D5-Branes and Quantum Impurity Models

Wolfgang Mück

Università di Napoli "Federico II" and INFN, Sezione di Napoli

INFN-Spain workshop, Napoli, November 13, 2012
W.M. arXiv:1012.1973 and work in progress
A. Faraggi, W.M., L. A. Pando Zayas arXiv:1112.5028

Motivation

$A d S_{5}$

Classical SUGRA regime

$$
N \rightarrow \infty, \quad \text { large } \lambda
$$

Motivation

Latitude angle θ_{n} is quantized by the fundamental string charge

$$
n=\frac{N}{\pi}\left(\theta_{n}-\sin \theta_{n} \cos \theta_{n}\right) \quad 0 \leq n \leq N, \quad \frac{n}{N} \text { fixed }
$$

[Pawelczyk, Rey hep-th/0007154; Camino, Paredes, Ramallo hep-th/0104082]

Motivation

$A d S_{5}$

Latitude angle θ_{n} is quantized by the fundamental string charge

$$
n=\frac{N}{\pi}\left(\theta_{n}-\sin \theta_{n} \cos \theta_{n}\right) \quad 0 \leq n \leq N, \quad \frac{n}{N} \text { fixed }
$$

2-d part of the worldvolume behaves like a string worldsheet

$$
\text { effective string tension } \quad T_{e f f}=\frac{N}{3 \pi^{2} \alpha^{\prime}} \sin ^{3} \theta_{n}
$$

Motivation

AdS/CFT dictionary

$\operatorname{AdS}_{5} \times S^{5}$	\leftrightarrow
D5-brane	$\mathcal{N}=4$ SYM
fundamental string charge n	Wilson loop of operator in anti-symmetric rep. of $S U(N)$
$\left.\mathrm{C}_{n}=\begin{array}{c}\square \\ \mathrm{e}^{-I_{\mathrm{D} 5, \text { on-shell }}}\end{array}\right\} n$	

Motivation

1) Hermitian matrix model

The calculation of $1 / 2$ BPS Wilson loops is reduced to a hermitian matrix model by localization.
[Erickson, Semenoff, Zarembo hep-th/0003055; Drukker, Gross hep-th/0010274; Pestun, arXiv:0712.2824]

$A d S_{5}$

$$
\left\langle\operatorname{Tr} \mathcal{P} \exp \oint d s\left(i A_{\mu} \dot{x}^{\mu}+\phi|\dot{x}|\right)\right\rangle=\frac{1}{Z} \int d M \operatorname{Tr}_{\Gamma_{n}}\left[\mathrm{e}^{M}\right] \exp \left(-\frac{2 N}{\lambda} \operatorname{Tr}\left[M^{2}\right]\right)
$$

The result from the matrix model agrees perfectly with the D5-brane calculation

$$
I_{\text {on-shell }}=-\frac{2 N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n}
$$

[Yamaguchi hep-th/0603208; Okuyama, Semenoff hep-th/0604209; Hartnoll, Kumar hep-th/0605027]

2) Fermions coupled to SYM fields

Operators in anti-symmetric representation Γ_{n} are described by N fermions coupled to the SYM fields and localized at the intersection of the D5-brane with the boundary. The total occupation number is fixed to n.

$$
I=I_{\mathcal{N}=4}+\int d t\left[i \chi^{\dagger} \partial_{t} \chi+\chi^{\dagger}\left(A_{0}+\phi\right) \chi+\mu\left(\chi^{\dagger} \chi-n\right)\right]
$$

[Gomis, Passerini hep-th/0604007]

Relation to quantum impurity models

- The above is a Kondo-like quantum impurity model.
[Sachdev arXiv: 1006.3794, 1010.0682]
- similarities with overscreened multi-channel Kondo model
[Parcollet, Georges, Kotliar, Sengupta PRB 58, 3794 (1998)]
- hints at a holographic dual of the physics of quantum antiferromagnets and strange metals

Two Wilson loops
on-shell action is independent of distance between loops

$$
I=2 I_{W L}=-\frac{4 N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n}
$$

Wilson loop correlator

shape depends on order parameter σ
dimensionless
"temperature" $T=\frac{x}{2 \pi R}$

free energy

[Zarembo hep-th/9904149] for fundamental representation

Two Polyakov loops
finite temperature, D5-branes end at horizon action is independent of the distance between loops

$$
I=2 I_{P L}=-\frac{2 N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n}
$$

$$
\text { note: } I_{P L}=\frac{1}{2} I_{W L}
$$

Holographic dimer

shape depends on order parameter γ
dimensionless
"temperature" $T=\frac{X}{\beta}$

free energy

[Kachru, Karch, Yaida arXiv:0909.2639], older work on $q-\bar{q}$ potential

Part I: Quantum impurity model

- calculation of Wilson and Polyakov loops using the formulation as a quantum impurity model
\Rightarrow thermodynamic picture, impurity entropy
- result agrees with matrix model and D5-brane calculations
- extend AdS/CFT dictionary

Part II: Holographic Wilson loop correlators

- review of D5-brane solution connecting two circles on the boundary
- thermodynamics of Wilson loop correlators and phase transition
- towards a quantum impurity model of the Wilson loop correlator

Part I: Quantum impurity model

[W.M. arXiv:1012.1973]

D5-brane description of Polyakov loop on $\mathbb{R}^{3} \times \mathbb{R}$

- finite temperature (black brane gravity background)

$$
\beta=\frac{\pi l^{2}}{r_{+}}
$$

- renormalized on-shell action

$$
I_{D 5}=-\beta F=-\frac{N \sqrt{\lambda}}{3 \pi^{2} l^{2}} \beta r_{+} \sin ^{3} \theta_{n}
$$

- strong coupling entropy enhancement

$$
S=\frac{N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n} \quad \nu=\frac{n}{N}=\frac{1}{\pi}\left(\theta_{n}-\sin \theta_{n} \cos \theta_{n}\right)
$$

- in contrast, weak coupling degeneracy of states is

$$
\ln d_{n}=-N[\nu \ln \nu+(1-\nu) \ln (1-\nu)]
$$

$\mathcal{N}=4$ SYM with fermionic impurity

$$
I=\int d^{3} x d \tau \mathcal{L}_{\mathcal{N}=4}+\int d \tau\left[\chi_{a}^{\dagger} \partial_{\tau} \chi^{a}+i \chi_{a}^{\dagger} \tilde{A}_{b}^{a} \chi^{b}+i \mu\left(\chi_{a}^{\dagger} \chi^{a}-n\right)\right]
$$

$\chi: N$-component spinor transforming in fund. rep. of $S U(N)$
$\tilde{A}: \tilde{A}=A_{\mu} \dot{x}^{\mu}+n^{I} \phi_{I} \mid \dot{x}, \tilde{A}_{b}^{a}=\left(t^{c}\right)_{b}^{a} \tilde{A}_{c}$
μ : Lagrange multiplier, fixes fermion occupation number to n
$\tau:$ Euclidean time, $\tau \in(0, \beta)$

$\mathcal{N}=4$ SYM with fermionic impurity

$$
I=\int d^{3} x d \tau \mathcal{L}_{\mathcal{N}=4}+\int d \tau\left[\chi_{a}^{\dagger} \partial_{\tau} \chi^{a}+i \chi_{a}^{\dagger} \tilde{A}_{b}^{a} \chi^{b}+i \mu\left(\chi_{a}^{\dagger} \chi^{a}-n\right)\right]
$$

$\chi: N$-component spinor transforming in fund. rep. of $S U(N)$
$\tilde{A}: \tilde{A}=A_{\mu} \dot{x}^{\mu}+n^{l} \phi_{I}|\dot{x}|, \tilde{A}_{b}^{a}=\left(t^{c}\right)_{b}^{a} \tilde{A}_{c}$
μ : Lagrange multiplier, fixes fermion occupation number to n
$\tau:$ Euclidean time, $\tau \in(0, \beta)$
Integrate out SYM fields \rightarrow impurity action

$$
\begin{aligned}
I= & \int d \tau\left[\chi_{a}^{\dagger}\left(\partial_{\tau}+i \mu\right) \chi^{a}-i \mu n\right] \\
& +\frac{\lambda}{2 N} \int d \tau d \tau^{\prime} D\left(\tau-\tau^{\prime}\right) \chi_{a}^{\dagger}(\tau) \chi_{b}^{\dagger}\left(\tau^{\prime}\right) \chi^{b}(\tau) \chi^{a}\left(\tau^{\prime}\right)
\end{aligned}
$$

with SYM background correlator $\left\langle\tilde{A}_{c}(\tau) \tilde{A}_{c^{\prime}}\left(\tau^{\prime}\right)\right\rangle=\frac{2 \lambda}{N} \delta_{c c^{\prime}} D\left(\tau-\tau^{\prime}\right)$

Large- N limit is dominated by saddle point

$$
\begin{aligned}
G\left(i \omega_{n}\right) & =\frac{1}{i \omega_{n}-\bar{\mu}-\Sigma\left(i \omega_{n}\right)} & & \text { Dyson's equation }(\bar{\mu}=i \mu) \\
\Sigma(\tau) & =\lambda D(\tau) G(\tau) & & \text { self-energy } \\
G\left(\tau \rightarrow 0^{-}\right) & =\frac{n}{N}=\nu & & \text { occupation number constraint }
\end{aligned}
$$

2-point Green's function

$$
\left\langle\mathcal{T} \chi^{a}(\tau) \chi_{b}^{\dagger}(0)\right\rangle=-G(\tau) \delta_{b}^{a}
$$

Fourier transform

$$
G\left(i \omega_{n}\right)=\int_{0}^{\beta} d \tau \mathrm{e}^{i \omega_{n} \tau} G(\tau)
$$

$\omega_{n}=\frac{2 \pi}{\beta}\left(n+\frac{1}{2}\right):$ fermionic Matsubara frequencies analytic continuation $i \omega_{n} \rightarrow \omega+i 0^{+}$gives retarded Green's function

Scaling ansatz

$$
\begin{aligned}
& D(\tau)=A_{0} \beta^{-2 \Delta_{0}}\left[\frac{\pi}{\sin (\pi \tilde{\tau})}\right]^{2 \Delta_{0}} \quad G(\tau)=-A \beta^{-2 \Delta} \mathrm{e}^{\alpha \tilde{\tau}}\left[\frac{\pi}{\sin (\pi \tilde{\tau})}\right]^{2 \Delta} \\
& \tilde{\tau}: \tilde{\tau}=\tau / \beta \in(0,1) \\
& \Delta, \Delta_{0}: \text { scaling dimensions } \\
& A, A_{0}: \text { constants } \\
& \alpha: \text { particle-hole asymmetry parameter }
\end{aligned}
$$

- The half-filling case $\nu=\frac{1}{2}(\alpha=0)$ was solved by Sachdev [arXiv:1010.0682].
- In the scaling regime, Green's function is dominated by the self-energy Σ.

Properties of the solution

$$
\begin{aligned}
& 2 \Delta+\Delta_{0}=1 \quad \nu=\frac{1}{2}-\frac{\vartheta}{\pi}-\frac{\Delta_{0}}{2 \sin \left(\pi \Delta_{0}\right)} \sin (2 \vartheta) \\
& \vartheta: \text { spectral asymmetry angle } \quad \mathrm{e}^{\alpha}=\frac{\sin (\pi \Delta-\vartheta)}{\sin (\pi \Delta+\vartheta)} \quad \vartheta \in(-\pi \Delta, \pi \Delta)
\end{aligned}
$$

Properties of the solution

$$
\begin{aligned}
& 2 \Delta+\Delta_{0}=1 \quad \nu=\frac{1}{2}-\frac{\vartheta}{\pi}-\frac{\Delta_{0}}{2 \sin \left(\pi \Delta_{0}\right)} \sin (2 \vartheta) \\
& \vartheta \text { : spectral asymmetry angle } \quad \mathrm{e}^{\alpha}=\frac{\sin (\pi \Delta-\vartheta)}{\sin (\pi \Delta+\vartheta)} \quad \vartheta \in(-\pi \Delta, \pi \Delta)
\end{aligned}
$$

Impurity model

$$
\begin{gathered}
\vartheta \in(-\pi \Delta, \pi \Delta) \\
\nu=\frac{1}{2}-\frac{\vartheta}{\pi}-\frac{\Delta_{0}}{2 \sin \left(\pi \Delta_{0}\right)} \sin (2 \vartheta)
\end{gathered}
$$

D5-brane

$$
\begin{gathered}
\theta_{n} \in(0, \pi) \\
\nu=\frac{1}{\pi}\left(\theta_{n}-\sin \theta_{n} \cos \theta_{n}\right)
\end{gathered}
$$

Properties of the solution

$$
\begin{aligned}
& 2 \Delta+\Delta_{0}=1 \quad \nu=\frac{1}{2}-\frac{\vartheta}{\pi}-\frac{\Delta_{0}}{2 \sin \left(\pi \Delta_{0}\right)} \sin (2 \vartheta) \\
& \vartheta \text { : spectral asymmetry angle } \quad \mathrm{e}^{\alpha}=\frac{\sin (\pi \Delta-\vartheta)}{\sin (\pi \Delta+\vartheta)} \quad \vartheta \in(-\pi \Delta, \pi \Delta)
\end{aligned}
$$

Impurity model

$$
\begin{gathered}
\vartheta \in(-\pi \Delta, \pi \Delta) \\
\nu=\frac{1}{2}-\frac{\vartheta}{\pi}-\frac{\Delta_{0}}{2 \sin \left(\pi \Delta_{0}\right)} \sin (2 \vartheta)
\end{gathered}
$$

D5-brane

$$
\begin{gathered}
\theta_{n} \in(0, \pi) \\
\nu=\frac{1}{\pi}\left(\theta_{n}-\sin \theta_{n} \cos \theta_{n}\right)
\end{gathered}
$$

Relation between impurity model and D5-brane
The D5-brane corresponds to the limiting case

$$
\Delta_{0}=0 \quad \Delta=\frac{1}{2} \quad \vartheta=\frac{\pi}{2}-\theta_{n}
$$

Background Green's funtion

$$
D(\tau)=\frac{c^{2}}{\beta^{2}} \quad \text { for dimensional reasons }
$$

Self-energy equation is now trivial

$$
\Sigma(\tau)=\lambda D(\tau) G(\tau)=\hat{\lambda} G(\tau) \quad \hat{\lambda}=\frac{c^{2} \lambda}{\beta^{2}}
$$

Rescale to remove explicit β and λ from saddle point equations

$$
\omega=2 \sqrt{\hat{\lambda}} \hat{\omega} \quad \bar{\mu}=2 \sqrt{\hat{\lambda}} \hat{\mu} \quad G(\omega)=\frac{g(\hat{\omega})}{2 \sqrt{\hat{\lambda}}}
$$

Solution for retarded Green's function

$$
g(\hat{\omega})=2\left\{(\hat{\omega}-\hat{\mu})-\left[(\hat{\omega}-\hat{\mu})^{2}-1\right]^{1 / 2}\right\}
$$

Spectral density is a Wigner semi-circle

$\rho^{g}(\hat{\omega})= \begin{cases}4 \sqrt{1-(\hat{\omega}-\hat{\mu})^{2}} & \text { for }|\hat{\omega}-\hat{\mu}|<1, \\ 0 & \text { otherwise. }\end{cases}$

Occupation number

$$
\nu-\frac{1}{2}=-\frac{1}{4 \pi} \int d \hat{\omega} \rho^{g}(\hat{\omega}) \tanh (c \sqrt{\lambda} \hat{\omega})
$$

for large λ (SUGRA regime)

$$
\nu-\frac{1}{2}=-\frac{1}{\pi}\left(\arcsin \hat{\mu}+\hat{\mu} \sqrt{1-\hat{\mu}^{2}}\right) \quad \hat{\mu} \in(-1,1)
$$

Spectral density is a Wigner semi-circle

$\rho^{g}(\hat{\omega})= \begin{cases}4 \sqrt{1-(\hat{\omega}-\hat{\mu})^{2}} & \text { for }|\hat{\omega}-\hat{\mu}|<1, \\ 0 & \text { otherwise. }\end{cases}$

Occupation number

$$
\nu-\frac{1}{2}=-\frac{1}{4 \pi} \int d \hat{\omega} \rho^{g}(\hat{\omega}) \tanh (c \sqrt{\lambda} \hat{\omega})
$$

for large λ (SUGRA regime)

$$
\nu-\frac{1}{2}=-\frac{1}{\pi}\left(\arcsin \hat{\mu}+\hat{\mu} \sqrt{1-\hat{\mu}^{2}}\right) \quad \hat{\mu} \in(-1,1)
$$

Comparison with D5-brane

$$
\hat{\mu}=\cos \theta_{n} \quad \Rightarrow \quad \nu=\frac{1}{\pi}\left(\theta_{n}-\sin \theta_{n} \cos \theta_{n}\right)
$$

Impurity entropy

$$
\frac{\partial S}{\partial \nu}=-N \frac{\partial \bar{\mu}}{\partial T}
$$

yields

$$
S=c \frac{4 N \sqrt{\lambda}}{3 \pi}\left(1-\hat{\mu}^{2}\right)^{3 / 2}=c \frac{4 N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n}
$$

$\sqrt{\lambda}$ entropy enhancement comes from temperature dependence of $\bar{\mu}$
Comparison with D5-brane for Polyakov loop

$$
S_{\mathrm{PL}}=\frac{N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n} \quad \Rightarrow \quad c_{\mathrm{PL}}=\frac{1}{4}
$$

Impurity entropy

$$
\frac{\partial S}{\partial \nu}=-N \frac{\partial \bar{\mu}}{\partial T}
$$

yields

$$
S=c \frac{4 N \sqrt{\lambda}}{3 \pi}\left(1-\hat{\mu}^{2}\right)^{3 / 2}=c \frac{4 N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n}
$$

$\sqrt{\lambda}$ entropy enhancement comes from temperature dependence of $\bar{\mu}$
Comparison with D5-brane for Polyakov loop

$$
S_{\mathrm{PL}}=\frac{N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n} \quad \Rightarrow \quad c_{\mathrm{PL}}=\frac{1}{4}
$$

Comparison with D5-brane for Wilson loop
we know $\langle\tilde{A}(\tau) \tilde{A}(0)\rangle_{\mathrm{wL}} \quad \Rightarrow \quad c_{\mathrm{WL}}=\frac{1}{2}$
perfect agreement with $\quad I_{\mathrm{WL}}=-\frac{2 N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n}$

Scaling regime

- found general solution in scaling regime with arbitrary filling fraction ν
- D5-brane configuration corresponds to the limiting case of scaling regime $\Delta_{0}=0$, i.e., constant $D(\tau)$
- θ_{n} is related to spectral asymmetry angle $\vartheta=\frac{\pi}{2}-\theta_{n}$

Limiting case

- $\Delta_{0}=0$ case can be solved exactly
- the solution agrees (even at finite λ) with the matrix model calculation by Hartnoll and Kumar [hep-th/0605027]
- $\lambda \rightarrow \infty$ limit reproduces D5-brane relations for Wilson and Polyakov loops
- $\log Z$ is interpreted as the impurity entropy
- $\sqrt{\lambda}$ entropy enhancement stems from temperature dependence of the chemical potential
- $\hat{\mu}=\cos \theta_{n}$ is the (rescaled) chemical potential

Part II: Wilson loop correlator

[work in progress]

D5-brane configuration

- 2d part in $A d S_{5}$ is string worldsheet with effective tension

$$
T_{e f f}=\frac{N}{3 \pi^{2} \alpha^{\prime}} \sin ^{3} \theta_{n}
$$

- We can "recycle" old results on the Wilson loop correlator in the fundamental representation. [e.g., Zarembo hep-th/9904149; Olesen, Zarembo hep-th/0009210]

effective string world-sheet

$$
d s_{A d S_{5}}^{2}=\frac{L^{2}}{z^{2}}\left(-d t^{2}+d z^{2}+d x^{2}+d y^{2}+y^{2} d \phi^{2}\right)
$$

world-sheet connects 2 parallel circles of radius R located at $x= \pm \frac{1}{2}\left|x_{12}\right|$

$$
\phi=\tau, \quad x=\rho, \quad y=\sqrt{a^{2}-\rho^{2}} \cos \theta(\rho), \quad z=\sqrt{a^{2}-\rho^{2}} \sin \theta(\rho)
$$

with

$$
a^{2}=R^{2}+\frac{1}{4}\left|x_{12}\right|^{2}
$$

and

$$
\frac{d \theta}{d \rho}=-\operatorname{sgn} \rho \frac{a}{a^{2}-\rho^{2}} \frac{\sqrt{\sin ^{4} \theta_{*} \cos ^{2} \theta-\cos ^{2} \theta_{*} \sin ^{4} \theta}}{\cos \theta_{*} \sin ^{2} \theta}, \quad \theta_{*}=\theta(0)
$$

[Zarembo hep-th/9904149]
Remark: Configuration of 2 concentric circles considered in [Olesen, Zarembo hep-th/0009210] can be obtained by conformal transformations.

Recast the solution in terms of thermodynamic quantities (new!)

- distance x_{12} can be described in terms of a dimensionless "temperature"
- or: measure inverse temperature $\beta=2 \pi R$ in units of $\left|x_{12}\right|$

$$
\mathcal{T}=\frac{\left|x_{12}\right|}{2 \pi R}=\frac{1}{\pi} \sinh J
$$

- J is obtained by integrating the ODE for θ and is given in terms of the order parameter $\sigma=\sin ^{2} \theta_{*}$

$$
J=\frac{\pi}{4} \sqrt{\sigma(1-\sigma)} \mathrm{F}_{1}\left(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, 2 ; \sigma, \sigma-1\right)
$$

F_{1} is an Appell hypergeometric function of 2 variables

- There is a maximum temperature for which the correlator exists (or maximum distance, or minimum radius)
- 2 branches

Renormalized on-shell action gives the free energy

- factor out Wilson loop value and define dimensionless free energy \mathcal{F}

$$
I_{\mathrm{ren}}=\left|I_{\circ}\right| \frac{\mathcal{F}}{\mathcal{T}}, \quad I_{\circ}=-\frac{2 N \sqrt{\lambda}}{3 \pi} \sin ^{3} \theta_{n}
$$

- in terms of the order parameter

$$
\frac{\mathcal{F}}{\mathcal{T}}=-\frac{\pi}{2 \sqrt{\sigma(2-\sigma)}} \mathrm{F}\left(\frac{1}{2}, \frac{1}{2} ; 2 ; \frac{1}{2-\sigma}\right)
$$

F is a (Gauss) hypergeometric function

First order phase transition between the correlator and 2 disconnected Wilson loops

$$
\mathcal{F}_{\circ \circ}=-2 \mathcal{T}
$$

Entropy

$$
\mathcal{S}=-\frac{\partial \mathcal{F}}{\partial \mathcal{T}}=-\frac{\mathcal{F}}{\mathcal{T}}-\tanh J \frac{d(\mathcal{F} / \mathcal{T})}{d \sigma}\left(\frac{d J}{d \sigma}\right)^{-1}
$$

calculation of the second term involves some "hypergeometric magic"
cf. [Benincasa, Ramallo arXiv:1204.6290]

$$
\mathcal{S}=-\frac{\mathcal{F}}{\mathcal{T}}-\frac{2 \sqrt{1-\sigma}}{\sigma} \tanh J
$$

- unstable branch approaches the disconnected solution for $\sigma \rightarrow 1$

$$
\mathcal{S}_{\circ \circ}=2
$$

- bound state has less entropy

Energy

$$
\mathcal{E}=\mathcal{F}+\mathcal{T} \mathcal{S}=-\frac{2 \sqrt{1-\sigma}}{\pi \sigma} \tanh J \sinh J
$$

Low energy of the bound state dominates the correlator.

Quantum 2-impurity model

After integrating out the SYM fields we are left with 2 coupled impurities

$$
\begin{aligned}
I= & \sum_{I=1}^{2} \int d \tau\left[\chi_{I a}^{\dagger}\left(\partial_{\tau}+i \mu_{I}\right) \chi_{I}^{a}-i \mu_{I} n_{I}\right] \\
& +\sum_{I, J=1}^{2} \frac{\lambda}{2 N} \int d \tau d \tau^{\prime} D_{I J}\left(\tau-\tau^{\prime}\right) \chi_{I a}^{\dagger}(\tau) \chi_{J b}^{\dagger}\left(\tau^{\prime}\right) \chi_{I}^{b}(\tau) \chi_{J}^{a}\left(\tau^{\prime}\right)
\end{aligned}
$$

background correlator is known from SYM correlation functions

$$
\begin{gathered}
D_{11}(\tau)=D_{22}(\tau)=\frac{1}{4 \beta^{2}}=\frac{1}{16 \pi^{2} R^{2}} \\
D_{12}(\tau)=\frac{1}{4 \beta^{2}}\left(1-\frac{\frac{1}{2}\left(1-v_{I} \cdot v_{J}\right)+X^{2}}{\sin ^{2}\left[\pi\left(\tau+\tau_{0}\right) / \beta\right]+X^{2}}\right)
\end{gathered}
$$

- $X=\frac{\left|x_{12}\right|}{2 R}, \nu_{I}$ is 6-d unit-vector multiplying the SYM scalars in $\tilde{A}=A_{\tau}+\nu \cdot \phi$
- time has the same orientation on both loops $\Rightarrow D_{12}$ depends on $\tau-\tau^{\prime}$
- arbitrary off-set τ_{0} between the origins of time on the loops (D_{21} has $-\tau_{0}$)

Saddle point equations

- Green's function and self-energy are 2×2 matrices
- chemical potential matrix

$$
\bar{\mu}=\left(\begin{array}{cc}
i \mu_{1} & 0 \\
0 & i \mu_{2}
\end{array}\right)
$$

- Dyson's equation

$$
G\left(i \omega_{n}\right)^{-1}=i \omega_{n} \mathbb{I}-\bar{\mu}-\Sigma\left(i \omega_{n}\right)
$$

- self-energy equation

$$
\Sigma_{I J}(\tau)=\lambda D_{I J}(\tau) G_{I J}(\tau) \quad(\text { no summation over } I, J)
$$

- occupation number constraints

$$
G_{I I}\left(\tau \rightarrow 0^{-}\right)=\frac{n_{I}}{N}=\nu_{I}
$$

Disconnected solution

There is always a solution with vanishing off-diagonal elements

$$
G_{12}=G_{21}=\Sigma_{12}=\Sigma_{21}=0
$$

G_{11} and G_{22} are solutions of the 1-impurity model.
This solution is dual to 2 separate Wilson loops.

Disconnected solution

There is always a solution with vanishing off-diagonal elements

$$
G_{12}=G_{21}=\Sigma_{12}=\Sigma_{21}=0
$$

G_{11} and G_{22} are solutions of the 1-impurity model.
This solution is dual to 2 separate Wilson loops.

Are there other solutions?

- From holographic dual, expect 2 other solutions for $\mathcal{T}<\mathcal{T}_{\max }$.
- Do they describe a BCS state (fermion condensate)?
- I have not found them yet, but there are indications that I am on the right track.

Rewrite self-energy equation

Form of D_{12} suggests to write self energy as

$$
\Sigma(\tau)=\hat{\lambda}[G(\tau)+\Theta(\tau)], \quad \hat{\lambda}=\frac{\lambda}{4 \beta^{2}}
$$

with

$$
\Theta_{11}=\Theta_{22}=0, \quad G_{12}(\tau)=-\frac{\sin ^{2}\left[\pi\left(\tau+\tau_{0}\right) / \beta\right]+X^{2}}{\frac{1}{2}\left(1-v_{1} \cdot v_{2}\right)+X^{2}} \Theta_{12}(\tau)
$$

Fourier transform of self-energy equation

$$
G_{12}\left(i \omega_{n}\right)=\frac{\frac{1}{4} \mathrm{e}^{2 \pi i \frac{\tau_{0}}{\beta}} \Theta_{12}\left(i \omega_{n+1}\right)+\frac{1}{4} \mathrm{e}^{-2 \pi i \frac{\tau_{0}}{\beta}} \Theta_{12}\left(i \omega_{n-1}\right)-\left(X^{2}+\frac{1}{2}\right) \Theta_{12}\left(i \omega_{n}\right)}{\frac{1}{2}\left(1-v_{1} \cdot v_{2}\right)+X^{2}}
$$

Equation for G_{21} has $-\tau_{0}$ instead of τ_{0}

Invariance of Dyson's equation

Dyson's equation is invariant under the transformation

$$
\begin{array}{ll}
G_{12}\left(i \omega_{n}\right) \rightarrow f\left(i \omega_{n}\right) G_{12}\left(i \omega_{n}\right), & G_{21}\left(i \omega_{n}\right) \rightarrow\left[f\left(i \omega_{n}\right)\right]^{-1} G_{21}\left(i \omega_{n}\right) \\
\Theta_{12}\left(i \omega_{n}\right) \rightarrow f\left(i \omega_{n}\right) \Theta_{12}\left(i \omega_{n}\right), & \Theta_{21}\left(i \omega_{n}\right) \rightarrow\left[f\left(i \omega_{n}\right)\right]^{-1} \Theta_{21}\left(i \omega_{n}\right)
\end{array}
$$

for any function $f\left(i \omega_{n}\right)$
The self-energy equation is not invariant.

Eliminate the arbitrary τ_{0}

τ_{0} can be absorbed by a transformation with

$$
f\left(i \omega_{n}\right)=\mathrm{e}^{i \omega_{n} \delta} \quad \Rightarrow \quad \tau_{0} \rightarrow \tau_{0}+\delta
$$

Self-energy equation is now

$$
G_{12}\left(i \omega_{n}\right)=\frac{\frac{1}{4}\left[\Theta_{12}\left(i \omega_{n+1}\right)+\Theta_{12}\left(i \omega_{n-1}\right)-2 \Theta_{12}\left(i \omega_{n}\right)\right]-X^{2} \Theta_{12}\left(i \omega_{n}\right)}{\frac{1}{2}\left(1-v_{1} \cdot v_{2}\right)+X^{2}}
$$

Scaling limit?

pick

$$
f\left(i \omega_{n}\right)=\mathrm{e}^{-\frac{\beta}{\pi} J \omega_{n}} \quad \text { with } \quad \sinh J=X
$$

The same J as in the holographic dual!
This eliminates the constant term in the self-energy equation (asymptotic behaviour of G_{12})

$$
\begin{aligned}
G_{12}\left(i \omega_{n}\right)= & \frac{\frac{1}{2}}{\cosh (2 J)-v_{1} \cdot v_{2}}\left\{\cosh (2 J)\left[\Theta_{12}\left(i \omega_{n+1}\right)+\Theta_{12}\left(i \omega_{n-1}\right)-2 \Theta_{12}\left(i \omega_{n}\right)\right]\right. \\
& \left.-\sinh (2 J)\left[\Theta_{12}\left(i \omega_{n+1}\right)-\Theta_{12}\left(i \omega_{n-1}\right)\right]\right\}
\end{aligned}
$$

Combinations look like discretized second and first derivatives of Θ_{12}. Hint for a good scaling limit?

I remain hopeful.

