Tomás Ortín

(I.F.T. UAM/CSIC, Madrid)

Work done in collaboration with

- A. de Antonio (IFT-UAM/CSIC, Madrid)
- P. Galli (U. Valencia),
- P. Meessen (U. Oviedo),
- J. Perz (INFN, Padova)
- C.S. Shahbazi (IFT-UAM/CSIC, Madrid)

```
published in arXiv:1105.3311, arXiv:1107.5454, arXiv:1112.3332, arXiv:1203.0260, arXiv:1204.0507, arXiv:1204.5910, arXiv:1206.3190 and work to appear.
```

Talk given at Workshop INFN-Spain 2012, Naples November 13th, 2012

Plan of the Talk:

- 1 Introduction
- 4 FGK formalism for black p-branes in d dimensions
- 12 Construction of explicit solutions: extremal supersymmetric
- 16 Construction of explicit solutions: non-extremal
- 19 A complete example: $\overline{\mathbb{CP}}^n$ model
- 30 H-FGK formalism for $\mathcal{N} = 2$, d = 4 supergravity
- 38 H-FGK formalism for $\mathcal{N} = 2$, d = 5 supergravity
- 40 H-variables for black holes
- 41 K-variables for black strings
- 49 Conclusions

1-Introduction

1-Introduction

In the last years we have learned a lot about black-hole solutions, but mostly about the extremal supersymmetric ones:

1-Introduction

In the last years we have learned a lot about black-hole solutions, but mostly about the extremal supersymmetric ones:

 $rac{}$ (In principle) we know how to construct all the extremal supersymmetric ones in all d=4 and some d=5 ungauged supergravities.

1 – Introduction

In the last years we have learned a lot about black-hole solutions, but mostly about the extremal supersymmetric ones:

- $rac{rac}{rac}$ (In principle) we know how to construct all the extremal supersymmetric ones in all d=4 and some d=5 ungauged supergravities.
- We know some things about the extremal non-supersymmetric ones through their attractors, but, in general, we do not know how to construct the full solutions.

1 – Introduction

In the last years we have learned a lot about black-hole solutions, but mostly about the extremal supersymmetric ones:

- (In principle) we know how to construct all the extremal supersymmetric ones in all d=4 and some d=5 ungauged supergravities.
- We know some things about the extremal non-supersymmetric ones through their attractors, but, in general, we do not know how to construct the full solutions.
- We do not know much about the non-extremal ones, which should be closer to reality. Only a handful of examples.

1 – Introduction

In the last years we have learned a lot about black-hole solutions, but mostly about the extremal supersymmetric ones:

- (In principle) we know how to construct all the extremal supersymmetric ones in all d=4 and some d=5 ungauged supergravities.
- We know some things about the extremal non-supersymmetric ones through their attractors, but, in general, we do not know how to construct the full solutions.
- We do not know much about the non-extremal ones, which should be closer to reality. Only a handful of examples.

In this talk I will present a general ansatz and a general formalism to construct non-extremal black-hole and black-brane solutions. Then we can take their extremal non-supersymmetric limits.

I will review a complete explicit example.

Our ansatz is based on a hypothesis on the universal dependence of all black-hole solutions on certain functions which are harmonic in the extremal cases and something else in the non-extremal ones.

Our ansatz is based on a hypothesis on the universal dependence of all black-hole solutions on certain functions which are harmonic in the extremal cases and something else in the non-extremal ones.

We will prove the ansatz constructing a new formalism (H-FGK formalism) which simplifies the construction of solutions and the study of general properties of families of black holes.

Our main tool will be a generalization of the FGK formalism (Ferrara-Gibbons-Kallosh, 1997) which has been extensively used to study extremal black-hole solutions in 4 dimensions only.

Our main tool will be a generalization of the FGK formalism (Ferrara-Gibbons-Kallosh, 1997) which has been extensively used to study extremal black-hole solutions in 4 dimensions only.

We start by reviewing the FGK formalism

for black holes and black branes

in d dimensions.

2 – FGK formalism for black p-branes in d dimensions

Consider the generic d-dimensional spacetime action describing scalars ϕ^i and (p+1)-form potentials $A^{\Lambda}_{(p+1)}$ coupled to gravity:

$$I = \int d^d x \sqrt{|g|} \left\{ R + \mathcal{G}_{ij}(\phi) \partial_{\mu} \phi^i \partial^{\mu} \phi^j \right\}$$

$$+4\frac{(-1)^{\mathbf{p}}}{(\mathbf{p}+2)!}\left[I_{\Lambda\Sigma}(\phi)F^{\Lambda}_{(\mathbf{p}+2)}\cdot F^{\Sigma}_{(\mathbf{p}+2)} + \boldsymbol{\xi}^{2}R_{\Lambda\Sigma}(\phi)F^{\Lambda}_{(\mathbf{p}+2)}\star F^{\Sigma}_{(\mathbf{p}+2)}\right]\right\},\,$$

where the last term occurs only when $p = \tilde{p} = (d-4)/2$ and

$$R_{\Lambda\Sigma}(\phi) = -\xi^2 R_{\Sigma\Lambda}(\phi), \qquad \xi^2 = (-1)^{\frac{d}{2}+1} = (-1)^{p+1}.$$

2 – FGK formalism for black p-branes in d dimensions

Consider the generic d-dimensional spacetime action describing scalars ϕ^i and (p+1)-form potentials $A^{\Lambda}_{(p+1)}$ coupled to gravity:

$$I = \int d^d x \sqrt{|g|} \left\{ R + \mathcal{G}_{ij}(\phi) \partial_{\mu} \phi^i \partial^{\mu} \phi^j \right\}$$

$$+4\frac{(-1)^{\mathbf{p}}}{(\mathbf{p}+2)!}\left[I_{\Lambda\Sigma}(\phi)F^{\Lambda}_{(\mathbf{p}+2)}\cdot F^{\Sigma}_{(\mathbf{p}+2)} + \boldsymbol{\xi}^{2}R_{\Lambda\Sigma}(\phi)F^{\Lambda}_{(\mathbf{p}+2)}\star F^{\Sigma}_{(\mathbf{p}+2)}\right]\right\},\,$$

where the last term occurs only when $p = \tilde{p} = (d-4)/2$ and

$$R_{\Lambda\Sigma}(\phi) = -\xi^2 R_{\Sigma\Lambda}(\phi), \qquad \xi^2 = (-1)^{\frac{d}{2}+1} = (-1)^{p+1}.$$

We want to find solutions describing single, static, charged, regular, black p-branes with flat worldvolume in the directions $\vec{y}_{(p)} = (y_1, \dots, y_p)$ living in a spacetime of $d = p + \tilde{p} + 4$ dimensions.

Our general ansatz for the metric only contains an independent function $\tilde{U}(\rho)$.

$$ds_{(d)}^{2} = e^{\frac{2}{p+1}\tilde{U}} \left[e^{\frac{2p}{p+1}r_{0}\rho} dt^{2} - e^{-\frac{2}{p+1}r_{0}\rho} d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2}{\tilde{p}+1}\tilde{U}} \gamma_{(\tilde{p}+3)\,mn} dx^{m} dx^{n} ,$$

$$\gamma_{(\tilde{p}+3)\,mn}dx^{m}dx^{n} \equiv \left[\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right]^{\frac{2}{\tilde{p}+1}} \left[\left(\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right)^{2}\frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2}\right],$$

Our general ansatz for the metric only contains an independent function $\tilde{U}(\rho)$.

$$ds_{(d)}^{2} = e^{\frac{2}{p+1}\tilde{U}} \left[e^{\frac{2p}{p+1}r_{0}\rho} dt^{2} - e^{-\frac{2}{p+1}r_{0}\rho} d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2}{\tilde{p}+1}\tilde{U}} \gamma_{(\tilde{p}+3)\,mn} dx^{m} dx^{n} ,$$

$$\gamma_{(\tilde{p}+3)\,mn}dx^{m}dx^{n} \equiv \left[\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right]^{\frac{2}{\tilde{p}+1}} \left[\left(\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right)^{2} \frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2}\right],$$

In these coordinates the (outer) event horizon lies at $\rho \to +\infty$ and spatial infinity at $\rho \to 0$.

Our general ansatz for the metric only contains an independent function $\tilde{U}(\rho)$.

$$ds_{(d)}^{2} = e^{\frac{2}{p+1}\tilde{U}} \left[e^{\frac{2p}{p+1}r_{0}\rho} dt^{2} - e^{-\frac{2}{p+1}r_{0}\rho} d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2}{\tilde{p}+1}\tilde{U}} \gamma_{(\tilde{p}+3)\,mn} dx^{m} dx^{n} ,$$

$$\gamma_{(\tilde{p}+3)\,mn}dx^{m}dx^{n} \equiv \left[\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right]^{\frac{2}{\tilde{p}+1}} \left[\left(\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right)^{2}\frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2}\right],$$

- In these coordinates the (outer) event horizon lies at $\rho \to +\infty$ and spatial infinity at $\rho \to 0$.
- The interior of the inner (Cauchy) horizon the black hole is described by a metric obtained from the one above by the (non-coordinate) transformation

$$\rho \longrightarrow -\varrho$$
, $e^{-\tilde{U}(\rho)} \longrightarrow -e^{-\tilde{U}(-\varrho)}$.

Our general ansatz for the metric only contains an independent function $\tilde{U}(\rho)$.

$$ds_{(d)}^{2} = e^{\frac{2}{p+1}\tilde{U}} \left[e^{\frac{2p}{p+1}r_{0}\rho} dt^{2} - e^{-\frac{2}{p+1}r_{0}\rho} d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2}{\tilde{p}+1}\tilde{U}} \gamma_{(\tilde{p}+3)\,mn} dx^{m} dx^{n} ,$$

$$\gamma_{(\tilde{p}+3)\,mn}dx^{m}dx^{n} \equiv \left[\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right]^{\frac{2}{\tilde{p}+1}} \left[\left(\frac{r_{0}}{\sinh\left(r_{0}\rho\right)}\right)^{2}\frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2}\right],$$

- In these coordinates the (outer) event horizon lies at $\rho \to +\infty$ and spatial infinity at $\rho \to 0$.
- The interior of the inner (Cauchy) horizon the black hole is described by a metric obtained from the one above by the (non-coordinate) transformation

$$\rho \longrightarrow -\varrho$$
, $e^{-\tilde{U}(\rho)} \longrightarrow -e^{-\tilde{U}(-\varrho)}$.

The inner horizon at $\varrho \to +\infty$ and the singularity at $\varrho = \varrho_{\text{sing}} > 0$.

In the general metric r_0 is always the non-extremality parameter.

In the general metric r_0 is always the non-extremality parameter.

If \tilde{S} is the normalized entropy density per unit worldvolume

$$\tilde{S} \equiv \frac{A_{\text{h}\tilde{p}+2}}{\omega_{(\tilde{p}+2)}}$$

and T is the *Hawking temperature*

$$(2r_0)^{\frac{1}{p+1}} = \frac{4\pi}{\tilde{p}+1} T \tilde{S}^{\frac{(d-2)}{(p+1)(\tilde{p}+2)}}.$$

 $(r_0 = 2ST \text{ for 4-dimensional black holes.})$

In the general metric r_0 is always the non-extremality parameter.

If \tilde{S} is the normalized entropy density per unit worldvolume

$$\tilde{S} \equiv \frac{A_{\text{h}\tilde{p}+2}}{\omega_{(\tilde{p}+2)}}$$

and T is the *Hawking temperature*

$$(2r_0)^{\frac{1}{p+1}} = \frac{4\pi}{\tilde{p}+1} T \tilde{S}^{\frac{(d-2)}{(p+1)(\tilde{p}+2)}}.$$

 $(r_0 = 2ST \text{ for 4-dimensional black holes.})$

This relation is true with the same r_0 for both inner and outer horizons.

With this formalism we will be able to compute the *entropies* of the inner (-) and outer (+) horizons and check that the product

$$\tilde{S}_+\tilde{S}_-$$

is a moduli-independent combination of conserved quantities.

For regular $(\tilde{S} > 0)$ black branes, in the $r_0 \to 0$ limit we find $T \to 0$.

For regular $(\tilde{S} > 0)$ black branes, in the $r_0 \to 0$ limit we find $T \to 0$. In this extremal limit we get the standard metric for extremal p-branes

$$ds_{(d)}^{2} = e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - \frac{e^{-\frac{2U}{\tilde{p}+1}}}{\rho^{\frac{2}{\tilde{p}+1}}} \left[\frac{1}{\rho^{2}} \frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2} \right]$$

$$= e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2\tilde{U}}{\tilde{p}+1}} d\vec{x}_{(\tilde{p}+3)}^{2}, \text{ with } |\vec{x}_{\tilde{p}+3}| \equiv \rho^{-\frac{1}{\tilde{p}+1}}.$$

For regular $(\tilde{S} > 0)$ black branes, in the $r_0 \to 0$ limit we find $T \to 0$. In this extremal limit we get the standard metric for extremal p-branes

$$ds_{(d)}^{2} = e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - \frac{e^{-\frac{2U}{\tilde{p}+1}}}{\rho^{\frac{2}{\tilde{p}+1}}} \left[\frac{1}{\rho^{2}} \frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2} \right]$$

$$= e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2\tilde{U}}{\tilde{p}+1}} d\vec{x}_{(\tilde{p}+3)}^{2}, \quad \text{with} \quad |\vec{x}_{\tilde{p}+3}| \equiv \rho^{-\frac{1}{\tilde{p}+1}}.$$

The non-extremality parameter r_0 encodes a great deal of information.

For regular $(\tilde{S} > 0)$ black branes, in the $r_0 \to 0$ limit we find $T \to 0$. In this extremal limit we get the standard metric for extremal p-branes

$$ds_{(d)}^{2} = e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - \frac{e^{-\frac{2U}{\tilde{p}+1}}}{\rho^{\frac{2}{\tilde{p}+1}}} \left[\frac{1}{\rho^{2}} \frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2} \right]$$

$$= e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2\tilde{U}}{\tilde{p}+1}} d\vec{x}_{(\tilde{p}+3)}^{2}, \quad \text{with} \quad |\vec{x}_{\tilde{p}+3}| \equiv \rho^{-\frac{1}{\tilde{p}+1}}.$$

The non-extremality parameter r_0 encodes a great deal of information.

We now r_0 as a function of the physical parameters (mass, charges, moduli) only in a few cases:

For regular $(\tilde{S} > 0)$ black branes, in the $r_0 \to 0$ limit we find $T \to 0$. In this extremal limit we get the standard metric for extremal p-branes

$$ds_{(d)}^{2} = e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - \frac{e^{-\frac{2U}{\tilde{p}+1}}}{\rho^{\frac{2}{\tilde{p}+1}}} \left[\frac{1}{\rho^{2}} \frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2} \right]$$

$$= e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2\tilde{U}}{\tilde{p}+1}} d\vec{x}_{(\tilde{p}+3)}^{2}, \quad \text{with} \quad |\vec{x}_{\tilde{p}+3}| \equiv \rho^{-\frac{1}{\tilde{p}+1}}.$$

The non-extremality parameter r_0 encodes a great deal of information.

We now r_0 as a function of the physical parameters (mass, charges, moduli) only in a few cases:

 $r_0 = M$ for the Schwarzschild black hole.

For regular $(\tilde{S} > 0)$ black branes, in the $r_0 \to 0$ limit we find $T \to 0$. In this extremal limit we get the standard metric for extremal p-branes

$$ds_{(d)}^{2} = e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - \frac{e^{-\frac{2U}{\tilde{p}+1}}}{\rho^{\frac{2}{\tilde{p}+1}}} \left[\frac{1}{\rho^{2}} \frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2} \right]$$

$$= e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2\tilde{U}}{\tilde{p}+1}} d\vec{x}_{(\tilde{p}+3)}^{2}, \quad \text{with} \quad |\vec{x}_{\tilde{p}+3}| \equiv \rho^{-\frac{1}{\tilde{p}+1}}.$$

The non-extremality parameter r_0 encodes a great deal of information.

We now r_0 as a function of the physical parameters (mass, charges, moduli) only in a few cases:

 $r_0 = M$ for the Schwarzschild black hole.

$$r_0 = \sqrt{M^2 - (q^2 + p^2)}$$
 for the Reissner-Nordström black hole.

For regular $(\tilde{S} > 0)$ black branes, in the $r_0 \to 0$ limit we find $T \to 0$. In this extremal limit we get the standard metric for extremal p-branes

$$ds_{(d)}^{2} = e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - \frac{e^{-\frac{2U}{\tilde{p}+1}}}{\rho^{\frac{2}{\tilde{p}+1}}} \left[\frac{1}{\rho^{2}} \frac{d\rho^{2}}{(\tilde{p}+1)^{2}} + d\Omega_{(\tilde{p}+2)}^{2} \right]$$

$$= e^{\frac{2\tilde{U}}{p+1}} \left[dt^{2} - d\vec{y}_{(p)}^{2} \right] - e^{-\frac{2\tilde{U}}{\tilde{p}+1}} d\vec{x}_{(\tilde{p}+3)}^{2}, \quad \text{with} \quad |\vec{x}_{\tilde{p}+3}| \equiv \rho^{-\frac{1}{\tilde{p}+1}}.$$

The non-extremality parameter r_0 encodes a great deal of information.

We now r_0 as a function of the physical parameters (mass, charges, moduli) only in a few cases:

 $r_0 = M$ for the Schwarzschild black hole.

$$r_0 = \sqrt{M^2 - (q^2 + p^2)}$$
 for the Reissner-Nordström black hole.

What is r_0 in more general cases?

The effective action for $\tilde{U}(\rho)$, $\phi^i(\rho)$ is

$$I_{\text{eff}}[\tilde{U},\phi^i] = \int d\boldsymbol{\tau} \left\{ (\dot{\tilde{U}})^2 + \frac{(p+1)(\tilde{p}+2)}{d-2} \mathcal{G}_{ij} \dot{\phi}^i \dot{\phi}^j - e^{2\tilde{U}} \boldsymbol{V}_{\text{BB}} + \boldsymbol{r}_0^2 \right\} ,$$

where we have defined the black-brane potential

$$-V_{\mathrm{BB}}(\phi, \mathcal{Q}) \equiv -\frac{1}{2} \mathcal{Q}^M \mathcal{Q}^N \mathcal{M}_{MN}(\phi),$$

where

The effective action for $\tilde{U}(\rho)$, $\phi^i(\rho)$ is

$$I_{\text{eff}}[\tilde{U},\phi^i] = \int d\boldsymbol{\tau} \left\{ (\dot{\tilde{U}})^2 + \frac{(p+1)(\tilde{p}+2)}{d-2} \mathcal{G}_{ij} \dot{\phi}^i \dot{\phi}^j - e^{2\tilde{U}} \boldsymbol{V}_{\text{BB}} + \boldsymbol{r}_0^2 \right\} ,$$

where we have defined the black-brane potential

$$-V_{\mathrm{BB}}(\phi, \mathcal{Q}) \equiv -\frac{1}{2} \mathcal{Q}^M \mathcal{Q}^N \mathcal{M}_{MN}(\phi),$$

where

$$(\mathbf{Q}^{M}) = \begin{pmatrix} \mathbf{p}^{\Lambda} \\ \mathbf{q}_{\Lambda} \end{pmatrix} \qquad (\mathcal{M}_{MN}) \equiv \begin{pmatrix} (I - \boldsymbol{\xi}^{2}RI^{-1}R)_{\Lambda\Sigma} & \boldsymbol{\xi}^{2}(RI^{-1})_{\Lambda}^{\Sigma} \\ -(I^{-1}R)^{\Lambda}{}_{\Sigma} & (I^{-1})^{\Lambda\Sigma} \end{pmatrix},$$

are O(n, n) (resp. Sp(n, n)) vector and matrix when $\xi^2 = +1$ (resp. -1). (In general $R_{\Lambda\Sigma} = p^{\Lambda} = 0$ and the duality group is just SO(n)).

The effective action for $\tilde{U}(\rho), \phi^i(\rho)$ is

$$I_{\text{eff}}[\tilde{U},\phi^i] = \int d\boldsymbol{\tau} \left\{ (\dot{\tilde{U}})^2 + \frac{(\mathbf{p}+1)(\tilde{\mathbf{p}}+2)}{d-2} \mathcal{G}_{ij} \dot{\phi}^i \dot{\phi}^j - e^{2\tilde{U}} \boldsymbol{V}_{\text{BB}} + \boldsymbol{r}_0^2 \right\} ,$$

where we have defined the black-brane potential

$$-V_{\mathrm{BB}}(\phi, \mathcal{Q}) \equiv -\frac{1}{2} \mathcal{Q}^M \mathcal{Q}^N \mathcal{M}_{MN}(\phi),$$

where

$$(\mathcal{Q}^{M}) = \begin{pmatrix} p^{\Lambda} \\ q_{\Lambda} \end{pmatrix} \qquad (\mathcal{M}_{MN}) \equiv \begin{pmatrix} (I - \xi^{2}RI^{-1}R)_{\Lambda\Sigma} & \xi^{2}(RI^{-1})_{\Lambda}^{\Sigma} \\ -(I^{-1}R)^{\Lambda}{}_{\Sigma} & (I^{-1})^{\Lambda\Sigma} \end{pmatrix},$$

are O(n, n) (resp. Sp(n, n)) vector and matrix when $\xi^2 = +1$ (resp. -1). (In general $R_{\Lambda\Sigma} = p^{\Lambda} = 0$ and the duality group is just SO(n)).

Finding a p-black brane in d dimensions with charges p, q is equivalent to solving the above mechanical system for $\tilde{U}(\rho), \phi^i(\rho)$.

We can now use the equations of motion to derive general results for black branes, generalizing those obtained by FGK for 4-dimensional black holes.

We can now use the equations of motion to derive general results for black branes, generalizing those obtained by FGK for 4-dimensional black holes.

For extremal $(r_0 = 0)$ black branes:

We can now use the equations of motion to derive general results for black branes, generalizing those obtained by FGK for 4-dimensional black holes.

For extremal $(r_0 = 0)$ black branes:

The values of the scalars on the event horizon ϕ_h^i are critical points of the black-brane potential

$$\partial_i V_{\rm BB}|_{\phi_{\rm h}} = 0$$
.

We can now use the equations of motion to derive general results for black branes, generalizing those obtained by FGK for 4-dimensional black holes.

For extremal $(r_0 = 0)$ black branes:

The values of the scalars on the event horizon ϕ_h^i are critical points of the black-brane potential

$$\partial_i V_{\rm BB}|_{\phi_{\rm h}} = 0$$
.

The general solution (attractor) is

$$\phi_{\rm h}^i = \phi_{\rm h}^i(\phi_{\infty}, \mathbf{p}, \mathbf{q}), \qquad \phi_{\infty}^i \equiv \lim_{\mathbf{\rho} \to 0^+} \phi^i(\mathbf{p}),$$

but in many cases $\phi_h^i = \phi_h^i(\mathbf{p}, \mathbf{q})$ (true attractor)

We can now use the equations of motion to derive general results for black branes, generalizing those obtained by FGK for 4-dimensional black holes.

For extremal $(r_0 = 0)$ black branes:

The values of the scalars on the event horizon ϕ_h^i are critical points of the black-brane potential

$$\partial_i V_{\rm BB}|_{\phi_{\rm h}} = 0$$
.

The general solution (attractor) is

$$\phi_{\rm h}^i = \phi_{\rm h}^i(\phi_{\infty}, \mathbf{p}, \mathbf{q}), \qquad \phi_{\infty}^i \equiv \lim_{\mathbf{\rho} \to 0^+} \phi^i(\mathbf{p}),$$

but in many cases $\phi_h^i = \phi_h^i(\mathbf{p}, \mathbf{q})$ (true attractor)

The value of the black-brane potential at the critical points gives the entropy density:

$$ilde{S} = |V_{\mathrm{BB}}(\phi_{\mathrm{h}},q,p)|^{rac{ ilde{p}+2}{2(ilde{p}+1)}} = ilde{S}(p,q)\,,$$

which is amenable to a microscopic interpretation.

We can now use the equations of motion to derive general results for black branes, generalizing those obtained by FGK for 4-dimensional black holes.

For extremal $(r_0 = 0)$ black branes:

The values of the scalars on the event horizon ϕ_h^i are critical points of the black-brane potential

$$\partial_i V_{\rm BB}|_{\phi_{\rm h}} = 0$$
.

The general solution (attractor) is

$$\phi_{\rm h}^i = \phi_{\rm h}^i(\phi_{\infty}, \mathbf{p}, \mathbf{q}), \qquad \phi_{\infty}^i \equiv \lim_{\mathbf{\rho} \to 0^+} \phi^i(\mathbf{p}),$$

but in many cases $\phi_h^i = \phi_h^i(\mathbf{p}, \mathbf{q})$ (true attractor)

The value of the black-brane potential at the critical points gives the entropy density:

$$ilde{S} = |V_{\mathrm{BB}}(\phi_{\mathrm{h}},q,p)|^{rac{ ilde{p}+2}{2(ilde{p}+1)}} = ilde{S}(p,q)\,,$$

which is amenable to a microscopic interpretation.

The near-horizon geometry is always $AdS_{p+2} \times S^{\tilde{p}+2}$ with the AdS_{p+2} and $S^{\tilde{p}+2}$ radii both equal to $\tilde{S}^{1/2}$.

For $r_0 \neq 0$ one can prove the following extremality bound:

$${r_0}^2 = \frac{[(p+1)(\tilde{p}+2)T_p + p(\tilde{p}+1)r_0]^2}{(d-2)^2} + \frac{(p+1)(\tilde{p}+2)}{(d-2)} \mathcal{G}_{ij}(\phi_{\infty}) \Sigma^i \Sigma^j + V_{\text{bh}}(\phi_{\infty}, q, p),$$

For $r_0 \neq 0$ one can prove the following extremality bound:

$${r_0}^2 = \frac{[(p+1)(\tilde{p}+2)T_p + p(\tilde{p}+1)r_0]^2}{(d-2)^2} + \frac{(p+1)(\tilde{p}+2)}{(d-2)} \mathcal{G}_{ij}(\phi_{\infty}) \Sigma^i \Sigma^j + V_{\text{bh}}(\phi_{\infty}, q, p),$$

However, this expression is useless!

For $r_0 \neq 0$ one can prove the following extremality bound:

$${r_0}^2 = \frac{[(p+1)(\tilde{p}+2)T_p + p(\tilde{p}+1)r_0]^2}{(d-2)^2} + \frac{(p+1)(\tilde{p}+2)}{(d-2)} \mathcal{G}_{ij}(\phi_{\infty}) \Sigma^i \Sigma^j + V_{\text{bh}}(\phi_{\infty}, q, p),$$

However, this expression is useless!

According to the no-hair "theorem" only $\Sigma^i = \Sigma^i(T_p, \phi^i_\infty, q, p)$ (secondary hair) are allowed for regular black branes.

For $r_0 \neq 0$ one can prove the following extremality bound:

$${r_0}^2 = \frac{[(p+1)(\tilde{p}+2)T_p + p(\tilde{p}+1)r_0]^2}{(d-2)^2} + \frac{(p+1)(\tilde{p}+2)}{(d-2)} \mathcal{G}_{ij}(\phi_{\infty}) \Sigma^i \Sigma^j + V_{\text{bh}}(\phi_{\infty}, q, p),$$

However, this expression is useless!

According to the no-hair "theorem" only $\Sigma^i = \Sigma^i(T_p, \phi^i_\infty, q, p)$ (secondary hair) are allowed for regular black branes.

But the explicit form of these functions is unknown a priori.

For $r_0 \neq 0$ one can prove the following extremality bound:

$${r_0}^2 = \frac{[(p+1)(\tilde{p}+2)T_p + p(\tilde{p}+1)r_0]^2}{(d-2)^2} + \frac{(p+1)(\tilde{p}+2)}{(d-2)} \mathcal{G}_{ij}(\phi_{\infty}) \Sigma^i \Sigma^j + V_{\text{bh}}(\phi_{\infty}, q, p),$$

However, this expression is useless!

According to the no-hair "theorem" only $\Sigma^i = \Sigma^i(T_p, \phi^i_\infty, q, p)$ (secondary hair) are allowed for regular black branes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor mechanism for the scalars and the entropy is unrelated to the black brane potential.

For $r_0 \neq 0$ one can prove the following extremality bound:

$$r_0^2 = \frac{[(p+1)(\tilde{p}+2)T_p + p(\tilde{p}+1)r_0]^2}{(d-2)^2} + \frac{(p+1)(\tilde{p}+2)}{(d-2)} \mathcal{G}_{ij}(\phi_\infty) \Sigma^i \Sigma^j + V_{\text{bh}}(\phi_\infty, q, p),$$

However, this expression is useless!

According to the no-hair "theorem" only $\Sigma^i = \Sigma^i(T_p, \phi^i_\infty, q, p)$ (secondary hair) are allowed for regular black branes.

But the explicit form of these functions is unknown a priori.

Furthermore, in the general case, there is no attractor mechanism for the scalars and the entropy is unrelated to the black brane potential.

In the non-extremal case we need the complete explicit solution.

Our construction of non-extremal black brane solutions is based on the construction of the extremal supersymmetric ones. We review these first.

Our construction of non-extremal black brane solutions is based on the construction of the extremal supersymmetric ones. We review these first.

By analyzing the integrability conditions of the Killing spinor equations $\delta_{\epsilon} \phi^f = 0$ it is possible to determine the general form of all the supersymmetric solutions of any Supergravity theory (Tod (1983)), and then find the supersymmetric black hole solutions.

Our construction of non-extremal black brane solutions is based on the construction of the extremal supersymmetric ones. We review these first.

By analyzing the integrability conditions of the Killing spinor equations $\delta_{\epsilon} \phi^f = 0$ it is possible to determine the general form of all the supersymmetric solutions of any Supergravity theory (Tod (1983)), and then find the supersymmetric black hole solutions.

We are going to review the black holes of (ungauged) $\mathcal{N}=2$ d=4 Supergravity coupled to vector multiplets.

In order to find static extremal black holes one could try to integrate directly the equations of motion of the FGK formalism for the black-hole potential of $\mathcal{N}=2$ d=4 theories:

$$-V_{\rm bh} = |\mathcal{Z}|^2 + \mathcal{G}^{ij^*} \mathcal{D}_i \mathcal{Z} \mathcal{D}_{j^*} \mathcal{Z}^*,$$

where \mathcal{Z} is the central charge of the theory

$$\mathcal{Z}(\phi,p,q) \equiv \langle \mathcal{V}(\phi) \mid \mathcal{Q} \rangle \equiv \langle \left(egin{array}{c} \mathcal{L}^{\Lambda} \ \mathcal{M}_{\Lambda} \end{array}
ight) \mid \left(egin{array}{c} p^{\Lambda} \ q_{\Lambda} \end{array}
ight)
angle \equiv p^{\Lambda} \mathcal{M}_{\Lambda}(\phi) - q_{\Lambda} \mathcal{L}^{\Lambda}(\phi) \, .$$

In order to find static extremal black holes one could try to integrate directly the equations of motion of the FGK formalism for the black-hole potential of $\mathcal{N}=2$ d=4 theories:

$$-V_{\rm bh} = |\mathbf{Z}|^2 + \mathcal{G}^{ij^*} \mathcal{D}_i \mathbf{Z} \mathcal{D}_{j^*} \mathbf{Z}^*,$$

where \mathcal{Z} is the central charge of the theory

$$\mathcal{Z}(\phi,p,q) \equiv \langle \mathcal{V}(\phi) \mid \mathcal{Q} \rangle \equiv \langle \left(egin{array}{c} \mathcal{L}^{\Lambda} \ \mathcal{M}_{\Lambda} \end{array}
ight) \mid \left(egin{array}{c} p^{\Lambda} \ q_{\Lambda} \end{array}
ight)
angle \equiv p^{\Lambda} \mathcal{M}_{\Lambda}(\phi) - q_{\Lambda} \mathcal{L}^{\Lambda}(\phi) \, .$$

Direct integration is not easy but

In order to find static extremal black holes one could try to integrate directly the equations of motion of the FGK formalism for the black-hole potential of $\mathcal{N}=2$ d=4 theories:

$$-V_{\rm bh} = |\mathcal{Z}|^2 + \mathcal{G}^{ij^*} \mathcal{D}_i \mathcal{Z} \mathcal{D}_{j^*} \mathcal{Z}^*,$$

where \mathcal{Z} is the central charge of the theory

$$\mathcal{Z}(\phi,p,q) \equiv \langle \mathcal{V}(\phi) \mid \mathcal{Q} \rangle \equiv \langle \left(egin{array}{c} \mathcal{L}^{\Lambda} \ \mathcal{M}_{\Lambda} \end{array}
ight) \mid \left(egin{array}{c} p^{\Lambda} \ q_{\Lambda} \end{array}
ight)
angle \equiv p^{\Lambda} \mathcal{M}_{\Lambda}(\phi) - q_{\Lambda} \mathcal{L}^{\Lambda}(\phi) \, .$$

Direct integration is not easy but

There is a recipe to construct all the BPS ones.

(Behrndt, Lüst & Sabra (1997), Denef (2000), Lopes Cardoso, de Wit, Kappeli & Mohaupt (2000), Meessen, O. (2006))

1. For some complex X, define the Kähler-neutral, real, symplectic vectors \mathcal{R} and \mathcal{I} $\mathcal{R} + i\mathcal{I} \equiv \mathcal{V}/X.$

- 1. For some complex X, define the Kähler-neutral, real, symplectic vectors \mathcal{R} and \mathcal{I} $\mathcal{R} + i\mathcal{I} \equiv \mathcal{V}/X.$
- **2.** The components of \mathcal{I} are given by a symplectic vector real functions harmonic in the 3-dimensional transverse space. For single black holes $(\tau \equiv -\rho)$:

$$\left(egin{array}{c} \mathcal{I}^{\Lambda} \ \mathcal{I}_{\Lambda} \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}(au) \ H_{\Lambda}(au) \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}_{\infty} - rac{1}{\sqrt{2}}p^{\Lambda} au \ H_{\Lambda\infty} - rac{1}{\sqrt{2}}q_{\Lambda} au \end{array}
ight) \, ,$$

with no sources of NUT charge, i.e. $\langle H_{\infty} | \mathcal{Q} \rangle = H^{\Lambda}_{\infty} q_{\Lambda} - H_{\Lambda \infty} p^{\Lambda} = 0$

- 1. For some complex X, define the Kähler-neutral, real, symplectic vectors \mathcal{R} and \mathcal{I} $\mathcal{R} + i\mathcal{I} \equiv \mathcal{V}/X.$
- **2.** The components of \mathcal{I} are given by a symplectic vector real functions harmonic in the 3-dimensional transverse space. For single black holes $(\tau \equiv -\rho)$:

$$\left(egin{array}{c} \mathcal{I}^{\Lambda} \ \mathcal{I}_{\Lambda} \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}(au) \ H_{\Lambda}(au) \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}_{\infty} - rac{1}{\sqrt{2}}p^{\Lambda} au \ H_{\Lambda\infty} - rac{1}{\sqrt{2}}q_{\Lambda} au \end{array}
ight) \, ,$$

with no sources of NUT charge, i.e. $\langle H_{\infty} | \mathcal{Q} \rangle = H^{\Lambda}_{\infty} q_{\Lambda} - H_{\Lambda \infty} p^{\Lambda} = 0$

3. \mathcal{R} is to be found from \mathcal{I} by solving the *stabilization equations*.

- 1. For some complex X, define the Kähler-neutral, real, symplectic vectors \mathcal{R} and \mathcal{I} $\mathcal{R} + i\mathcal{I} \equiv \mathcal{V}/X.$
- **2.** The components of \mathcal{I} are given by a symplectic vector real functions harmonic in the 3-dimensional transverse space. For single black holes $(\tau \equiv -\rho)$:

$$\left(egin{array}{c} \mathcal{I}^{\Lambda} \ \mathcal{I}_{\Lambda} \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}(au) \ H_{\Lambda}(au) \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}_{\infty} - rac{1}{\sqrt{2}}p^{\Lambda} au \ H_{\Lambda\infty} - rac{1}{\sqrt{2}}q_{\Lambda} au \end{array}
ight) \, ,$$

with no sources of NUT charge, i.e. $\langle H_{\infty} | \mathcal{Q} \rangle = H^{\Lambda}_{\infty} q_{\Lambda} - H_{\Lambda \infty} p^{\Lambda} = 0$

- **3.** \mathcal{R} is to be found from \mathcal{I} by solving the *stabilization equations*.
- **4.** The scalars Z^i are given by the quotients $Z^i = \frac{\mathcal{V}^i/X}{\mathcal{V}^0/X} = \frac{\mathcal{R}^i + i\mathcal{I}^i}{\mathcal{I}^0 + i\mathcal{I}^0}$.

- 1. For some complex X, define the Kähler-neutral, real, symplectic vectors \mathcal{R} and \mathcal{I} $\mathcal{R} + i\mathcal{I} \equiv \mathcal{V}/X.$
- **2.** The components of \mathcal{I} are given by a symplectic vector real functions harmonic in the 3-dimensional transverse space. For single black holes $(\tau \equiv -\rho)$:

$$\left(egin{array}{c} \mathcal{I}^{\Lambda} \ \mathcal{I}_{\Lambda} \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}(au) \ H_{\Lambda}(au) \end{array}
ight) = \left(egin{array}{c} H^{\Lambda}_{\infty} - rac{1}{\sqrt{2}}p^{\Lambda} au \ H_{\Lambda\infty} - rac{1}{\sqrt{2}}q_{\Lambda} au \end{array}
ight) \, ,$$

with no sources of NUT charge, i.e. $\langle H_{\infty} | \mathcal{Q} \rangle = H^{\Lambda}_{\infty} q_{\Lambda} - H_{\Lambda \infty} p^{\Lambda} = 0$

- **3.** \mathcal{R} is to be found from \mathcal{I} by solving the *stabilization equations*.
- **4.** The scalars Z^i are given by the quotients $Z^i = \frac{\mathcal{V}^i/X}{\mathcal{V}^0/X} = \frac{\mathcal{R}^i + i\mathcal{I}^i}{\mathcal{I}^0 + i\mathcal{I}^0}$.
- 5. The function $U(\tau)$ of the FGK formalism is given by

$$e^{-2U} = \langle \mathcal{R} \mid \mathcal{I} \rangle = \mathcal{I}^{\Lambda} \mathcal{R}_{\Lambda} - \mathcal{I}_{\Lambda} \mathcal{R}^{\Lambda}$$
.

The asymptotic values of the harmonic functions, H_{∞}^{M} satisfying the condition $N = \langle H_{\infty} | \mathcal{Q} \rangle = 0$ have the general form

$$H^{M}_{\infty} = \pm \sqrt{2} \operatorname{Sm} \left(\mathcal{V}_{\infty}^{M} \frac{\mathcal{Z}_{\infty}^{*}}{|\mathcal{Z}_{\infty}|} \right), \quad \mathcal{Z}_{\infty} \equiv \mathcal{Z}(\phi_{\infty}, p, q), \quad \mathcal{V}_{\infty}^{M} \equiv \mathcal{V}^{M}(\phi_{\infty}).$$

The asymptotic values of the harmonic functions, H_{∞}^{M} satisfying the condition $N = \langle H_{\infty} | \mathcal{Q} \rangle = 0$ have the general form

$$H^{M}_{\infty} = \pm \sqrt{2} \operatorname{Sm} \left(\mathcal{V}_{\infty}^{M} \frac{\mathcal{Z}_{\infty}^{*}}{|\mathcal{Z}_{\infty}|} \right), \quad \mathcal{Z}_{\infty} \equiv \mathcal{Z}(\phi_{\infty}, p, q), \quad \mathcal{V}_{\infty}^{M} \equiv \mathcal{V}^{M}(\phi_{\infty}).$$

Then, to construct the most general static BPS solution of a given theory using this recipe one just has to solve stabilization equations, which can prove to be very difficult.

November 13th 2012

The asymptotic values of the harmonic functions, H_{∞}^{M} satisfying the condition $N = \langle H_{\infty} | \mathcal{Q} \rangle = 0$ have the general form

$$H^{M}_{\infty} = \pm \sqrt{2} \operatorname{Sm} \left(\mathcal{V}_{\infty}^{M} \frac{\mathcal{Z}_{\infty}^{*}}{|\mathcal{Z}_{\infty}|} \right), \quad \mathcal{Z}_{\infty} \equiv \mathcal{Z}(\phi_{\infty}, p, q), \quad \mathcal{V}_{\infty}^{M} \equiv \mathcal{V}^{M}(\phi_{\infty}).$$

Then, to construct the most general static BPS solution of a given theory using this recipe one just has to solve stabilization equations, which can prove to be very difficult.

One can check in the explicit solutions all the properties predicted by the FGK formalism.

The asymptotic values of the harmonic functions, H_{∞}^{M} satisfying the condition $N = \langle H_{\infty} | \mathcal{Q} \rangle = 0$ have the general form

$$H^{M}_{\infty} = \pm \sqrt{2} \operatorname{Sm} \left(\mathcal{V}_{\infty}^{M} \frac{\mathcal{Z}_{\infty}^{*}}{|\mathcal{Z}_{\infty}|} \right), \quad \mathcal{Z}_{\infty} \equiv \mathcal{Z}(\phi_{\infty}, p, q), \quad \mathcal{V}_{\infty}^{M} \equiv \mathcal{V}^{M}(\phi_{\infty}).$$

Then, to construct the most general static BPS solution of a given theory using this recipe one just has to solve stabilization equations, which can prove to be very difficult.

One can check in the explicit solutions all the properties predicted by the FGK formalism.

In this case the complete explicit solutions do not give much more information than the attractors, but they are going to be used as starting point for the construction of non-extremal solutions.

The following prescription to deform the extremal supersymmetric solutions of $\mathcal{N}=2$ d=4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):

The following prescription to deform the extremal supersymmetric solutions of $\mathcal{N}=2$ d=4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):

If the supersymmetric solution is given by

$$U(\tau) = U_{\rm e}[\mathbf{H}(\tau)], \qquad Z^i(\tau) = Z_{\rm e}^i[\mathbf{H}(\tau)],$$

where $U_{\rm e}$ and $Z_{\rm e}^i$ depend on harmonic functions $H^M(\tau) = H^M_{\infty} - \frac{1}{\sqrt{2}} \mathcal{Q}^M \tau$ given by the standard prescription for supersymmetric black holes,

The following prescription to deform the extremal supersymmetric solutions of $\mathcal{N}=2$ d=4 Supergravity theories has been given in Galli, O., Perz & Shahbazi (2011):

If the supersymmetric solution is given by

$$U(\tau) = U_{\rm e}[\mathbf{H}(\tau)], \qquad Z^i(\tau) = Z_{\rm e}^i[\mathbf{H}(\tau)],$$

where $U_{\rm e}$ and $Z_{\rm e}^i$ depend on harmonic functions $H^M(\tau) = H^M_{\infty} - \frac{1}{\sqrt{2}} \mathcal{Q}^M \tau$ given by the standard prescription for supersymmetric black holes,

Then, the non-extremal solution is given by

$$U(\boldsymbol{\tau}) = U_{\mathrm{e}}[\boldsymbol{H}(\boldsymbol{\tau})] + r_{0}\boldsymbol{\tau}, \qquad Z^{i}(\boldsymbol{\tau}) = Z^{i}_{\mathrm{e}}[\boldsymbol{H}(\boldsymbol{\tau})],$$

where now the functions H are assumed to be of the form

$$H^M = a^M + b^M e^{2r_0\tau},$$

and the constants a^M, b^M have to be determined by explicitly solving the e.o.m.

We are assuming that all the black hole solutions have the same dependence on some functions $H^M(\tau)$, which are harmonic in the extremal case and something else in the non-extremal cases.

- We are assuming that all the black hole solutions have the same dependence on some functions $H^M(\tau)$, which are harmonic in the extremal case and something else in the non-extremal cases.
- Although there are some contrary claims in the literature, it is hard to imagine how it cannot be true if the most general family of solutions has to be duality-invariant and has to have the right extremal limits.

- We are assuming that all the black hole solutions have the same dependence on some functions $H^M(\tau)$, which are harmonic in the extremal case and something else in the non-extremal cases.
- Although there are some contrary claims in the literature, it is hard to imagine how it cannot be true if the most general family of solutions has to be duality-invariant and has to have the right extremal limits.
- Experience shows that the hypothesis is true even in more general supersymmetric cases (non-Abelian black holes etc.).

- We are assuming that all the black hole solutions have the same dependence on some functions $H^M(\tau)$, which are harmonic in the extremal case and something else in the non-extremal cases.
- Although there are some contrary claims in the literature, it is hard to imagine how it cannot be true if the most general family of solutions has to be duality-invariant and has to have the right extremal limits.
- Experience shows that the hypothesis is true even in more general supersymmetric cases (non-Abelian black holes etc.).

It has been shown that it is possible to rewrite the FGK effective action using the $H^M(\tau)$ as variables that replace $U(\tau)$ and $\phi^i(\tau)$ (Mohaupt & Waite arXiv:0906.3451, Mohaupt & Vaughan arXiv:1006.3439 & arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332). This confirms our hypothesis.

- We are assuming that all the black hole solutions have the same dependence on some functions $H^M(\tau)$, which are harmonic in the extremal case and something else in the non-extremal cases.
- Although there are some contrary claims in the literature, it is hard to imagine how it cannot be true if the most general family of solutions has to be duality-invariant and has to have the right extremal limits.
- Experience shows that the hypothesis is true even in more general supersymmetric cases (non-Abelian black holes etc.).

It has been shown that it is possible to rewrite the FGK effective action using the $H^M(\tau)$ as variables that replace $U(\tau)$ and $\phi^i(\tau)$ (Mohaupt & Waite arXiv:0906.3451, Mohaupt & Vaughan arXiv:1006.3439 & arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332). This confirms our hypothesis.

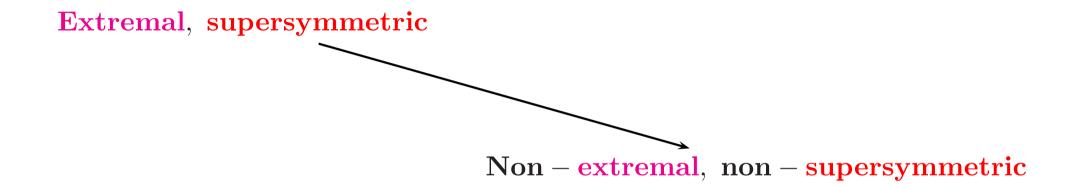
More on this, later.

We are going to give an explicit example, showing that one can recover both the extremal supersymmetric and non-supersymmetric black holes of a model from the general non-extremal solution found with this prescription.

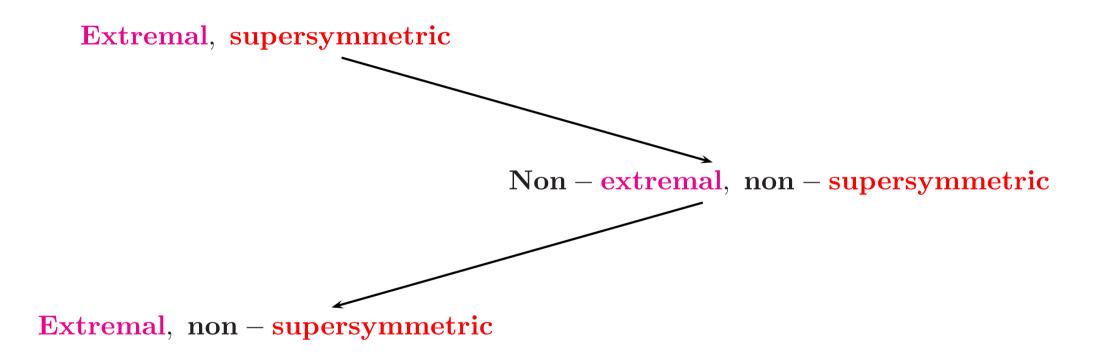
We are going to give an explicit example, showing that one can recover both the extremal supersymmetric and non-supersymmetric black holes of a model from the general non-extremal solution found with this prescription.

Extremal, supersymmetric

We are going to give an explicit example, showing that one can recover both the extremal supersymmetric and non-supersymmetric black holes of a model from the general non-extremal solution found with this prescription.



We are going to give an explicit example, showing that one can recover both the extremal supersymmetric and non-supersymmetric black holes of a model from the general non-extremal solution found with this prescription.



This model has n scalars Z^i that parametrize the coset space SU(1,n)/SU(n). We add for convenience $Z^0 \equiv 1$, so we have

$$(Z^{\Lambda}) \equiv (1, Z^i),$$
 $(Z_{\Lambda}) \equiv (1, Z_i) = (1, -Z^i),$ $(\eta_{\Lambda \Sigma}) = \operatorname{diag}(+ - \cdots -).$

5 – A complete example: $\overline{\mathbb{CP}}^n$ model

This model has n scalars Z^i that parametrize the coset space SU(1,n)/SU(n). We add for convenience $Z^0 \equiv 1$, so we have

$$(Z^{\Lambda}) \equiv (1, Z^i), \qquad (Z_{\Lambda}) \equiv (1, Z_i) = (1, -Z^i), \qquad (\eta_{\Lambda \Sigma}) = \operatorname{diag}(+ - \cdots -).$$

The Kähler potential is $\mathcal{K} = -\log(Z^{*\Lambda}Z_{\Lambda})$,

This model has n scalars Z^i that parametrize the coset space SU(1,n)/SU(n). We add for convenience $Z^0 \equiv 1$, so we have

$$(Z^{\Lambda}) \equiv (1, Z^i), \qquad (Z_{\Lambda}) \equiv (1, Z_i) = (1, -Z^i), \qquad (\eta_{\Lambda \Sigma}) = \operatorname{diag}(+ - \cdots -).$$

The Kähler potential is $\mathcal{K} = -\log(Z^{*\Lambda}Z_{\Lambda})$,

and the Kähler metric is $\mathcal{G}_{ij^*} = -e^{\mathcal{K}} \left(\eta_{ij^*} - e^{\mathcal{K}} Z_i^* Z_{j^*} \right)$.

This model has n scalars Z^i that parametrize the coset space SU(1,n)/SU(n). We add for convenience $Z^0 \equiv 1$, so we have

$$(Z^{\Lambda}) \equiv (1, Z^i),$$
 $(Z_{\Lambda}) \equiv (1, Z_i) = (1, -Z^i),$ $(\eta_{\Lambda \Sigma}) = \operatorname{diag}(+ - \cdots -).$

The Kähler potential is $\mathcal{K} = -\log(Z^{*\Lambda}Z_{\Lambda})$,

and the Kähler metric is $\mathcal{G}_{ij^*} = -e^{\kappa} \left(\eta_{ij^*} - e^{\kappa} Z_i^* Z_{j^*} \right)$.

The covariantly holomorphic symplectic section reads $\mathcal{V}=e^{\mathcal{K}/2}\left(\begin{array}{c}Z^{1}\\\\-\frac{i}{2}Z_{\Lambda}\end{array}\right)$.

This model has n scalars Z^i that parametrize the coset space SU(1,n)/SU(n). We add for convenience $Z^0 \equiv 1$, so we have

$$(Z^{\Lambda}) \equiv (1, Z^i),$$
 $(Z_{\Lambda}) \equiv (1, Z_i) = (1, -Z^i),$ $(\eta_{\Lambda \Sigma}) = \operatorname{diag}(+ - \cdots -).$

The Kähler potential is $\mathcal{K} = -\log(Z^{*\Lambda}Z_{\Lambda})$,

and the Kähler metric is $\mathcal{G}_{ij^*} = -e^{\kappa} \left(\eta_{ij^*} - e^{\kappa} Z_i^* Z_{j^*} \right)$.

The covariantly holomorphic symplectic section reads $\mathcal{V}=e^{\mathcal{K}/2}\left(\begin{array}{c}Z^{\prime\prime}\\\\-\frac{i}{2}Z_{\Lambda}\end{array}\right)$.

It is convenient to define the complex charge combinations $\Gamma_{\Lambda} \equiv q_{\Lambda} + \frac{i}{2}\eta_{\Lambda\Sigma} p^{\Sigma}$.

In this model the central charge \mathcal{Z} , its holomorphic Kähler -covariant derivative and the black-hole potential are

$$\mathcal{Z} = e^{\mathcal{K}/2} Z^{\Lambda} \Gamma_{\Lambda} ,$$

$$\mathcal{D}_{i} \mathcal{Z} = e^{3\mathcal{K}/2} Z_{i}^{*} Z^{\Lambda} \Gamma_{\Lambda} - e^{\mathcal{K}/2} \Gamma_{i} ,$$

$$|\tilde{\mathcal{Z}}|^{2} \equiv \mathcal{G}^{ij^{*}} \mathcal{D}_{i} \mathcal{Z} \mathcal{D}_{j^{*}} \mathcal{Z}^{*} = e^{\mathcal{K}} |Z^{\Lambda} \Gamma_{\Lambda}|^{2} - \Gamma^{*\Lambda} \Gamma_{\Lambda} ,$$

$$-V_{\text{bh}} = |\mathcal{Z}|^{2} + |\tilde{\mathcal{Z}}|^{2} .$$

In this model the central charge \mathcal{Z} , its holomorphic Kähler -covariant derivative and the black-hole potential are

$$\mathcal{Z} = e^{\mathcal{K}/2} Z^{\Lambda} \Gamma_{\Lambda} ,$$

$$\mathcal{D}_{i} \mathcal{Z} = e^{3\mathcal{K}/2} Z_{i}^{*} Z^{\Lambda} \Gamma_{\Lambda} - e^{\mathcal{K}/2} \Gamma_{i} ,$$

$$|\tilde{\mathcal{Z}}|^{2} \equiv \mathcal{G}^{ij^{*}} \mathcal{D}_{i} \mathcal{Z} \mathcal{D}_{j^{*}} \mathcal{Z}^{*} = e^{\mathcal{K}} |Z^{\Lambda} \Gamma_{\Lambda}|^{2} - \Gamma^{*\Lambda} \Gamma_{\Lambda} ,$$

$$-V_{\text{bh}} = |\mathcal{Z}|^{2} + |\tilde{\mathcal{Z}}|^{2} .$$

In $\mathcal{N}=2$ theories, in the extremal case $|\mathcal{Z}|$ plays the rôle of superpotential W. $|\mathcal{Z}|$ plays here the rôle of "fake" superpotential.

The extremal case

The extremal case

We start by calculating the critical points of the black-hole potential:

$$\mathcal{G}^{ij^*} \partial_{j^*} V_{\text{bh}} = 2 \, Z^{\Lambda} \Gamma_{\Lambda} \left(\Gamma^{*i} - \Gamma^{*0} Z^i \right) = 0 \quad \Rightarrow \begin{cases} Z^{i}{}_{\text{h}} = \Gamma^{*i} / \Gamma^{*0} \,, \\ \text{(isolated, supersymmetric attractor)} \\ Z^{\Lambda}{}_{\text{h}} \Gamma_{\Lambda} = 0 \,, \\ \text{(hypersurface of non - supersymmetric attractors)} \end{cases}$$

The extremal case

We start by calculating the critical points of the black-hole potential:

$$\mathcal{G}^{ij^*} \partial_{j^*} V_{\mathrm{bh}} = 2 \, Z^{\Lambda} \Gamma_{\Lambda} \left(\Gamma^{*i} - \Gamma^{*0} Z^i \right) = 0 \quad \Rightarrow \begin{cases} Z^{i}{}_{\mathrm{h}} = \Gamma^{*i} / \Gamma^{*0} \,, \\ \text{(isolated, supersymmetric attractor)} \\ Z^{\Lambda}{}_{\mathrm{h}} \Gamma_{\Lambda} = 0 \,, \\ \text{(hypersurface of non - supersymmetric attractors)} \end{cases}$$

Attractor	$e^{-\mathcal{K}_{\mathrm{h}}}$	$ {\cal Z}_{ m h} ^2$	$ ilde{oldsymbol{\mathcal{Z}}}_{ m h} ^2$	$-V_{ m bhh}$	M
$Z_{ m h}^{i{ m susy}} = \Gamma^{sti}/\Gamma^{st0}$	$\Gamma^{*\Lambda}\Gamma_{\Lambda} > 0$	$\Gamma^{st\Lambda}\Gamma_{\Lambda}$	0	$\Gamma^{*\Lambda}\Gamma_{\Lambda}$	$ \mathcal{Z}_{\infty} $
$Z_{\rm h}^{\Lambda \rm nsusy} \Gamma_{\Lambda} = 0$	$-\Gamma^{*\Lambda}\Gamma_{\Lambda} > 0$	0	$-\Gamma^{st\Lambda}\Gamma_{\Lambda}$	$-\Gamma^{st\Lambda}\Gamma_{\Lambda}$	$ ilde{\mathcal{Z}}_{\infty} $

Next, we construct the supersymmetric (extremal) solutions, associated to the supersymmetric attractor .

Next, we construct the supersymmetric (extremal) solutions, associated to the supersymmetric attractor.

First we solve the stabilization equations:

$$\mathcal{R}_{\Lambda} = \frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Sigma}, \qquad \mathcal{R}^{\Lambda} = -2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Sigma}.$$

Next, we construct the supersymmetric (extremal) solutions, associated to the supersymmetric attractor.

First we solve the stabilization equations:

$$\mathcal{R}_{\Lambda} = \frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Sigma}, \qquad \mathcal{R}^{\Lambda} = -2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Sigma}.$$

Then, the solutions are completely determined by the harmonic functions $H^M(\tau) = H^M - \frac{1}{\sqrt{2}} \mathcal{Q}^M \tau$ with

$$H^{M}_{\infty} = \pm \sqrt{2} \Im \left(\mathcal{V}_{\infty}^{M} \frac{\mathcal{Z}_{\infty}^{*}}{|\mathcal{Z}_{\infty}|} \right).$$

Next, we construct the supersymmetric (extremal) solutions, associated to the supersymmetric attractor.

First we solve the stabilization equations:

$$\mathcal{R}_{\Lambda} = \frac{1}{2} \eta_{\Lambda \Sigma} \mathcal{I}^{\Sigma}, \qquad \mathcal{R}^{\Lambda} = -2 \eta^{\Lambda \Sigma} \mathcal{I}_{\Sigma}.$$

Then, the solutions are completely determined by the harmonic functions $H^{M}(\tau) = H^{M} - \frac{1}{\sqrt{2}} \mathcal{Q}^{M} \tau$ with

$$H^{M}_{\infty} = \pm \sqrt{2} \Im \left(\mathcal{V}_{\infty}^{M} \frac{\mathcal{Z}_{\infty}^{*}}{|\mathcal{Z}_{\infty}|} \right).$$

Defining, for convenience

$$\mathcal{H}_{\Lambda} \equiv H_{\Lambda} + \frac{i}{2} \eta_{\Lambda \Sigma} H^{\Sigma} \equiv e^{\mathcal{K}_{\infty}/2} \frac{\mathcal{Z}_{\infty}}{|\mathcal{Z}_{\infty}|} Z_{\Lambda \infty}^* - \frac{1}{\sqrt{2}} \Gamma_{\Lambda} \tau$$

the metric function and the scalars are

$$e^{-2U} = 2\mathcal{H}^{*\Lambda}\mathcal{H}_{\Lambda}, \qquad Z^{i} = \frac{\mathcal{R}^{i} + i\mathcal{I}^{i}}{\mathcal{R}^{0} + i\mathcal{I}^{0}} = \frac{\mathcal{H}^{*i}}{\mathcal{H}^{*0}}.$$

Non-extremal solutions

Non-extremal solutions

Our Ansatz for the non-extremal solution is

$$e^{-2U} = e^{-2[U_{e}(\mathcal{H}) + r_{0}\tau]}$$

$$e^{-2U_{\rm e}(\mathcal{H})} = 2\mathcal{H}^{*\Lambda}\mathcal{H}_{\Lambda}$$
.

$$e^{-2U} = e^{-2[U_e(\mathcal{H}) + r_0 \tau]}, \qquad e^{-2U_e(\mathcal{H})} = 2\mathcal{H}^{*\Lambda}\mathcal{H}_{\Lambda}, \qquad Z^i = Z^i_e(\mathcal{H}) = \mathcal{H}^{*i}/\mathcal{H}^{*0},$$

where
$$\mathcal{H}^{\Lambda} \equiv A^{\Lambda} + B^{\Lambda} e^{2r_0 \tau}$$
, $\Lambda = 0, \dots, n$.

Non-extremal solutions

Our Ansatz for the non-extremal solution is

$$e^{-2U} = e^{-2[U_e(\mathcal{H}) + r_0 \tau]}, \qquad e^{-2U_e(\mathcal{H})} = 2\mathcal{H}^{*\Lambda}\mathcal{H}_{\Lambda}, \qquad Z^i = Z^i_e(\mathcal{H}) = \mathcal{H}^{*i}/\mathcal{H}^{*0},$$

where $\mathcal{H}^{\Lambda} \equiv A^{\Lambda} + B^{\Lambda} e^{2r_0 \tau}$, $\Lambda = 0, \dots, n$.

The 2(n+1) complex constants A_{Λ}, B_{Λ} are found by imposing the e.o.m. $(f \equiv e^{r_0 \tau})$

$$\ddot{U}_{e} - (\dot{U}_{e})^{2} - \mathcal{G}_{ij^{*}} \dot{Z}^{i} \dot{Z}^{*j^{*}} = 0,$$

$$(2r_0)^2 \left[f\ddot{U}_e + \dot{U}_e \right] + e^{2U_e} V_{bh} = 0,$$

$$(2\mathbf{r_0})^2 \left[f \left(\ddot{Z}^i + \mathcal{G}^{ij^*} \partial_k \mathcal{G}_{lj^*} \dot{Z}^k \dot{Z}^l \right) + \dot{Z}^i \right] + e^{2U_e} \mathcal{G}^{ij^*} \partial_{j^*} \mathbf{V_{bh}} = 0.$$

The e.o.m. are solved if the constants satisfy the **algebraic** equations

$$\Im (B^{*\Lambda}A_{\Lambda}) = 0,$$

$$A^{*\Lambda}A^{\Sigma}\xi_{\Lambda\Sigma} = 0,$$

$$(A^{*\Lambda}B^{\Sigma} + B^{*\Lambda}A^{\Sigma})\xi_{\Lambda\Sigma} = 0,$$

$$B^{*\Lambda}B^{\Sigma}\xi_{\Lambda\Sigma} = 0,$$

$$(2r_{0})^{2}(B_{i}^{*}A_{0}^{*} - B_{0}^{*}A_{i}^{*})A^{*\Lambda}A_{\Lambda} + (\Gamma_{i}^{*}A_{0}^{*} - \Gamma_{0}^{*}A_{i}^{*})A^{*\Lambda}\Gamma_{\Lambda} = 0,$$

$$-(2r_{0})^{2}(B_{i}^{*}A_{0}^{*} - B_{0}^{*}A_{i}^{*})B^{*\Lambda}B_{\Lambda} + (\Gamma_{i}^{*}B_{0}^{*} - \Gamma_{0}^{*}B_{i}^{*})B^{*\Lambda}\Gamma_{\Lambda} = 0,$$

$$(\Gamma_{i}^{*}A_{0}^{*} - \Gamma_{0}^{*}A_{i}^{*})A^{*\Lambda}\Gamma_{\Lambda} + (\Gamma_{i}^{*}B_{0}^{*} - \Gamma_{0}^{*}B_{i}^{*})B^{*\Lambda}\Gamma_{\Lambda} = 0,$$
where $\xi_{\Lambda\Sigma} \equiv 2 \left(\Gamma_{\Lambda}\Gamma_{\Sigma}^{*} + 8r_{0}^{2}A_{\Lambda}B_{\Sigma}^{*}\right) - \eta_{\Lambda\Sigma} \left(\Gamma^{\Omega}\Gamma_{\Omega}^{*} + 8r_{0}^{2}A^{\Omega}B_{\Omega}^{*}\right).$

The e.o.m. are solved if the constants satisfy the **algebraic** equations

$$\Im (B^{*\Lambda}A_{\Lambda}) = 0,$$

$$A^{*\Lambda}A^{\Sigma}\xi_{\Lambda\Sigma} = 0,$$

$$(A^{*\Lambda}B^{\Sigma} + B^{*\Lambda}A^{\Sigma})\xi_{\Lambda\Sigma} = 0,$$

$$B^{*\Lambda}B^{\Sigma}\xi_{\Lambda\Sigma} = 0,$$

$$(2r_{0})^{2}(B_{i}^{*}A_{0}^{*} - B_{0}^{*}A_{i}^{*})A^{*\Lambda}A_{\Lambda} + (\Gamma_{i}^{*}A_{0}^{*} - \Gamma_{0}^{*}A_{i}^{*})A^{*\Lambda}\Gamma_{\Lambda} = 0,$$

$$-(2r_{0})^{2}(B_{i}^{*}A_{0}^{*} - B_{0}^{*}A_{i}^{*})B^{*\Lambda}B_{\Lambda} + (\Gamma_{i}^{*}B_{0}^{*} - \Gamma_{0}^{*}B_{i}^{*})B^{*\Lambda}\Gamma_{\Lambda} = 0,$$

$$(\Gamma_{i}^{*}A_{0}^{*} - \Gamma_{0}^{*}A_{i}^{*})A^{*\Lambda}\Gamma_{\Lambda} + (\Gamma_{i}^{*}B_{0}^{*} - \Gamma_{0}^{*}B_{i}^{*})B^{*\Lambda}\Gamma_{\Lambda} = 0,$$
where $\xi_{\Lambda\Sigma} \equiv 2 \left(\Gamma_{\Lambda}\Gamma_{\Sigma}^{*} + 8r_{0}^{2}A_{\Lambda}B_{\Sigma}^{*}\right) - \eta_{\Lambda\Sigma} \left(\Gamma^{\Omega}\Gamma_{\Omega}^{*} + 8r_{0}^{2}A^{\Omega}B_{\Omega}^{*}\right).$

No differential equations remain to be solved!

Furthermore, we need to normalize the metric at spatial infinity and relate A_{Λ}, B_{Λ} to the physical parameters:

$$2(A^{*\Lambda} + B^{*\Lambda})(A_{\Lambda} + B_{\Lambda}) = 1,$$

$$4\Re[B^{*\Lambda}(A_{\Lambda} + B_{\Lambda})] = 1 - M/r_{0},$$

$$\frac{A^{*i} + B^{*i}}{A^{*0} + B^{*0}} = Z^{i}_{\infty}.$$

Furthermore, we need to normalize the metric at spatial infinity and relate A_{Λ}, B_{Λ} to the physical parameters:

$$2(A^{*\Lambda} + B^{*\Lambda})(A_{\Lambda} + B_{\Lambda}) = 1,$$

$$4\Re[B^{*\Lambda}(A_{\Lambda} + B_{\Lambda})] = 1 - M/r_{0},$$

$$\frac{A^{*i} + B^{*i}}{A^{*0} + B^{*0}} = Z^{i}_{\infty}.$$

The solution can be found and it is

$$A_{\Lambda} = \pm \frac{e^{\mathcal{K}_{\infty}/2}}{2\sqrt{2}} \left\{ Z_{\Lambda \infty}^{*} \left[1 + \frac{(M^{2} - e^{\mathcal{K}_{\infty}} | Z_{\infty}^{*\Sigma} \Gamma_{\Sigma}^{*}|^{2})}{Mr_{0}} \right] + \frac{\Gamma_{\Lambda} Z^{*\Sigma}_{\infty} \Gamma_{\Sigma}^{*}}{Mr_{0}} \right\},$$

$$B_{\Lambda} = \pm \frac{e^{\mathcal{K}_{\infty}/2}}{2\sqrt{2}} \left\{ Z_{\Lambda \infty}^{*} \left[1 - \frac{(M^{2} - e^{\mathcal{K}_{\infty}} | Z_{\infty}^{*\Sigma} \Gamma_{\Sigma}^{*}|^{2})}{Mr_{0}} \right] - \frac{\Gamma_{\Lambda} Z_{\infty}^{*\Sigma} \Gamma_{\Sigma}^{*}}{Mr_{0}} \right\},$$

Furthermore, we need to normalize the metric at spatial infinity and relate A_{Λ} , B_{Λ} to the physical parameters:

$$2(A^{*\Lambda} + B^{*\Lambda})(A_{\Lambda} + B_{\Lambda}) = 1,$$

$$4\Re[B^{*\Lambda}(A_{\Lambda} + B_{\Lambda})] = 1 - M/r_{0},$$

$$\frac{A^{*i} + B^{*i}}{A^{*0} + B^{*0}} = Z^{i}_{\infty}.$$

The solution can be found and it is

$$A_{\Lambda} = \pm \frac{e^{\mathcal{K}_{\infty}/2}}{2\sqrt{2}} \left\{ Z_{\Lambda \infty}^{*} \left[1 + \frac{(M^{2} - e^{\mathcal{K}_{\infty}} | Z_{\infty}^{*\Sigma} \Gamma_{\Sigma}^{*}|^{2})}{Mr_{0}} \right] + \frac{\Gamma_{\Lambda} Z^{*\Sigma}_{\infty} \Gamma_{\Sigma}^{*}}{Mr_{0}} \right\},$$

$$B_{\Lambda} = \pm \frac{e^{\mathcal{K}_{\infty}/2}}{2\sqrt{2}} \left\{ Z_{\Lambda \infty}^{*} \left[1 - \frac{(M^{2} - e^{\mathcal{K}_{\infty}} | Z_{\infty}^{*\Sigma} \Gamma_{\Sigma}^{*}|^{2})}{Mr_{0}} \right] - \frac{\Gamma_{\Lambda} Z_{\infty}^{*\Sigma} \Gamma_{\Sigma}^{*}}{Mr_{0}} \right\},$$

Here $M^2 r_0^2 = (M^2 - |\mathcal{Z}_{\infty}|^2)(M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2)$, and one can show that the metric is regular in all the $r_0^2 > 0$ cases.

Supersymmetric and non-supersymmetric extremal limits

Since $M^2 r_0^2 = (M^2 - |\mathcal{Z}_{\infty}|^2)(M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2)$ there are two $r_0 \to 0$ (extremal) limits:

Since $M^2 r_0^2 = (M^2 - |\mathcal{Z}_{\infty}|^2)(M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2)$ there are two $r_0 \to 0$ (extremal) limits:

1. Supersymmetric, when $M^2 \to |\mathcal{Z}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2$. We get the harmonic functions of the supersymmetric case.

Since $M^2 r_0^2 = (M^2 - |\mathcal{Z}_{\infty}|^2)(M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2)$ there are two $r_0 \to 0$ (extremal) limits:

- 1. Supersymmetric, when $M^2 \to |\mathcal{Z}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2$. We get the harmonic functions of the supersymmetric case.
- 2. Non-supersymmetric, when $M^2 \to |\tilde{\mathcal{Z}}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2 \Gamma^{*\Sigma} \Gamma_{\Sigma}$.

Since $M^2 r_0^2 = (M^2 - |\mathcal{Z}_{\infty}|^2)(M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2)$ there are two $r_0 \to 0$ (extremal) limits:

- 1. Supersymmetric, when $M^2 \to |\mathcal{Z}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2$. We get the harmonic functions of the supersymmetric case.
- 2. Non-supersymmetric, when $M^2 \to |\tilde{\mathcal{Z}}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2 \Gamma^{*\Sigma} \Gamma_{\Sigma}$. We get harmonic functions with different coefficients non-linear in the charges!:

$$\mathcal{H}_{\Lambda} \xrightarrow{M \to |\tilde{\mathbf{Z}}_{\infty}|} \pm \frac{e^{\mathcal{K}_{\infty}/2}}{2\sqrt{2}} \left\{ Z_{\Lambda \infty}^* - \frac{1}{|\tilde{\mathbf{Z}}_{\infty}|} \left[-Z_{\Lambda \infty}^* \mathbf{\Gamma}^{*\Sigma} \mathbf{\Gamma}_{\Sigma} + \mathbf{\Gamma}_{\Lambda} Z_{\infty}^{*\Sigma} \mathbf{\Gamma}_{\Sigma}^* \right] \mathbf{\tau} \right\} .$$

Since $M^2 r_0^2 = (M^2 - |\mathcal{Z}_{\infty}|^2)(M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2)$ there are two $r_0 \to 0$ (extremal) limits:

- 1. Supersymmetric, when $M^2 \to |\mathcal{Z}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2$. We get the harmonic functions of the supersymmetric case.
- 2. Non-supersymmetric, when $M^2 \to |\tilde{\mathcal{Z}}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2 \Gamma^{*\Sigma} \Gamma_{\Sigma}$. We get harmonic functions with different coefficients non-linear in the charges!:

$$\mathcal{H}_{\Lambda} \stackrel{M \to |\tilde{\mathbf{Z}}_{\infty}|}{\longrightarrow} \pm \frac{e^{\mathcal{K}_{\infty}/2}}{2\sqrt{2}} \left\{ Z_{\Lambda \infty}^* - \frac{1}{|\tilde{\mathbf{Z}}_{\infty}|} \left[-Z_{\Lambda \infty}^* \mathbf{\Gamma}^{*\Sigma} \mathbf{\Gamma}_{\Sigma} + \mathbf{\Gamma}_{\Lambda} Z_{\infty}^{*\Sigma} \mathbf{\Gamma}_{\Sigma}^* \right] \mathbf{\tau} \right\} .$$

On the event horizon $\tau \to -\infty$ the scalars $Z^i = \mathcal{H}^{*i}/\mathcal{H}^{*0}$ take the values

$$Z_{\rm h}^{*i} = \frac{\Gamma^{i} Z_{\infty}^{*\Lambda} \Gamma_{\Lambda}^{*} - Z_{\infty}^{*i} \Gamma^{*\Sigma} \Gamma_{\Sigma}}{\Gamma^{0} Z_{\infty}^{*\Gamma} \Gamma_{\Gamma}^{*} - \Gamma^{*\Omega} \Gamma_{\Omega}},$$

which depend manifestly on the asymptotic values.

Since $M^2 r_0^2 = (M^2 - |\mathcal{Z}_{\infty}|^2)(M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2)$ there are two $r_0 \to 0$ (extremal) limits:

- 1. Supersymmetric, when $M^2 \to |\mathcal{Z}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2$. We get the harmonic functions of the supersymmetric case.
- 2. Non-supersymmetric, when $M^2 \to |\tilde{\mathcal{Z}}_{\infty}|^2 = e^{\mathcal{K}_{\infty}} |Z_{\infty}^{\Sigma} \Gamma_{\Sigma}|^2 \Gamma^{*\Sigma} \Gamma_{\Sigma}$. We get harmonic functions with different coefficients non-linear in the charges!:

$$\mathcal{H}_{\Lambda} \stackrel{M \to |\tilde{\mathbf{Z}}_{\infty}|}{\longrightarrow} \pm \frac{e^{\mathcal{K}_{\infty}/2}}{2\sqrt{2}} \left\{ Z_{\Lambda \infty}^* - \frac{1}{|\tilde{\mathbf{Z}}_{\infty}|} \left[-Z_{\Lambda \infty}^* \mathbf{\Gamma}^{* \Sigma} \mathbf{\Gamma}_{\Sigma} + \mathbf{\Gamma}_{\Lambda} Z_{\infty}^{* \Sigma} \mathbf{\Gamma}_{\Sigma}^* \right] \mathbf{\tau} \right\} .$$

On the event horizon $\tau \to -\infty$ the scalars $Z^i = \mathcal{H}^{*i}/\mathcal{H}^{*0}$ take the values

$$Z_{\rm h}^{*i} = \frac{\Gamma^{i} Z_{\infty}^{*\Lambda} \Gamma_{\Lambda}^{*} - Z_{\infty}^{*i} \Gamma^{*\Sigma} \Gamma_{\Sigma}}{\Gamma^{0} Z_{\infty}^{*\Gamma} \Gamma_{\Gamma}^{*} - \Gamma^{*\Omega} \Gamma_{\Omega}},$$

which depend manifestly on the asymptotic values.

There is no attractor behavior in a proper sense.

The structure of the extremal non-supersymmetric solution as function of the H^M s is the same as in the supersymmetric case.

However, no simple *substitution recipe* could have led to it.

Physical properties of the non-extremal solutions

Physical properties of the non-extremal solutions

One can compute the "entropies" of the inner and outer horizons (event horizon (+) and Cauchy horizon (-)) at $\tau \to -\infty$ and $\tau \to +\infty$ resp.:

$$S_{\pm}/\pi = (M^2 - |\mathcal{Z}_{\infty}|^2) \pm (M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2) \pm 2Mr_0.$$

Physical properties of the non-extremal solutions

One can compute the "entropies" of the inner and outer horizons (event horizon (+) and Cauchy horizon (-)) at $\tau \to -\infty$ and $\tau \to +\infty$ resp.:

$$S_{\pm}/\pi = (M^2 - |\mathcal{Z}_{\infty}|^2) \pm (M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2) \pm 2Mr_0.$$

The product S_+S_- is manifestly mass and moduli-independent for all values of r_0 :

$$S_+S_-/\pi^2 = (\Gamma^*{}^{\Lambda}\Gamma_{\Lambda})^2$$
.

Physical properties of the non-extremal solutions

One can compute the "entropies" of the inner and outer horizons (event horizon (+) and Cauchy horizon (-)) at $\tau \to -\infty$ and $\tau \to +\infty$ resp.:

$$S_{\pm}/\pi = (M^2 - |\mathcal{Z}_{\infty}|^2) \pm (M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2) \pm 2Mr_0.$$

The product S_+S_- is manifestly mass and moduli-independent for all values of r_0 :

$$S_+S_-/\pi^2 = (\Gamma^*{}^{\Lambda}\Gamma_{\Lambda})^2$$
.

We can write the entropies in the suggestive form

$$S_{\pm}/\pi = \sqrt{N_{
m R}} \pm \sqrt{N_{
m L}} \,, \;\; \Rightarrow \;\; S_{+}S_{-}/\pi^2 = N_{
m R} - N_{
m L} \in \mathbb{Z} \,.$$

Physical properties of the non-extremal solutions

One can compute the "entropies" of the inner and outer horizons (event horizon (+) and Cauchy horizon (-)) at $\tau \to -\infty$ and $\tau \to +\infty$ resp.:

$$S_{\pm}/\pi = (M^2 - |\mathcal{Z}_{\infty}|^2) \pm (M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2) \pm 2Mr_0.$$

The product S_+S_- is manifestly mass and moduli-independent for all values of r_0 :

$$S_+S_-/\pi^2 = (\Gamma^*{}^{\Lambda}\Gamma_{\Lambda})^2$$
.

We can write the entropies in the suggestive form

$$S_{\pm}/\pi = \sqrt{N_{\mathrm{R}}} \pm \sqrt{N_{\mathrm{L}}} \,, \quad \Rightarrow \quad S_{+}S_{-}/\pi^{2} = N_{\mathrm{R}} - N_{\mathrm{L}} \in \mathbb{Z} \,.$$

But, even though it is suggestive, it is not unique.

Physical properties of the non-extremal solutions

One can compute the "entropies" of the inner and outer horizons (event horizon (+) and Cauchy horizon (-)) at $\tau \to -\infty$ and $\tau \to +\infty$ resp.:

$$S_{\pm}/\pi = (M^2 - |\mathcal{Z}_{\infty}|^2) \pm (M^2 - |\tilde{\mathcal{Z}}_{\infty}|^2) \pm 2Mr_0.$$

The product S_+S_- is manifestly mass and moduli-independent for all values of r_0 :

$$S_+S_-/\pi^2 = (\Gamma^*{}^{\Lambda}\Gamma_{\Lambda})^2$$
.

We can write the entropies in the suggestive form

$$S_{\pm}/\pi = \sqrt{N_{\mathrm{R}}} \pm \sqrt{N_{\mathrm{L}}}, \quad \Rightarrow \quad S_{+}S_{-}/\pi^{2} = N_{\mathrm{R}} - N_{\mathrm{L}} \in \mathbb{Z}.$$

But, even though it is suggestive, it is not unique. We can also write

$$S_{\pm}/\pi = \left(\sqrt{N_{
m R}} \pm \sqrt{N_{
m L}}\right)^2$$
,

with

$$N_{
m R} \equiv M^2 - |{\cal Z}_{\infty}|^2 \,, \qquad N_{
m L} \equiv M^2 - | ilde{\cal Z}_{\infty}|^2 \,,$$

SO

$$S_{+}S_{-}/\pi^{2} = (N_{\rm R} - N_{\rm L})^{2}$$
.

The endpoint of the evaporation process of the non-extremal black holes is completely determined by their charges, independently of the moduli Z^{i}_{∞} :

The endpoint of the evaporation process of the non-extremal black holes is completely determined by their charges, independently of the moduli Z^{i}_{∞} :

Thus, if $\Gamma^{*\Lambda}\Gamma_{\Lambda} > 0$, which is the property that characterizes the supersymmetric attractor, then $|\mathcal{Z}_{\infty}| > |\tilde{\mathcal{Z}}_{\infty}|$ and the evaporation process will stop when $M = |\mathcal{Z}_{\infty}|$ (supersymmetry restoration).

The endpoint of the evaporation process of the non-extremal black holes is completely determined by their charges, independently of the moduli Z^{i}_{∞} :

- Thus, if $\Gamma^{*\Lambda}\Gamma_{\Lambda} > 0$, which is the property that characterizes the supersymmetric attractor, then $|\mathcal{Z}_{\infty}| > |\tilde{\mathcal{Z}}_{\infty}|$ and the evaporation process will stop when $M = |\mathcal{Z}_{\infty}|$ (supersymmetry restoration).
- If $\Gamma^{*\Lambda}\Gamma_{\Lambda} < 0$, then $|\tilde{\mathcal{Z}}_{\infty}| > |\mathcal{Z}_{\infty}|$ and the evaporation process will stop when $M = |\tilde{\mathcal{Z}}_{\infty}|$.

The endpoint of the evaporation process of the non-extremal black holes is completely determined by their charges, independently of the moduli Z^{i}_{∞} :

- Thus, if $\Gamma^{*\Lambda}\Gamma_{\Lambda} > 0$, which is the property that characterizes the supersymmetric attractor, then $|\mathcal{Z}_{\infty}| > |\tilde{\mathcal{Z}}_{\infty}|$ and the evaporation process will stop when $M = |\mathcal{Z}_{\infty}|$ (supersymmetry restoration).
- If $\Gamma^{*\Lambda}\Gamma_{\Lambda} < 0$, then $|\tilde{\mathcal{Z}}_{\infty}| > |\mathcal{Z}_{\infty}|$ and the evaporation process will stop when $M = |\tilde{\mathcal{Z}}_{\infty}|$.

There is an attractor behavior in the evaporation process.

Or: Where the H^M s come from

Or: Where the H^M s come from

In the $\mathcal{N} = 2$ d = 4 case, the FGK formalism can be rewritten in different variables (Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

$$U(\tau), Z^i(\tau) \ (2n_V + 1) \longrightarrow \begin{pmatrix} H^{\Lambda} \\ H_{\Lambda} \end{pmatrix} \equiv H^M, \ (2n_V + 2)$$

plus one constraint that should appear automatically (more on this, later).

Or: Where the H^M s come from

In the $\mathcal{N}=2$ d=4 case, the FGK formalism can be rewritten in different variables (Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

$$U(\tau), Z^i(\tau) \ (2n_V + 1) \longrightarrow \begin{pmatrix} H^{\Lambda} \\ H_{\Lambda} \end{pmatrix} \equiv H^M, \ (2n_V + 2)$$

plus one constraint that should appear automatically (more on this, later).

These variables transform linearly under the duality group, that acts on it as a subgroup of $Sp(2n + 2, \mathbb{R})$.

Or: Where the H^M s come from

In the $\mathcal{N} = 2$ d = 4 case, the FGK formalism can be rewritten in different variables (Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

$$U(\tau), Z^i(\tau) \ (2n_V + 1) \longrightarrow \begin{pmatrix} H^{\Lambda} \\ H_{\Lambda} \end{pmatrix} \equiv H^M, \ (2n_V + 2)$$

plus one constraint that should appear automatically (more on this, later).

These variables transform linearly under the duality group, that acts on it as a subgroup of $Sp(2n + 2, \mathbb{R})$.

We introduce an auxiliary function X and proceed as in the BPS case defining the Kähler-neutral, real, symplectic vectors \mathcal{R}^M and \mathcal{I}^M

$$\mathcal{R}^M + i\mathcal{I}^M \equiv \mathcal{V}^M/X.$$

Or: Where the H^M s come from

In the $\mathcal{N}=2$ d=4 case, the FGK formalism can be rewritten in different variables (Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

$$U(\tau), Z^i(\tau) \ (2n_V + 1) \longrightarrow \begin{pmatrix} H^{\Lambda} \\ H_{\Lambda} \end{pmatrix} \equiv H^M, \ (2n_V + 2)$$

plus one constraint that should appear automatically (more on this, later).

These variables transform linearly under the duality group, that acts on it as a subgroup of $Sp(2n+2,\mathbb{R})$.

We introduce an auxiliary function X and proceed as in the BPS case defining the Kähler-neutral, real, symplectic vectors \mathcal{R}^M and \mathcal{I}^M

$$\mathcal{R}^M + i\mathcal{I}^M \equiv \mathcal{V}^M/X.$$

We know that the \mathbb{R}^M can be expressed as a function of the \mathcal{I}^M s and vice-versa solving the *stabilization equations*.

November 13th 2012

Page 30-d

Or: Where the H^M s come from

In the $\mathcal{N} = 2$ d = 4 case, the FGK formalism can be rewritten in different variables (Mohaupt & Vaughan arXiv:1112.2876, Meessen, O., Perz & Shahbazi arXiv:1112.3332)

$$U(\tau), Z^i(\tau) \ (2n_V + 1) \longrightarrow \begin{pmatrix} H^{\Lambda} \\ H_{\Lambda} \end{pmatrix} \equiv H^M, \ (2n_V + 2)$$

plus one constraint that should appear automatically (more on this, later).

These variables transform linearly under the duality group, that acts on it as a subgroup of $Sp(2n + 2, \mathbb{R})$.

We introduce an auxiliary function X and proceed as in the BPS case defining the Kähler-neutral, real, symplectic vectors \mathcal{R}^M and \mathcal{I}^M

$$\mathcal{R}^M + i\mathcal{I}^M \equiv \mathcal{V}^M/X.$$

We know that the \mathbb{R}^M can be expressed as a function of the \mathcal{I}^M s and vice-versa solving the *stabilization equations*. Then, we introduce *two dual sets of variables*

$$\tilde{H}_M \equiv \mathcal{R}_M \,, \qquad H^M \equiv \mathcal{I}^M \,.$$

We define the Hessian potential $W(H) \equiv \tilde{H}_M(H)H^M$, or $W(H) \equiv \tilde{H}_MH^M(H)$.

We define the Hessian potential $W(H) \equiv \tilde{H}_M(H)H^M$, or $W(H) \equiv \tilde{H}_M H^M(H)$. W is homogeneous of second order in the H^M variables and satisfies

$$\partial_{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \mathbf{H}^{\mathbf{M}}} = 2\tilde{\mathbf{H}}_{\mathbf{M}} \,, \qquad \partial^{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \tilde{\mathbf{H}}_{\mathbf{M}}} = 2\mathbf{H}^{\mathbf{M}} \,,$$

We define the Hessian potential $W(H) \equiv \tilde{H}_M(H)H^M$, or $W(H) \equiv \tilde{H}_MH^M(H)$.

W is homogeneous of second order in the H^M variables and satisfies

$$\partial_{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \mathbf{H}^{\mathbf{M}}} = 2\tilde{\mathbf{H}}_{\mathbf{M}} \,, \qquad \partial^{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \tilde{\mathbf{H}}_{\mathbf{M}}} = 2\mathbf{H}^{\mathbf{M}} \,,$$

Then, the FGK effective action can be written in the form

$$-I_{\text{eff}}[H] = \int d\tau \left\{ \frac{1}{2} g_{MN} \dot{H}^M \dot{H}^N - V(H) \right\},$$

$$g_{MN}(H) \equiv \partial_M \partial_N \log W - 2W^{-2} H_M H_N,$$

$$V(H) \equiv \left\{ -\frac{1}{4} \partial_M \partial_N \log W + W^{-2} H_M H_N \right\} \mathcal{Q}^M \mathcal{Q}^N.$$

We define the Hessian potential $W(H) \equiv \tilde{H}_M(H)H^M$, or $W(H) \equiv \tilde{H}_MH^M(H)$.

W is homogeneous of second order in the H^M variables and satisfies

$$\partial_{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \mathbf{H}^{\mathbf{M}}} = 2\tilde{\mathbf{H}}_{\mathbf{M}} \,, \qquad \partial^{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \tilde{\mathbf{H}}_{\mathbf{M}}} = 2\mathbf{H}^{\mathbf{M}} \,,$$

Then, the FGK effective action can be written in the form

$$-I_{\text{eff}}[H] = \int d\tau \left\{ \frac{1}{2} g_{MN} \dot{H}^M \dot{H}^N - V(H) \right\},$$

$$g_{MN}(H) \equiv \partial_M \partial_N \log W - 2W^{-2} H_M H_N,$$

$$V(H) \equiv \left\{ -\frac{1}{4} \partial_M \partial_N \log W + W^{-2} H_M H_N \right\} \mathcal{Q}^M \mathcal{Q}^N.$$

All the information about the model is encoded in the Hessian potential W(H).

We define the Hessian potential $W(H) \equiv \tilde{H}_M(H)H^M$, or $W(H) \equiv \tilde{H}_M H^M(H)$. W is homogeneous of second order in the H^M variables and satisfies

$$\partial_{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \mathbf{H}^{\mathbf{M}}} = 2\tilde{\mathbf{H}}_{\mathbf{M}} \,, \qquad \partial^{\mathbf{M}} \mathsf{W} \equiv \frac{\partial \mathsf{W}}{\partial \tilde{\mathbf{H}}_{\mathbf{M}}} = 2\mathbf{H}^{\mathbf{M}} \,,$$

Then, the FGK effective action can be written in the form

$$-I_{\text{eff}}[\boldsymbol{H}] = \int d\tau \left\{ \frac{1}{2} g_{MN} \dot{\boldsymbol{H}}^M \dot{\boldsymbol{H}}^N - V(\boldsymbol{H}) \right\},$$

$$g_{MN}(\boldsymbol{H}) \equiv \partial_M \partial_N \log W - 2W^{-2} H_M H_N,$$

$$V(\boldsymbol{H}) \equiv \left\{ -\frac{1}{4} \partial_M \partial_N \log W + W^{-2} H_M H_N \right\} \mathcal{Q}^M \mathcal{Q}^N.$$

All the information about the model is encoded in the Hessian potential W(H). Having the $H^{M}(\tau)$ that solve this action, the black-hole solution is given by

$$e^{-2U(\tau)} = W[\underline{H}(\tau)], \qquad Z^i(\tau) = \frac{\tilde{H}^i(H) + iH^i}{\tilde{H}^0(H) + iH^0}.$$

This shows that we can write all the static black-hole solutions of a given model $\mathcal{N}=2$ d=4 supergravity exactly in the same way in terms of the functions $H^M(\tau)$.

This shows that we can write all the static black-hole solutions of a given model $\mathcal{N}=2$ d=4 supergravity exactly in the same way in terms of the functions $H^M(\tau)$.

But these functions will be different for different solutions.

This shows that we can write all the static black-hole solutions of a given model $\mathcal{N}=2$ d=4 supergravity exactly in the same way in terms of the functions $H^M(\tau)$.

But these functions will be different for different solutions.

With this formalism we can try to find all the solutions in their different forms.

In the cases we have studied, all the black-hole were represented by $H^M(\tau)$ satisfying the no- NUT constraint

$$\dot{H}^M H_M = 0.$$

In the cases we have studied, all the black-hole were represented by $H^M(\tau)$ satisfying the no- NUT constraint

$$\dot{H}^M H_M = 0.$$

Furthermore, in all the extremal cases the $H^{M}(\tau)$ were harmonic functions

$$\ddot{H}^M = 0$$

and in the non-extremal they were hyperbolic functions of $r_0\tau$ satisfying

$$\ddot{H}^M - r_0^2 H^M = 0.$$

In the cases we have studied, all the black-hole were represented by $H^M(\tau)$ satisfying the no- NUT constraint

$$\dot{H}^M H_M = 0.$$

Furthermore, in all the extremal cases the $H^{M}(\tau)$ were harmonic functions

$$\ddot{H}^M = 0$$

and in the non-extremal they were hyperbolic functions of $r_0\tau$ satisfying

$$\ddot{H}^M - r_0^2 H^M = 0.$$

This agrees with this equation of motion of the formalism:

$$\tilde{H}_M \left(\ddot{H}^M - r_0^2 H^M \right) + \left(\mathsf{W}^{-1} \dot{H}^M H_M \right)^2 = 0.$$

In the cases we have studied, all the black-hole were represented by $H^M(\tau)$ satisfying the no- NUT constraint

$$\dot{H}^M H_M = 0.$$

Furthermore, in all the extremal cases the $H^{M}(\tau)$ were harmonic functions

$$\ddot{H}^M = 0$$

and in the non-extremal they were hyperbolic functions of $r_0\tau$ satisfying

$$\ddot{H}^M - r_0^2 H^M = 0.$$

This agrees with this equation of motion of the formalism:

$$\tilde{H}_M \left(\ddot{H}^M - r_0^2 H^M \right) + \left(\mathsf{W}^{-1} \dot{H}^M H_M \right)^2 = 0.$$

However, some static, extremal non-supersymmetric solutions (Gimon, Larsen & Simon (2009), Galli, Goldstein, Katmadas, Perz (2011), Bossard & Katmadas (2012)) have non-harmonic H^M s which do not satisfy the no-NUT constraint.

In the cases we have studied, all the black-hole were represented by $H^M(\tau)$ satisfying the no- NUT constraint

$$\dot{H}^M H_M = 0.$$

Furthermore, in all the extremal cases the $H^{M}(\tau)$ were harmonic functions

$$\ddot{H}^M = 0$$

and in the non-extremal they were hyperbolic functions of $r_0\tau$ satisfying

$$\ddot{H}^M - r_0^2 H^M = 0.$$

This agrees with this equation of motion of the formalism:

$$\tilde{H}_M \left(\ddot{H}^M - r_0^2 H^M \right) + \left(\mathsf{W}^{-1} \dot{H}^M H_M \right)^2 = 0.$$

However, some static, extremal non-supersymmetric solutions (Gimon, Larsen & Simon (2009), Galli, Goldstein, Katmadas, Perz (2011), Bossard & Katmadas (2012)) have non-harmonic H^M s which do not satisfy the no-NUT constraint.

This raises some questions: can they be rewritten in a harmonic form? Is there a unique way of writing in terms of H^M s a given solution? What is their non-extremal generalization?

As the formulation of the previous questions suggests, the representation of a solution in terms of H^M s is not unique.

As the formulation of the previous questions suggests, the representation of a solution in terms of H^M s is not unique.

First of all, there is a Freudenthal-dual representation of the same solution: it can be shown that the effective action of the H-FGK formalism is exactly invariant under the discrete transformation

$$H^M \longrightarrow \tilde{H}^M(H) \equiv \Omega^{NM} \tilde{H}_N(H)$$
.

As the formulation of the previous questions suggests, the representation of a solution in terms of H^M s is not unique.

First of all, there is a Freudenthal-dual representation of the same solution: it can be shown that the effective action of the H-FGK formalism is exactly invariant under the discrete transformation

$$H^M \longrightarrow \tilde{H}^M(H) \equiv \Omega^{NM} \tilde{H}_N(H)$$
.

In general (this depends on the theory since $\tilde{H}_M \equiv \frac{1}{2}\partial_M W$), this is a very non-linear transformation, but it is always an involution

$$\tilde{\tilde{H}}^M \equiv \tilde{H}^M(\tilde{H}(H)) = -H^M$$
,

As the formulation of the previous questions suggests, the representation of a solution in terms of H^M s is not unique.

First of all, there is a Freudenthal-dual representation of the same solution: it can be shown that the effective action of the H-FGK formalism is exactly invariant under the discrete transformation

$$H^M \longrightarrow \tilde{H}^M(H) \equiv \Omega^{NM} \tilde{H}_N(H)$$
.

In general (this depends on the theory since $\tilde{H}_M \equiv \frac{1}{2}\partial_M W$), this is a very non-linear transformation, but it is always an involution

$$\tilde{\tilde{H}}^M \equiv \tilde{H}^M(\tilde{H}(H)) = -H^M$$
,

which shows that the physical fields

$$e^{-2U} = W(H) = \tilde{H}_N(H)H^M$$
, $Z^i(\tau) = \frac{H^i(H) + iH^i}{\tilde{H}^0(H) + iH^0}$.

are left invariant by it!

As the formulation of the previous questions suggests, the representation of a solution in terms of H^M s is not unique.

First of all, there is a Freudenthal-dual representation of the same solution: it can be shown that the effective action of the H-FGK formalism is exactly invariant under the discrete transformation

$$H^M \longrightarrow \tilde{H}^M(H) \equiv \Omega^{NM} \tilde{H}_N(H)$$
.

In general (this depends on the theory since $\tilde{H}_M \equiv \frac{1}{2}\partial_M W$), this is a very non-linear transformation, but it is always an involution

$$\tilde{\tilde{H}}^M \equiv \tilde{H}^M(\tilde{H}(H)) = -H^M$$
,

which shows that the physical fields

$$e^{-2U} = W(H) = \tilde{H}_N(H)H^M,$$
 $Z^i(\tau) = \frac{H^i(H) + iH^i}{\tilde{H}^0(H) + iH^0}.$

are left invariant by it!

The definition of Freudenthal duality can be extended to any symplectic vector, like the charge vector \mathcal{Q}^{M} (Borsten, Dahanayake, Duff & Rubens (2009), Ferrara, Marrani & Yeranyan (2011)). The black-hole attractors are left invariant by it.

The existence of a transformation that leaves invariant physical fields is reminiscent of gauge symmetry.

The existence of a transformation that leaves invariant physical fields is reminiscent of gauge symmetry.

We mentioned that the H-FGK formalism has one more variable than the original FGK one. There should be a gauge symmetry in the system and we have to find it.

The existence of a transformation that leaves invariant physical fields is reminiscent of gauge symmetry.

We mentioned that the H-FGK formalism has one more variable than the original FGK one. There should be a gauge symmetry in the system and we have to find it. The first clue is the singularity of the metric:

$$\tilde{H}^M g_{MN} = 0$$
.

The existence of a transformation that leaves invariant physical fields is reminiscent of gauge symmetry.

We mentioned that the H-FGK formalism has one more variable than the original FGK one. There should be a gauge symmetry in the system and we have to find it.

The first clue is the singularity of the metric:

$$\tilde{H}^M g_{MN} = 0.$$

From this property it follows that the equations of motion are not independent but

$$\tilde{H}^M \frac{\delta I_{\text{eff}}}{\delta H^M} = 0.$$

The existence of a transformation that leaves invariant physical fields is reminiscent of gauge symmetry.

We mentioned that the H-FGK formalism has one more variable than the original FGK one. There should be a gauge symmetry in the system and we have to find it. The first clue is the singularity of the metric:

$$\tilde{H}^M g_{MN} = 0.$$

From this property it follows that the equations of motion are not independent but

$$\tilde{H}^M \frac{\delta I_{\text{eff}}}{\delta H^M} = 0.$$

This is a gauge identity associated by Noether's second theorem to a gauge symmetry: multiplying by an arbitrary infinitesimal arbitrary function $f(\tau)$ and integrating over τ we find

$$\delta_{\mathbf{f}} I_{\text{eff}} = \int d\boldsymbol{\tau} \delta_{\mathbf{f}} H^{M} \frac{\delta I_{\text{eff}}}{\delta H^{M}} = 0,$$

where we have defined the local infinitesimal transformations

$$\delta_f H^M \equiv f(\tau) \tilde{H}^M .$$

The finite gauge transformations can be obtained by exponentiating the infinitesimal ones:

$$\delta_f H^M \equiv f(\tau) \pounds_K H^M , \quad \Rightarrow \quad H'^M = e^{f(\tau) \pounds_K} H^M , \quad \text{with} \quad K^M(H) = \tilde{H}^M(H) ,$$

The finite gauge transformations can be obtained by exponentiating the infinitesimal ones:

$$\delta_f H^M \equiv f(\tau) \pounds_K H^M \,, \quad \Rightarrow \quad H'^M = e^{f(\tau) \pounds_K} H^M \,, \quad \text{with} \quad K^M(H) = \tilde{H}^M(H) \,,$$

and the result is

$$\begin{cases} H'^{M} = \cos f H^{M} - \sin f \Omega^{MN} \tilde{H}_{N}, \\ \tilde{H}'_{M} = -\sin f \Omega_{MN} H^{N} + \cos f \tilde{H}_{M}. \end{cases}$$

The finite gauge transformations can be obtained by exponentiating the infinitesimal ones:

$$\delta_f H^M \equiv f(\tau) \pounds_K H^M , \quad \Rightarrow \quad H'^M = e^{f(\tau) \pounds_K} H^M , \quad \text{with} \quad K^M(H) = \tilde{H}^M(H) ,$$

and the result is

$$\begin{cases} H'^{M} = \cos f H^{M} - \sin f \Omega^{MN} \tilde{H}_{N}, \\ \tilde{H}'_{M} = -\sin f \Omega_{MN} H^{N} + \cos f \tilde{H}_{M}. \end{cases}$$

It can be shown that these finite transformations leave exactly invariant the action and the physical fields.

The finite gauge transformations can be obtained by exponentiating the infinitesimal ones:

$$\delta_f H^M \equiv f(\tau) \pounds_K H^M \,, \quad \Rightarrow \quad H'^M = e^{f(\tau) \pounds_K} H^M \,, \quad \text{with} \quad K^M(H) = \tilde{H}^M(H) \,,$$

and the result is

$$\begin{cases} H'^{M} = \cos f H^{M} - \sin f \Omega^{MN} \tilde{H}_{N}, \\ \tilde{H}'_{M} = -\sin f \Omega_{MN} H^{N} + \cos f \tilde{H}_{M}. \end{cases}$$

It can be shown that these finite transformations leave exactly invariant the action and the physical fields.

There is no conserved charge associated to the global symmetry:

$$\mathbf{Q} = \delta_f H^M \frac{\delta L}{\delta \dot{H}^M} \sim f \tilde{H}^M g_{MN} \dot{H}^N = 0.$$

The finite gauge transformations can be obtained by exponentiating the infinitesimal ones:

$$\delta_f H^M \equiv f(\tau) \pounds_K H^M , \quad \Rightarrow \quad H'^M = e^{f(\tau) \pounds_K} H^M , \quad \text{with} \quad K^M(H) = \tilde{H}^M(H) ,$$

and the result is

$$\begin{cases} H'^{M} = \cos f H^{M} - \sin f \Omega^{MN} \tilde{H}_{N}, \\ \tilde{H}'_{M} = -\sin f \Omega_{MN} H^{N} + \cos f \tilde{H}_{M}. \end{cases}$$

It can be shown that these finite transformations leave exactly invariant the action and the physical fields.

There is no conserved charge associated to the global symmetry:

$$\mathbf{Q} = \delta_f H^M \frac{\delta L}{\delta \dot{H}^M} \sim f \tilde{H}^M g_{MN} \dot{H}^N = 0.$$

More importantly: they do not respect the no-NUT constraint, but

$$(\dot{H}^M H_M)' = -\dot{f} \mathsf{W} + \dot{H}^M H_M .$$

According to the previous discussion we will be left with solutions that satisfy

$$\tilde{H}_M \ddot{H}^M = 0.$$

According to the previous discussion we will be left with solutions that satisfy

$$\tilde{H}_M \ddot{H}^M = 0.$$

While this seems to suggest that in the new gauge the H^M s will be harmonic $(\ddot{H}^M = 0)$ it can be shown that there is no way to reproduce that kind of solutions with harmonic H^M s. They are much more complicated functions. We do not know their form because the $f(\tau)$ that brings those solutions to the no-NUT gauge is very difficult to find.

According to the previous discussion we will be left with solutions that satisfy

$$\tilde{H}_M \ddot{H}^M = 0.$$

While this seems to suggest that in the new gauge the H^M s will be harmonic $(\ddot{H}^M = 0)$ it can be shown that there is no way to reproduce that kind of solutions with harmonic H^M s. They are much more complicated functions. We do not know their form because the $f(\tau)$ that brings those solutions to the no-NUT gauge is very difficult to find.

We have barely started to scratch the surface of the description of black-hole solutions in this language (work in progress).

According to the previous discussion we will be left with solutions that satisfy

$$\tilde{H}_M \ddot{H}^M = 0.$$

While this seems to suggest that in the new gauge the H^M s will be harmonic $(\ddot{H}^M = 0)$ it can be shown that there is no way to reproduce that kind of solutions with harmonic H^M s. They are much more complicated functions. We do not know their form because the $f(\tau)$ that brings those solutions to the no-NUT gauge is very difficult to find.

We have barely started to scratch the surface of the description of black-hole solutions in this language (work in progress).

Things are much simpler in 5 dimensions!!

Page 37-d

7 - H-FGK formalism for $\mathcal{N}=2,\ d=5$ supergravity

Or: Where the H^M s come from (The 5-dimensional case)

7 - H-FGK formalism for $\mathcal{N}=2,\ d=5$ supergravity

Or: Where the H^M s come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in "h-space"

$$\mathcal{V}(h) = C_{IJK}h^I h^J h^K = 1.$$

7 - H-FGK formalism for $\mathcal{N} = 2$, d = 5 supergravity

Or: Where the H^M s come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in "h-space"

$$\mathcal{V}(h) = C_{IJK}h^I h^J h^K = 1.$$

If we then define the derived objects

$$h_I \equiv C_{IJK} h^J h^K$$
, $h_x^I \equiv -\sqrt{3} \frac{\partial h^I}{\partial \phi^x}$ and $h_{Ix} \equiv \sqrt{3} \frac{\partial h_I}{\partial \phi^x}$,

we can see that they satisfy the following relations

$$h^I h_I = 1$$
 and $h^I h_{Ix} = h_I h_x^I = 0$.

7 - H-FGK formalism for $\mathcal{N}=2,\ d=5$ supergravity

Or: Where the H^M s come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in "h-space"

$$\mathcal{V}(h) = C_{IJK}h^I h^J h^K = 1.$$

If we then define the derived objects

$$h_I \equiv C_{IJK} h^J h^K$$
, $h_x^I \equiv -\sqrt{3} \frac{\partial h^I}{\partial \phi^x}$ and $h_{Ix} \equiv \sqrt{3} \frac{\partial h_I}{\partial \phi^x}$,

we can see that they satisfy the following relations

$$h^{I}h_{I} = 1$$
 and $h^{I}h_{Ix} = h_{I}h_{x}^{I} = 0$.

The scalar metric g_{xy} , and the vector kinetic matrix, a_{IJ} , are given by

$$g_{xy} = h_{Ix}h_y^I$$
 and $a_{IJ} = 3h_Ih_J - 2C_{IJK}h^K = h_Ih_J + h_{Ix}h_J^x$.

7 - H-FGK formalism for $\mathcal{N} = 2$, d = 5 supergravity

Or: Where the H^M s come from (The 5-dimensional case)

The scalar manifold of these theories is the hypersurface in "h-space"

$$\mathcal{V}(h) = C_{IJK}h^I h^J h^K = 1.$$

If we then define the derived objects

$$h_I \equiv C_{IJK} h^J h^K$$
, $h_x^I \equiv -\sqrt{3} \frac{\partial h^I}{\partial \phi^x}$ and $h_{Ix} \equiv \sqrt{3} \frac{\partial h_I}{\partial \phi^x}$,

we can see that they satisfy the following relations

$$h^{I}h_{I} = 1$$
 and $h^{I}h_{Ix} = h_{I}h_{x}^{I} = 0$.

The scalar metric g_{xy} , and the vector kinetic matrix, a_{IJ} , are given by

$$g_{xy} = h_{Ix}h_y^I$$
 and $a_{IJ} = 3h_Ih_J - 2C_{IJK}h^K = h_Ih_J + h_{Ix}h_J^x$.

The bosonic action for $\mathcal{N}=2$ d=5 supergravity with n vector supermultiplets is

$$\mathcal{I}_5 = \int_5 \left(R \star 1 + \frac{1}{2} g_{xy} d\phi^x \wedge \star d\phi^y - \frac{1}{2} a_{IJ} F^I \wedge \star F^J + \frac{1}{3\sqrt{3}} C_{IJK} F^I \wedge F^J \wedge A^K \right).$$

The FGK formalisms for black holes and black strings

The FGK formalisms for black holes and black strings

This theory admits black-hole $(p = 0, \tilde{p} = 1)$ and black strings $(p = 1, \tilde{p} = 0)$ solutions. The corresponding metric ansätze are particular cases of the general one.

The FGK formalisms for black holes and black strings

This theory admits black-hole $(p = 0, \tilde{p} = 1)$ and black strings $(p = 1, \tilde{p} = 0)$ solutions. The corresponding metric ansätze are particular cases of the general one. The effective action is

$$I_{\text{eff}}[\tilde{U}, \phi^{i}] = \int d\tau \left\{ (\dot{\tilde{U}})^{2} + \frac{(p+1)(\tilde{p}+2)}{3} g_{xy} \dot{\phi}^{x} \dot{\phi}^{y} - e^{2\tilde{U}} V_{\text{BB}} + r_{0}^{2} \right\},$$

where, in each case, we have to replace the black-brane potential $V_{\rm BB}$ by the the black-hole $V_{\rm bh}(\phi,q)$ and black-string potentials

$$\begin{cases}
-V_{\rm bh}(\phi, q) &\equiv a^{IJ}q_Iq_J = \mathcal{Z}_{\rm e}^2 + 3\,\partial_x \mathcal{Z}_{\rm e}\,\partial^x \mathcal{Z}_{\rm e}\,, \\
-V_{\rm bs}(\phi, p) &\equiv a_{IJ}p^Ip^J = \mathcal{Z}_{\rm m}^2 + 3\,\partial_x \mathcal{Z}_{\rm m}\,\partial^x \mathcal{Z}_{\rm m}\,,
\end{cases}$$

where we have defined the *electric* and *magnetic* central charges by

$$\mathcal{Z}_{\mathrm{e}}(\phi,q) \equiv h^I q_I \,, \qquad \quad \mathcal{Z}_{\mathrm{m}}(\phi,p) \equiv h_I p^I \,.$$

8 – H-variables for black holes

We replace the original variables \tilde{U}, ϕ^x by new ones \tilde{H}^I and H_I defined by

$$e^{-\tilde{U}/2}h^{I}(\phi) \equiv \tilde{H}^{I},$$

 $e^{-\tilde{U}}h_{I}(\phi) \equiv H_{I},$

and the new (unconstrained) function W

$$W(\tilde{H}) \equiv 2C_{IJK}\tilde{H}^I\tilde{H}^J\tilde{H}^K.$$

The homogeneity properties imply that

$$e^{-\frac{3}{2}\tilde{U}} = \frac{1}{2}W(H),$$

 $h_I = (W/2)^{-2/3}H_I,$
 $h^I = (W/2)^{-1/3}\tilde{H}^I.$

Changing the action to the H_I variables, it becomes

$$-\frac{3}{2}\mathcal{I}[H] = \int d\boldsymbol{\rho} \left[\partial^I \partial^J \log W \left(\dot{H}_I \dot{H}_J + q_I q_J \right) - \frac{3}{2} r_0^2 \right].$$

9 – K-variables for black strings

We introduce two new sets of variables, K^I and \tilde{K}_I , related to the original ones (\tilde{U}, ϕ^x) by

$$e^{-\tilde{U}}h^{I}(\phi) \equiv K^{I},$$

 $e^{-2\tilde{U}}h_{I}(\phi) \equiv \tilde{K}_{I},$

and the new (unconstrained) function V

$$V(K) \equiv C_{IJK} K^I K^J K^K .$$

The homogeneity properties imply that

$$e^{-3\tilde{U}} = V(K),$$

 $h_I = V^{-2/3}\tilde{K}_I,$
 $h^I = V^{-1/3}K^I.$

Changing the action to the K^I variables, it becomes

$$-3\mathcal{I}[\mathbf{K}] = \int d\boldsymbol{\rho} \left[\partial_I \partial_J \log V \left(\dot{\mathbf{K}}^I \dot{\mathbf{K}}^J + \boldsymbol{p}^I \boldsymbol{p}^J \right) - 3r_0^2 \right].$$

The effective actions are formally (only formally!) very similar. let's take the action for black holes to show how to use it.

The effective actions are formally (only formally!) very similar. let's take the action for black holes to show how to use it.

The equations of motion derived from the effective action are

$$\partial^K \partial^I \partial^J \log W \left(H_I \ddot{H}_J - \dot{H}_I \dot{H}_J + q_I q_J \right) = 0.$$

The effective actions are formally (only formally!) very similar. let's take the action for black holes to show how to use it.

The equations of motion derived from the effective action are

$$\partial^K \partial^I \partial^J \log W \left(H_I \ddot{H}_J - \dot{H}_I \dot{H}_J + q_I q_J \right) = 0.$$

Multiplying these equations by \dot{H}_K we get $\dot{\mathcal{H}} = 0$, the Hamiltonian constraint

$$\mathcal{H} \equiv \partial^I \partial^J \log W \left(\dot{H}_I \dot{H}_J - q_I q_J \right) + \frac{3}{2} r_0^2 = 0,$$

where the integration constant has been set to $\frac{3}{2}r_0^2$ by hand.

The effective actions are formally (only formally!) very similar. let's take the action for black holes to show how to use it.

The equations of motion derived from the effective action are

$$\partial^K \partial^I \partial^J \log W \left(H_I \ddot{H}_J - \dot{H}_I \dot{H}_J + q_I q_J \right) = 0.$$

Multiplying these equations by \dot{H}_K we get $\dot{\mathcal{H}} = 0$, the Hamiltonian constraint

$$\mathcal{H} \equiv \partial^I \partial^J \log W \left(\dot{H}_I \dot{H}_J - q_I q_J \right) + \frac{3}{2} r_0^2 = 0,$$

where the integration constant has been set to $\frac{3}{2}r_0^2$ by hand.

Multiplying the equations of motion by H_K we obtain

$$\partial^I \log W \ddot{H}_I = \frac{3}{2} r_0^2,$$

which is the equation of \tilde{U} expressed in the new variables.

The effective actions are formally (only formally!) very similar. let's take the action for black holes to show how to use it.

The equations of motion derived from the effective action are

$$\partial^K \partial^I \partial^J \log W \left(H_I \ddot{H}_J - \dot{H}_I \dot{H}_J + q_I q_J \right) = 0.$$

Multiplying these equations by \dot{H}_K we get $\dot{\mathcal{H}} = 0$, the Hamiltonian constraint

$$\mathcal{H} \equiv \partial^I \partial^J \log W \left(\dot{H}_I \dot{H}_J - q_I q_J \right) + \frac{3}{2} r_0^2 = 0,$$

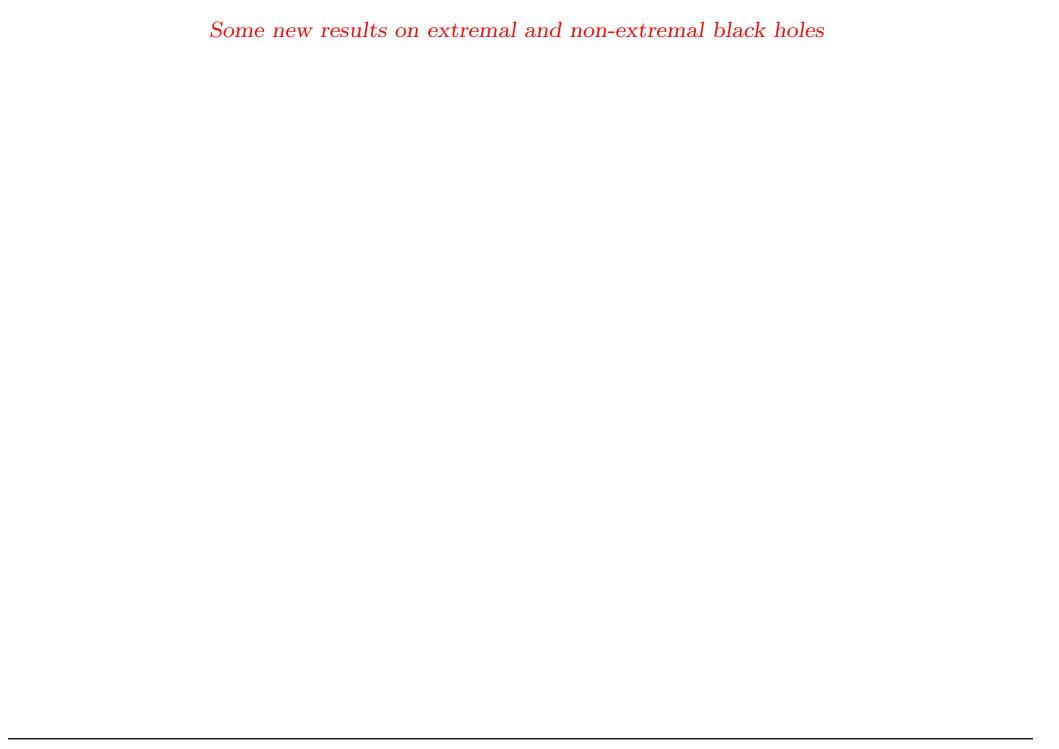
where the integration constant has been set to $\frac{3}{2}r_0^2$ by hand.

Multiplying the equations of motion by H_K we obtain

$$\partial^I \log W \ddot{H}_I = \frac{3}{2} r_0^2,$$

which is the equation of \tilde{U} expressed in the new variables.

How useful are these new variables?



rightharpoonup In H-variables one immediately sees that, in the extremal case $r_0 = 0$

$$H_I = A_I \pm \rho q_I \,, \ \forall I \,,$$

always solves the equations of motion in all theories.

rightharpoonup In H-variables one immediately sees that, in the extremal case $r_0 = 0$

$$H_I = A_I \pm \rho q_I \,, \ \forall I \,,$$

always solves the equations of motion in all theories.

rightharpoonup A bit more difficult to see: in the extremal case $r_0 = 0$

$$H_I = A_I + \rho B_I \,,$$

always solves all the equations of motion if

$$\partial^K V_{\rm bh}(B,q) = 0$$
.

(The scalars are always $\varphi_I = H_I/H_0$ and on the horizon $\varphi_I = B_I/B_0$).

 $rac{1}{2}$ In H-variables one immediately sees that, in the extremal case $r_0 = 0$

$$H_I = A_I \pm \rho q_I \,, \ \forall I \,,$$

always solves the equations of motion in all theories.

rightharpoonup A bit more difficult to see: in the extremal case $r_0 = 0$

$$H_I = A_I + \rho B_I \,,$$

always solves all the equations of motion if

$$\partial^K V_{\rm bh}(B,q) = 0$$
.

(The scalars are always $\varphi_I = H_I/H_0$ and on the horizon $\varphi_I = B_I/B_0$).

 $rightharpoonup The <math>B_I$ s are called fake charges. Defining the fake electric central charges

$$\mathcal{Z}_{\mathrm{e}}(\phi,B)\equiv h^I B_I$$
,

it is immediate to see that the following first-order flow equations are satisfied

$$\frac{de^{-\tilde{U}}}{d\rho} = \mathcal{Z}_{e}(\phi, B), \qquad \frac{d\phi^{x}}{d\rho} = -3e^{\tilde{U}}\partial^{x}\mathcal{Z}_{e}(\phi, B).$$

These first-order equations are extremely easy to obtain:

$$de^{-\tilde{U}} = d(h^{I}h_{I}e^{-\tilde{U}})$$

$$= dh^{I}h_{I}e^{-\tilde{U}} + h^{I}d(h_{I}e^{-\tilde{U}})$$

$$= h^{I}d(h_{I}e^{-\tilde{U}})$$

$$= h^{I}dH_{I}$$

$$= h^{I}B_{I}d\rho$$

$$= \mathcal{Z}_{e}(\phi, B)d\rho.$$

These first-order equations are extremely easy to obtain:

$$de^{-\tilde{U}} = d(h^{I}h_{I}e^{-\tilde{U}})$$

$$= dh^{I}h_{I}e^{-\tilde{U}} + h^{I}d(h_{I}e^{-\tilde{U}})$$

$$= h^{I}d(h_{I}e^{-\tilde{U}})$$

$$= h^{I}dH_{I}$$

$$= h^{I}B_{I}d\rho$$

$$= \mathcal{Z}_{e}(\phi, B)d\rho.$$

These first-order equations imply the second-order ones if $V_{\rm bh}(\phi, B) = V_{\rm bh}(\phi, q)$.

These first-order equations are extremely easy to obtain:

$$de^{-\tilde{U}} = d(h^{I}h_{I}e^{-\tilde{U}})$$

$$= dh^{I}h_{I}e^{-\tilde{U}} + h^{I}d(h_{I}e^{-\tilde{U}})$$

$$= h^{I}d(h_{I}e^{-\tilde{U}})$$

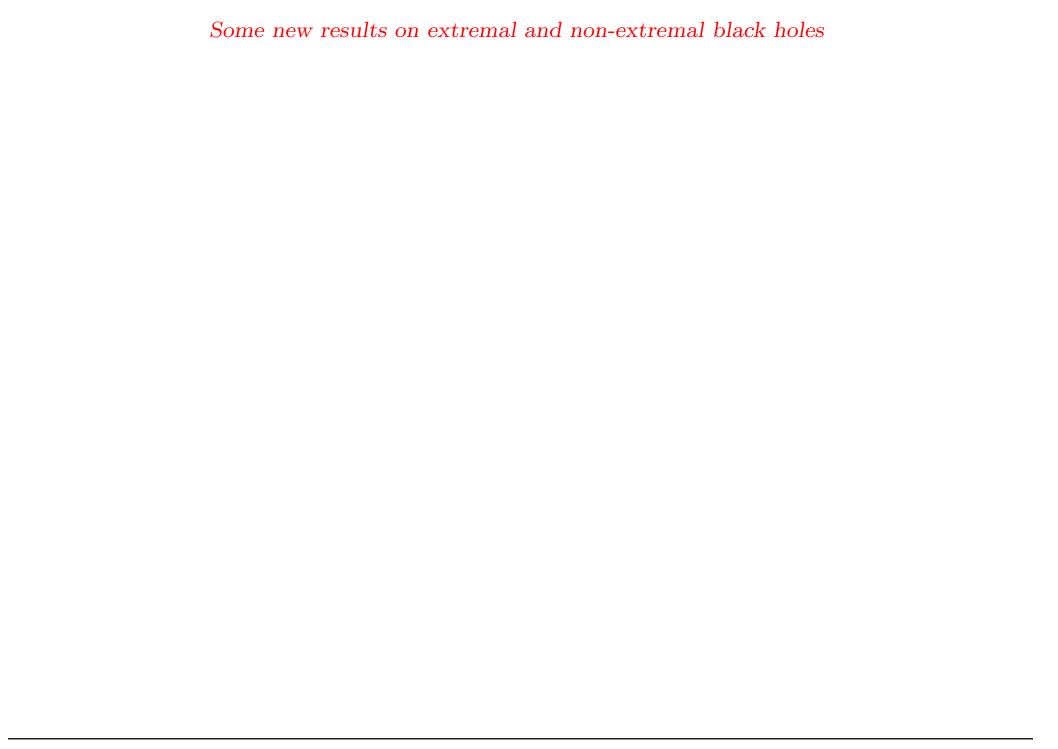
$$= h^{I}dH_{I}$$

$$= h^{I}B_{I}d\rho$$

$$= \mathcal{Z}_{e}(\phi, B)d\rho.$$

These first-order equations imply the second-order ones if $V_{\rm bh}(\phi, B) = V_{\rm bh}(\phi, q)$.

Observe that the interest of these first-order equations is merely formal since they are very difficult to integrate to obtain complete solutions.



The non-extremal case is more complicated, but we can use our *hyperbolic* ansatz

$$H_I = A_I \cosh r_0 \rho + B_I \frac{\sinh r_0 \rho}{r_0}$$
.

The non-extremal case is more complicated, but we can use our *hyperbolic* ansatz

$$H_I = A_I \cosh r_0 \rho + B_I \frac{\sinh r_0 \rho}{r_0}.$$

rightharpoonup The A_I s are easy to find, but, to find the B_I s, one has to solve the e.o.m.

$$\partial^K \partial^I \partial^J \log W(H) \left(B_I B_J - r_0^2 A_I A_J - q_I q_J \right) = 0,$$

$$\partial^I \partial^J \log W(H) \left(B_I B_J - r_0^2 A_I A_J - q_I q_J \right) = 0.$$

The non-extremal case is more complicated, but we can use our *hyperbolic* ansatz

$$H_I = A_I \cosh r_0 \rho + B_I \frac{\sinh r_0 \rho}{r_0}.$$

rightharpoons The A_I s are easy to find, but, to find the B_I s, one has to solve the e.o.m.

$$\partial^K \partial^I \partial^J \log W(H) \left(B_I B_J - r_0^2 A_I A_J - q_I q_J \right) = 0,$$

$$\partial^I \partial^J \log W(H) \left(B_I B_J - r_0^2 A_I A_J - q_I q_J \right) = 0.$$

It is possible to find all the non-extremal black holes of all the theories with diagonal $\partial^I \partial^J \log W(H)$.

The non-extremal case is more complicated, but we can use our *hyperbolic* ansatz

$$H_I = A_I \cosh r_0 \rho + B_I \frac{\sinh r_0 \rho}{r_0}.$$

rightharpoons The A_I s are easy to find, but, to find the B_I s, one has to solve the e.o.m.

$$\partial^K \partial^I \partial^J \log W(H) \left(B_I B_J - r_0^2 A_I A_J - q_I q_J \right) = 0,$$

$$\partial^I \partial^J \log W(H) \left(B_I B_J - r_0^2 A_I A_J - q_I q_J \right) = 0.$$

- It is possible to find all the non-extremal black holes of all the theories with diagonal $\partial^I \partial^J \log W(H)$.
- Tt is also possible to find all the non-extremal black holes with constant scalars of <u>all</u> the theories.

Defining the new coordinate

$$\hat{
ho} \equiv rac{\sinh(r_0
ho)}{r_0\cosh(r_0
ho)}$$

we find the first-order flow equations

$$\frac{de^{-\tilde{U}}}{d\hat{\rho}} = \mathcal{Z}_{e}(\phi, B), \qquad \frac{d\phi^{x}}{d\hat{\rho}} = -3e^{\tilde{U}}\partial^{x}\mathcal{Z}_{e}(\phi, B).$$

Defining the new coordinate

$$\hat{
ho} \equiv rac{\sinh(r_0
ho)}{r_0\cosh(r_0
ho)}$$

we find the first-order flow equations

$$\frac{de^{-\tilde{U}}}{d\hat{\rho}} = \mathcal{Z}_{e}(\phi, B), \qquad \frac{d\phi^{x}}{d\hat{\rho}} = -3e^{\tilde{U}}\partial^{x}\mathcal{Z}_{e}(\phi, B).$$

These equations look identical to those of the extremal case, but the B_I s are different and the range of the coordinate $\hat{\rho}$ is not enough to reach an attractor.

Defining the new coordinate

$$\hat{
ho} \equiv rac{\sinh(r_0
ho)}{r_0\cosh(r_0
ho)}$$

we find the first-order flow equations

$$\frac{de^{-\tilde{U}}}{d\hat{\rho}} = \mathcal{Z}_{e}(\phi, B), \qquad \frac{d\phi^{x}}{d\hat{\rho}} = -3e^{\tilde{U}}\partial^{x}\mathcal{Z}_{e}(\phi, B).$$

- These equations look identical to those of the extremal case, but the B_I s are different and the range of the coordinate $\hat{\rho}$ is not enough to reach an attractor.
- The first-order flow equations imply the second-order e.o.m. if

$$V_{\rm bh}(\phi, B) - V_{\rm bh}(\phi, q) = r_0^2$$
.

<u>Conclusion</u>: in any 4-dimensional, charged, static, black-hole solution of an ungauged supergravity there are two triplets of vector fields L^{\pm}_{m} , $m=0,\pm 1$ given by

$$L^{\pm}_{1} = -\frac{e^{r_{0}\pi t/S_{\pm}}}{r_{0}} \left(\frac{S_{\pm}}{\pi} \cosh(r_{0}\tau)\partial_{t} + \sinh(r_{0}\tau)\partial_{\tau} \right)$$

$$L^{\pm}{}_0 = -\frac{S_{\pm}}{r_0 \pi} \partial_t \,,$$

$$L^{\pm}_{-1} = -\frac{e^{-r_0\pi t/S_{\pm}}}{r_0} \left(\frac{S_{\pm}}{\pi} \cosh(r_0\tau)\partial_t - \sinh(r_0\tau)\partial_\tau\right),\,$$

where $S_{\pm} = \frac{A_{\pm}}{4}$, which generate two $\mathfrak{sl}(2)$ algebras whose quadratic Casimirs

$$\mathcal{H}^{\pm 2} \equiv (L^{\pm}_{0})^{2} - \frac{1}{2} (L^{\pm}_{1}L^{\pm}_{-1} + L^{\pm}_{-1}L^{\pm}_{1}) ,$$

approximate the massless Klein-Gordon equation in the two near-horizon regions:

$$\mathcal{K}_{4}\Phi = \left\{ -e^{-4U}W_{-1}^{-2}\partial_{t}^{2} + W_{-1}^{2}\partial_{\tau}^{2} \right\} \Phi \xrightarrow{\tau \to \mp \infty} W_{-1} \left\{ -\left(S_{\pm}/\pi\right)^{2}\partial_{t}^{2} + \partial_{\tau}^{2} \right\} \Phi = \mathcal{H}^{\pm 2}\Phi.$$

The extremal limit $r_0 \to 0$ is singular because taking the near-horizon limit and of taking the extremal limit $r_0 \to 0$ do not commute.

The extremal limit $r_0 \to 0$ is singular because taking the near-horizon limit and of taking the extremal limit $r_0 \to 0$ do not commute.

The $\mathfrak{sl}(2)$ algebra can be extended to a complete Witt algebra, (a Virasoro algebra with no central charges):

$$L^{\pm}_{m} = -\frac{e^{mr_{0}\pi t/S_{\pm}}}{r_{0}} \left(\frac{S_{\pm}}{\pi} \cosh\left(mr_{0}\tau\right) \partial_{t} + \sinh\left(mr_{0}\tau\right) \partial_{\tau} \right).$$

The extremal limit $r_0 \to 0$ is singular because taking the near-horizon limit and of taking the extremal limit $r_0 \to 0$ do not commute.

The $\mathfrak{sl}(2)$ algebra can be extended to a complete Witt algebra, (a Virasoro algebra with no central charges):

$$L^{\pm}_{m} = -\frac{e^{mr_{0}\pi t/S_{\pm}}}{r_{0}} \left(\frac{S_{\pm}}{\pi} \cosh\left(mr_{0}\tau\right) \partial_{t} + \sinh\left(mr_{0}\tau\right) \partial_{\tau} \right).$$

These results can easily be extended to d-dimensional black holes using the general form of the black-hole metric etc.

The extremal limit $r_0 \to 0$ is singular because taking the near-horizon limit and of taking the extremal limit $r_0 \to 0$ do not commute.

The $\mathfrak{sl}(2)$ algebra can be extended to a complete Witt algebra, (a Virasoro algebra with no central charges):

$$L^{\pm}_{m} = -\frac{e^{mr_{0}\pi t/S_{\pm}}}{r_{0}} \left(\frac{S_{\pm}}{\pi} \cosh\left(mr_{0}\tau\right) \partial_{t} + \sinh\left(mr_{0}\tau\right) \partial_{\tau} \right).$$

These results can easily be extended to d-dimensional black holes using the general form of the black-hole metric etc.

But the main question is: what is the meaning of this symmetry? (Is it really a symmetry? What of?) Can we use it to compute entropies?

10 – Conclusions

* We have generalized the FGK formalism to all spacetime and worldvolume dimensions.

- * We have generalized the FGK formalism to all spacetime and worldvolume dimensions.
- * We have proposed a general Ansatz to solve the equations of the FGK formalism for non-extremal black holes based on the functional form of the extremal supersymmetric ones (basically, a deformation procedure).

- * We have generalized the FGK formalism to all spacetime and worldvolume dimensions.
- * We have proposed a general Ansatz to solve the equations of the FGK formalism for non-extremal black holes based on the functional form of the extremal supersymmetric ones (basically, a deformation procedure).
- * We have worked out a complete example, showing

- * We have generalized the FGK formalism to all spacetime and worldvolume dimensions.
- We have proposed a general Ansatz to solve the equations of the FGK formalism for non-extremal black holes based on the functional form of the extremal supersymmetric ones (basically, a deformation procedure).
- * We have worked out a complete example, showing
 - 1. How the deformation procedure reduces the differential equations of the FGK formalism to algebraic relations between integration constants, that we have been able to solve.

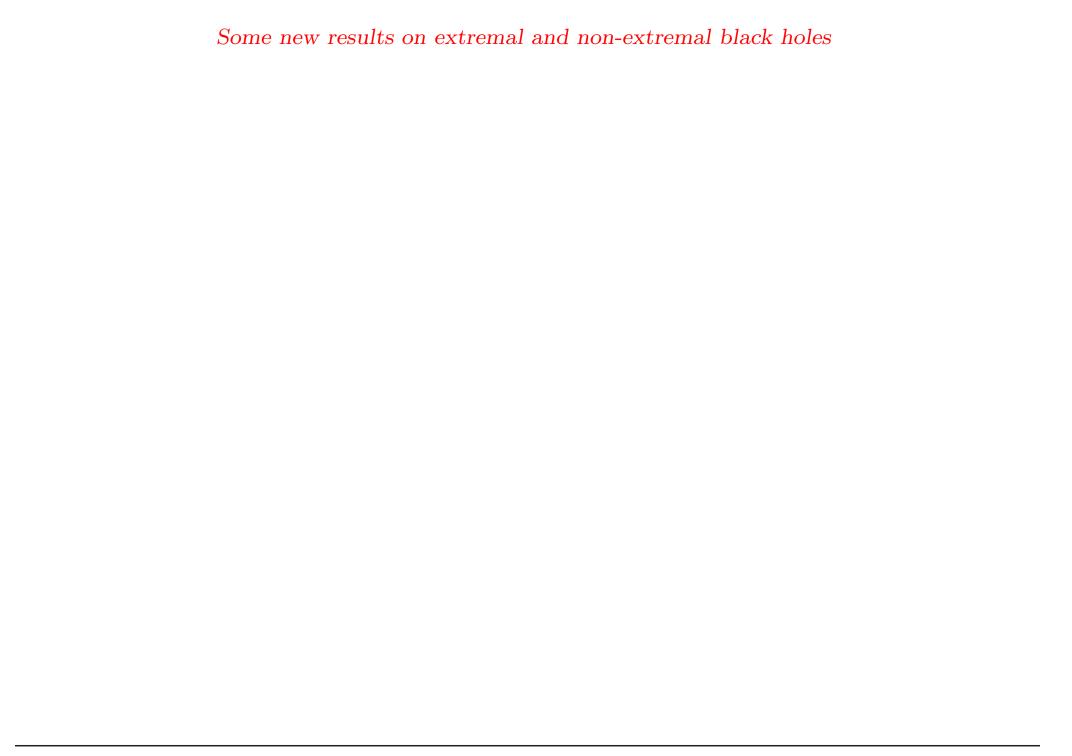
- * We have generalized the FGK formalism to all spacetime and worldvolume dimensions.
- * We have proposed a general Ansatz to solve the equations of the FGK formalism for non-extremal black holes based on the functional form of the extremal supersymmetric ones (basically, a deformation procedure).
- * We have worked out a complete example, showing
 - 1. How the deformation procedure reduces the differential equations of the FGK formalism to algebraic relations between integration constants, that we have been able to solve.
 - 2. How we can recover very hard to find extremal non-supersymmetric solutions from the non-extremal ones.

- We have generalized the FGK formalism to all spacetime and worldvolume dimensions.
- * We have proposed a general Ansatz to solve the equations of the FGK formalism for non-extremal black holes based on the functional form of the extremal supersymmetric ones (basically, a deformation procedure).
- * We have worked out a complete example, showing
 - 1. How the deformation procedure reduces the differential equations of the FGK formalism to algebraic relations between integration constants, that we have been able to solve
 - 2. How we can recover very hard to find extremal non-supersymmetric solutions from the non-extremal ones.

We have proven that part of our ansatz is completely general, constructing a formalism ("H-FGK") that simplifies the construction of extremal and non-extremal (black-hole and also black-string solutions in d = 5.

Page 49-f

- * We have generalized the FGK formalism to all spacetime and worldvolume dimensions.
- * We have proposed a general Ansatz to solve the equations of the FGK formalism for non-extremal black holes based on the functional form of the extremal supersymmetric ones (basically, a deformation procedure).
- * We have worked out a complete example, showing
 - 1. How the deformation procedure reduces the differential equations of the FGK formalism to algebraic relations between integration constants, that we have been able to solve.
 - 2. How we can recover very hard to find extremal non-supersymmetric solutions from the non-extremal ones.
 - We have proven that part of our ansatz is completely general, constructing a formalism ("H-FGK") that simplifies the construction of extremal and non-extremal (black-hole and also black-string solutions in d = 5.
- * We have shown the power of this approach finding very general solutions and results such as the *first-order flow equations* for extremal and non-extremal objects.



*We have shown that *all* the single, static, charged black holes of all ungauged supergravities have a hidden $\mathfrak{sl}(2)$ invariance that may be part of a full conformal invariance.

- *We have shown that *all* the single, static, charged black holes of all ungauged supergravities have a hidden $\mathfrak{sl}(2)$ invariance that may be part of a full conformal invariance.
- ★ We have used the FGK formalism to construct new solutions that asymptote hvLf spacetimes, and we have shown that the near-singularity limits of known solutions also have this behaviour. Is there a holographic dual of these singularities?

We are closer to determining the general form of all single, static, black-hole and black-string solutions of $\mathcal{N}=2$, d=4,5 theories.