I raggi cosmici nello spazio sono particelle elettricamente cariche costituite principalmente da protoni (circa per il 90%), nuclei di elio (circa 9%) e il rimanente 1% da tutti gli altri nuclei atomici della tavola periodica, elettroni e le rispettive anti-particelle. Le sorgenti dei raggi cosmici possono essere sia galattiche sia extra-galattiche.
La figura mostra il cosiddetto “spettro dei raggi cosmici”, cioè il numero di particelle che colpisce l’atmosfera terrestre in funzione della loro energia. Sull’asse verticale è indicata la quantità o flusso di particelle (il numero di particelle per m2 secondo, steradiante ed energia in GeV) mentre sull’asse orizzontale è riportata l’energia misurata in elettronvolt (eV). Questo è il cosiddetto spettro “all particle”: ottenuto sommando tutti i raggi cosmici senza separarli in composizione, cioè per tipologia. Da questo grafico si possono notare le seguenti cose:
- I raggi cosmici non hanno tutti la stessa energia ma sono prodotti su un intervallo di energie enorme, sono distribuiti cioè su più di 11 ordini di grandezza! Si pensi che l’energia del più grande acceleratore esistente, LHC al CERN, è di circa 1017eV, 1000 meno energetico della massima energia osservata nei raggi cosmici.
- Si sono osservate particelle fino ad energie incredibilmente elevate, ben 1020eV! Queste sono energie che non siamo assolutamente in grado di riprodurre con gli acceleratori che costruiamo. E non abbiamo ancora modelli definitivi per spiegare come sia possibile accelerare particelle fino a tali valori.
- Il flusso di particelle diminuisce molto rapidamente con il crescere dell’energia. Se l’energia aumenta di 10 volte il loro numero diminuisce di circa 1000 volte. Come indicato anche nella figura, a 108eV si misurano circa 100 eventi/m2 secondo, a 1015eV si ha 1 particella/m2 anno, a 1019 eV 1 particella/km2 anno ed infine a 1020 eV circa 1 particella/km2 secolo!
Un viaggio spaziale
Una volta che queste particelle vengono accelerate, indipendentemente dal tipo di sorgente, esse propagano (si muovono) nello spazio all’interno del mezzo intergalattico (tra le galassie), interstellare (tra le stelle) e interplanetario (tra i pianeti) prima di raggiungere la Terra. In questo lungo viaggio, le particelle interagiscono con: altre particelle, campi magnetici e campi di radiazione elettromagnetica. A seconda del tipo di particella in gioco, l’effetto di questi fenomeni può cambiare l’energia del raggio cosmico, modificarne la traiettoria, provocarne la scomparsa o la creazione di altre particelle.
Ecco perché studiare i raggi cosmici è importante per conoscere l’ambiente che ci circonda. In base a quanti e quali particelle arrivano in prossimità del nostro pianeta possiamo avere informazioni su chi li ha prodotti e come hanno fatto ad arrivare fino alla Terra. Informazioni sul mezzo attraversato ci permettono di studiare anche il nostro Sole, il campo magnetico terrestre ecc. Quindi, i raggi cosmici portano, con loro, una grandissima quantità di informazioni che aiuteranno a conoscere lo spazio, al di là del sottile strato di atmosfera, anche in previsione dei futuri viaggi spaziali.
I raggi cosmici di energia inferiore a qualche decina di GeV sono soggetti all’attività solare e, a più bassa energia sono in parte prodotti nei brillamenti solari (flares), cioè nelle potenti eruzioni di materia che avvengono sulla superficie del Sole. Lo studio della radiazione emessa da questi fenomeni è molto importante perché può rappresentare un pericolo per le missioni spaziali e può interferire pesantemente con le comunicazioni radio sulla Terra. Le particelle energetiche emesse in queste esplosioni sono le prime responsabili dello spettacolare fenomeno delle aurore polari.
Avvicinandosi alla superficie terrestre
Il numero di raggi cosmici che si può misurare Nrc è dato dalla seguente semplice relazione Nrc = Φrc x A x T, dove Φrc è il flusso di particelle che giungono a ridosso dell’atmosfera terrestre, A è l’area del rivelatore e T è il tempo di misura. Naturalmente non possiamo modificare il flusso Φrc dato dalla natura ma possiamo costruire rivelatori di grande area A e farli funzionare per lungo tempo T (almeno 5 anni) per registrare un gran numero di eventi importante per condurre studi approfonditi.
Le misure possono essere fatte in due modi molto differenti: (1) direttamente, cioè mandando i rivelatori fuori dall’atmosfera terrestre (o nei primissimi strati di essa) per rivelare i raggi cosmici direttamente, cioè prima che interagiscano con i nuclei dell’atmosfera e quindi si trasformino in complessi sciami estesi. Per fare questo i rivelatori vengono messi su palloni, satelliti o sulla ISS. Come è facile capire i rivelatori che possono essere mandati in orbita devono essere leggeri, quindi piccoli. L’area tipica è il metro quadrato; (2) indirettamente, disponendo appositi rivelatori sul suolo terrestre. In questo caso si misurano i prodotti secondari dell’interazione della particella primaria con i nuclei dell’atmosfera. Si osservano cioè le componenti (particelle e radiazione) degli sciami atmosferici estesi. In questo caso la misura è più complessa, non osservandosi direttamente il raggio cosmico primario, ma il vantaggio principale è che possono essere costruiti rivelatori enormi per misurare il flusso anche ad energie elevate, quando il numero di raggi cosmici che raggiunge la Terra è bassissimo.
Ecco allora che per energie superiori a circa 100 TeV è inevitabile ricorrere a misure indirette al suolo e costruire grandi apparati per rivelare un numero di particelle statisticamente sufficiente a fare studi approfonditi.
A 1019 eV, ad esempio, dovremmo portare fuori dall’atmosfera un rivelatore con un’area maggiore di Villa Borghese (0.8 km2), uno dei parchi pubblici più grandi di Roma, per raccogliere 1 particella in un anno. Questi apparati al suolo rivelano i cosiddetti “Sciami Atmosferici Estesi”.
Vediamo allora di cosa si tratta e cosa succede quando un raggio cosmico entra nell’atmosfera terrestre dopo aver vagabondato per miliardi di anni nell’Universo. Quando un raggio cosmico primario, ad esempio un protone, entra nell’atmosfera terrestre subisce una interazione nucleare con i nuclei di aria. Questa interazione è simile a quelle che avvengono nei più potenti acceleratori di particelle costruiti dall’uomo, come LHC al CERN. La principale differenza è che con i raggi cosmici si possono avere interazioni ad energie cosi’ elevate che mai si riusciranno a replicare nei nostri laboratori.
Il risultato di questi urti è la produzione di un gran numero di mesoni, principalmente pioni ma anche kaoni, seppure in misura molto minore. Queste particelle emergono equamente suddivise in 3 diverse diverse cariche (positiva, negativa e neutra).
Il primario non viene distrutto in questa interazione ma continua a muoversi verso il suolo, anche se con energia ridotta di circa il 50%, e subisce nuove successive analoghe interazioni.
I mesoni invece possono decadere o interagire anche essi con un nucleo di aria. Le particelle elettromagnetiche (elettroni, positroni e fotoni) ed i muoni sono prodotti essenzialmente nel decadimento dei pioni. I pioni neutri decadono immediatamente in due fotoni e producono dei sotto-sciami puramente elettromagnetici, quelli carichi sono invece i responsabili della produzione dei muoni.
Tutte queste particelle formano un “fascio” di particelle, noto anche con il nome di “core” dello sciame, con una dimensione di pochi metri. Man mano che le particelle cariche si propagano verso il suolo, esse subiscono tante piccole deflessioni in seguito alle interazioni con i campi elettrici dei nuclei di aria. L’effetto cumulativo è di farle sparpagliare lateralmente in modo da non essere più contenute solo all’interno del core che resta pero’ la zona con la più alta densità di particelle.
L’insieme di questi complessi processi moltiplicativi genera i cosiddetti “Sciami Atmosferici Estesi”(EAS, Extensive Air Showers), una pioggia di particelle (i cosiddetti raggi cosmici secondari) che arriva al suolo contenuta in un disco con uno spessore di pochi metri.
Uno sciame è composto da 3 componenti:
- la componente elettromagnetica (elettroni, positroni, fotoni): è di gran lunga la più numerosa e rappresenta circa il 90% delle particelle;
- la componente muonica: è la componente più penetrante, in grado cioè di attraversare grandi quantità di materia. Rappresenta circa il 10% delle particelle di uno sciame;
- la componente adronica: la componente minore, una frazione di circa 1% di tutte le
Pur essendo la componente meno numerosa, gli adroni sono particelle estremamente importanti rappresentando lo scheletro di uno sciame esteso perchè sono essi a rifornire di energia, dopo le interazioni, le componenti elettromagnetica e muonica. Il punto importante è che il rapporto tra le differenti componenti secondarie dipende dal rapporto tra interazione e decadimento delle particelle durante la loro propagazione nell’atmosfera.
Dal punto di vista sperimentale la componente secondaria carica dei raggi cosmici viene generalmente separata in:
- componente penetrante, costituita da muoni con E>1TeV,
- componente ‘dura’, costituita da muoni con E>200MeV,
- componente ‘soft’, principalmente composta da elettroni e positroni
Storicamente, la suddivisione tra componenti soft e dura era fatta in base alla capacità delle particelle di attraversare 10 cm di piombo. Questa suddivisione è utile perchè le tecniche sperimentali, quindi i rivelatori, per la loro misura sono ben differenti. Ad esempio, la rivelazione della componente penetrante può essere effettuata solo con rivelatori posti dentro un laboratorio sotterraneo come quello del Gran Sasso, schermato da circa 1000 m di roccia, necessaria ad assorbire tutte le altre componenti e selezionare particelle con energie superiori al TeV.
Gli sciami estesi non contengono solo particelle ma anche radiazione, come luce Cherenkov, radiazione di fluorescenza ed onde radio di alta frequenza (MHz). Radiazione che viene studiata con sofisticati telescopi.
Ricordiamo qui soltanto che i telescopi Cherenkov sono una delle tecniche sperimentali più efficaci per l’osservazione di sorgenti di fotoni cosmici al suolo (nella cosiddetta Astronomia Gamma) e che i telescopi per luce di fluorescenza sono uno dei principali rivelatori dell’osservatorio Pierre Auger.
Gli sciami atmosferici furono scoperti per caso, grazie alla diffusa applicazione nello studio dei raggi cosmici di contatori in coincidenza. Questi venivano posti generalmente in configurazione telescopica, cioè allineati lungo un asse passante per il loro centro. E solo in questo caso si osservavano coincidenze, cioè 2 o più di essi, contemporaneamente, davano il segnale del passaggio di una particella.
Ma prima di costruire il telescopio, i rivelatori venivano provati disponendoli separatamente su di un piano orizzontale. Nessuno si sarebbe aspettato di registrare un segnale di coincidenza tra essi perchè una stessa particella non poteva attraversarli tutti. Eppure in molti notarono che il numero di coincidenze tra essi era troppo grande per essere attribuito completamente al caso.
Fu Bruno Rossi nel 1934 il primo a suggerire che si potesse essere difronte ad un nuovo fenomeno fisico. Egli infatti scrisse in un articolo: “Sembrerebbe che di quando in quando arrivino sugli strumenti gruppi di particelle molto estesi in grado di produrre coincidenze anche tra rivelatori piuttosto distanti tra loro”. Fu la prima evidenza dell’esistenza degli sciami atmosferici estesi!
Rossi fu il primo ad intuire che i raggi cosmici potessero produrre anche in atmosfera quei processi moltiplicativi osservati nei materiali densi come il piombo.
Diversi gruppi indipendentemente cercarono di spiegare il fenomeno, in particolare ricordiamo nel 1938 Bothe, Kolhorster e Schmeiser, misurando la cosiddetta curva di decoerenza, cioè il numero di coincidenze in funzione della distanza tra i rivelatori.
Nello stesso periodo, Auger e Maze, sfruttando un circuito di coincidenza con un tempo di risoluzione molto inferiore, intrapresero una campagna di studi sistematici delle caratteristiche di questi sciami riuscendo a misurare coincidenze tra rivelatori distanti anche 300 m!
E risultato probabilmente ancora più importante, stimarono che l’energia del primario all’origine di questi eventi fosse di circa 1015 eV! Era nato lo studio degli Sciami Atmosferici Estesi di altissima energia.