the local
N=8 SUSY, which acts on the BLG variables by (a modification of?)

δXI
= iεαγ̃IΨα , δΨαq = −

1
4

(εγaγ̃
I)PaI −

1
16

(εγ̃IJK ){XI
,XJ

,XK } , ...

and on the center of energy variables by (a modification of the)
κ–symmetry of the effective center of energy brane action Sc.o.e.(Ẑ ),
δεẐ M = εβq̇vβq̇

αEM
α (Ẑ ), ...

The central problem is: what is Sc.o.e.(Ẑ )?
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∫
d3y

(
PaIDXI + 2iΨq γ̃

aΨq − ÊaH
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and Êβp = Eα(Ẑ )vβp
α is the induced gravitino (counterpart of Ê+q of

mM0). Êa and Ê+q belong to a composed 3d N = 8 SUGRA multiplet.
Its presence should allow to make all the action invariant under the local
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Êa = dẐ MEb

M (Ẑ )ub
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α (Ẑ ), ...

The central problem is: what is Sc.o.e.(Ẑ )?
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A2. Comments on generalization to the case of mM2- III

The central problem is: what is Sc.o.e.(Ẑ )?

It is tempting to try the M2-brane action in its spinor moving frame
formulation Sc.o.e.(Ẑ ) = SM2 =

∫ 1
3!
εabcÊa ∧ Êb ∧ Êc + C3

This is invariant under the κ–symmetry with δεẐ M = εβq̇vβq̇
αEM

α (Ẑ ), ...

But to maintain the supersymmetry of Sc.o.e.(Ẑ ) + SNB
BLG+ ∝ Êβp seems

to be impossible:
δεL3

NB
BLG = Dεαq̇ ∧

∮
(...) +

∮
i Êaεγaγ̃

IΨ ∧ ΩI
b ∧ ΩbJXJ + ... with

ΩI
b = ub

c duci .

Probably the deep reason beyond this is that SM2 is not conformally
invariant, while SNB

BLG is a CFT.

Could Sc.o.e.(Ẑ ) be some tensionless limit of SM2 (null-supermembrane)?

This is under investigation now.

The problem is that, although some κ–symmetric null-supermembrane
actions are known, their κ–symmetry is of a different type then SUSY of
the BLG model.
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It is tempting to try the M2-brane action in its spinor moving frame
formulation Sc.o.e.(Ẑ ) = SM2 =
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THANK YOU FOR YOUR ATTENTION!
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