MMNLP

Mathematical methods of nonlinear Physics

 

 

SELECTED PUBLICATIONS


 
  • INFN Section Lecce

  1. J. Vašíček, R. Vitolo: WDVV equations and invariant bi-Hamiltonian formalism Journal of High Energy Physics129 (2021)
  2. M. Casati, P. Lorenzoni, D. Valeri, R. Vitolo: Weakly nonlocal Poisson brackets: Tools, examples, computations, Comp. Phys. Comm. Vol. 274 (2022).
  3. S. Abenda, P. Grinevich: Rational degenerations of M-curves, totally positive Grassmannians and KP2-solitons, Comm. Math. Phys. 361, pages 1029–1081 (2018).
  4. G. De Matteis, L. Martina, C. Naya, and V. Turco: Helicoids in chiral liquid crystals under external fields, Phys. Rev. E 100, 052703 (2019).
  5. G. Saccomandi, L. Vergori: Waves in isotropic dispersive elastic solids, Wave motion vol. 116 (2023).

 

  • INFN Section Milano

  1. D. Fermi, M. Gengo, and L. Pizzocchero, Integrable scalar cosmologies with matter and curvature, Nuclear Physics B 957 (2020), 115095 (102 pp)
  2. G. Gubbiotti, D. Latini and B. K. Tapley,Coalgebra symmetry for discrete systems,J. Phys. A: Math. Theor. 56 (2023), 205205 (34 pp)
  3. M. Dell’Atti and P. Vergallo, Classification of degenerate non-homogeneous Hamiltonian operators, J. Math. Phys. 64 (2023), 033505 (15 pp)
  4. F. Cremona, L. Pizzocchero and O. Sarbach,Gauge-invariant spherical linear perturbations of wormholes in Einstein gravity minimally coupled to a self-interacting phantom scalar field, Physical Review D 101 (2020), 104061 (26 pp)
  5. Gaeta, Giuseppe. W-symmetries of Ito stochastic differential equations. Journal of Mathematical Physics 60.5 (2019): 053501.<
  • INFN Section Milano Bicocca

  1. A. Arsie, A. Buryak, P. Lorenzoni and P. Rossi, Semisimple at F-manifolds in higher genus
  2. A. Arsie, A. Buryak, P. Lorenzoni and P. Rossi, Flat F-manifolds, F-CohFTs, and integrable hierarchies, Communications in Mathematical Physics 388, 291-328 (2021).
  3. Camassa, R. D'Onofrio, G. Falqui, G. Ortenzi and M. Pedroni, Evolution of interface singularities in shallow water equations with variable bottom topography, Studies in Applied Mathematics 148(4), 1439-1476 (2022).
  4. R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni and T.T. Vu Ho, Hamiltonian aspects of three-layer stratified fluids Jour. Nonlinear Sciences, Paper No. 70, 32 pp (2021).
  5. D. Masoero and A. Raimondo, Opers for Higher States of Quantum KdV Models, Communications in Mathematical Physics 1-74 (2020).
  • INFN Section Roma

  1. A. De Sole, V.G. Kac, D. Valeri, M. Wakimoto: Local and non-local multiplicative Poisson vertex algebras and differential-difference equations. Comm. Math. Phys. 370 (2019), no. 3, 1019-1068.
  2. F. Calogero and F. Payandeh, Solution of the initial-values problem of first-order nonlinear recursions with homogeneous right-hand sides, J. Math. Phys. 63, 052703 (2022). doi:10.1063/5.0073054.
  3. S. Carillo, A. Chichurin, G. Filipuk, F. Zullo, A short note on the Painleve' XXV-Ermakov equation, Applied Mathematical Letters, 131, September 2022 Article number 108064, WOS:000828601000019, MRMR4402995
  4. F. Coppini, P. G. Grinevich and P. M. Santini: The effect of a small loss or gain in the periodic NLS anomalous wave dynamics, I Phys. Rev. E, 101, 032204 (2020).
  5. F. Zullo, On the dynamics of the zeros of solutions of the Airy equation. Mathematics and Computers in Simulation Volume 176, 2020, pp. 312-318.
  • INFN Section Torino

  1. B. Konopelchenko, G. Ortenzi: Homogeneous Euler equation: blow-ups, gradient catastrophes and singularity of mappings, J. Phys.A: Math. Theor. 55, 035203 (2022) doi: 10.1088/1751- 8121/ac42aa ISSN: 1751-8113
  2. R. Camassa, R. D’Onofrio, G. Falqui, G. Ortenzi, M. Pedroni: Evolution of interface singula- rities in shallow water equations with variable bottom topography.Studies in Applied Mathematics (2022) doi: 10.1111/sapm.12480 (ISSN: 0022-2526)
  3. Onorato, Miguel, Luigi Cavaleri, Stephane Randoux, Pierre Suret, Maria Isabel Ruiz, Marta de Alfonso, and Alvise Benetazzo.Observation of a giant nonlinear wave-packet on the surface of the ocean." Scientific Reports 11, no. 1 (2021): 23606.
  4. Vanderhaegen, Guillaume, Corentin Naveau, Pascal Szriftgiser, Alexandre Kudlinski, Matteo Conforti, Arnaud Mussot, Miguel Onorato, Stefano Trillo, Amin Chabchoub, and Nail Akhmediev. “Extraordinary” modulation instability in optics and hydrodynamics." Proceedings of the National Academy of Sciences 118, no. 14 (2021): e2019348118.
  5. Steer, James N., Alistair GL Borthwick, Miguel Onorato, Amin Chabchoub, and Ton S. Van Den Bremer. Hydrodynamic X waves. Physical Review Letters 123, no. 18 (2019): 184501.
  • INFN Section Trieste

  1. M. Bertola, T. Grava, G. Orsatti: Soliton shielding of the focusing nonlinear Schrödinger equation.Phys. Rev. Lett. 130 (2023), no. 12,< Paper No. 127201, 6 pp.
  2. Girotti, M. Grava, T. Jenkins, R. McLaughlin, K. D. T.-R.: Rigorous asymptotics of a KdV soliton gas. Comm. Math. Phys. 384 (2021), no. 2, 733–784.
  3. Tempesta, Piergiulio, Tondo, Giorgio: Higher Haantjes brackets and integrability.Comm. Math. Phys. 389 (2022), no. 3, 1647–1671.
  4. Hahn, Marvin Anas, Lewański, Danilo: Wall-crossing and recursion formulae for tropical Jucys covers. Trans. Amer. Math. Soc. 373 (2020), no. 7, 4685–4711.
  5. Cotti, Giordano, Dubrovin, Boris, Guzzetti, Davide: Isomonodromy deformations at an irregular singularity with coalescing eigenvalues. Duke Math. J. 168 (2019), no. 6, 967–1108.

News

Map of INFN facilities

Next meeting

January 14, 2025

Login Form

csn2 csn3 csn4 csn5 infn uffcom amministrazione-trasparente lhcitalia sxt