The Liquid Argon Time Projection Chamber (LArTPC) represents one of the most advanced experimental technologies for physics at the Intensity Frontier due to its full 3D-imaging, excellent particle identification and precise calorimetric energy reconstruction. By deploying LArTPCs in a dedicated calibration test beam line at Fermilab, LArIAT (Liquid Argon In A Testbeam) aims to experimentally calibrate this technology in a controlled environment and to provide physics results key to the neutrino oscillation physics and proton decay searches of the Short Baseline Neutrino and Long Baseline Neutrino programs.
LArIAT has a vast physics program which ranges from the analysis of electromagnetic shower reconstruction for electron-gamma separation, to the determination of the muon sign in the absence of magnetic field via its capture on nuclei, to the study of nuclear effects such as pion and kaon characteristic interaction modes.
In this talk, I will present the technique to measure the hadron-argon cross section in the LArIAT experiment, focusing on the study of the Total Kaon Cross Section and measurement of the Total Pion Cross Section, LArIAT first result.
Questo sito utilizza i cookie e tecnologie simili. Se non si modificano le impostazioni del browser, l'utente accetta. Per saperne di più Accept
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.