Experiments performed on Storage Rings have shown that lifetimes of beta-radionuclides can change dramatically as a function of the ionization state. An even more attractive experiment may consist in measuring, for the first time, nuclear β-decay rates in stellar-like conditions, especially for radionuclides involved in nuclear-astrophysics processes and cosmology (BBN, s-processing, CosmoChronometers, Early Solar System formation). Compact magnetic plasma traps, where plasmas reach density ne~1011-1014cm-3, and temperature Te~0.1-30 keV, are suitable for such studies. The decay rates can be measured as a function of the charge state distribution of the in-plasma ions. This idea is the subject of the PANDORA (Plasmas for Astrophysics, Nuclear Decay Observation and Radiation for Archaeometry) project, now supported by the 5th Nat. Comm. of INFN as a feasibility study. Possible physics cases include 85Kr (a crucial branching point of the s-process); 176Lu and the pairs 187Re-187Os and 87Sr-87Rb, which play a crucial role as cosmo-clock; the 7Be, that is responsible of the primordial abundance of 7Li and in primordial nucleosynthesis happens in a quite peculiar plasma environment. The talk will give an overview about methodologies and experimental scenarios for in-plasma nuclear astrophysics research.
Questo sito utilizza i cookie e tecnologie simili. Se non si modificano le impostazioni del browser, l'utente accetta. Per saperne di più Accept
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.